当前位置:文档之家› 论他汀类药物的基本骨架及其结构与药效的关系

论他汀类药物的基本骨架及其结构与药效的关系

论他汀类药物的基本骨架及其结构与药效的关系目录:

1.对他汀类药物的基本介绍 3

1.1已上市或正在开发的他汀类药物 3

1.2作用 4

1.3.应用前景 4

2.基本骨架 5

3.构效关系 6

3.1理化性质及药动学特性 8

3.1.1.溶解度 9

3.1.2.亲脂性 9

3.1.3.吸收方面 9

4.总结 9

5【参考文献】 10

论他汀类药物的基本骨架及其结构与药效的关系

【摘要】他汀类药物泛指羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,能够调节低密度脂蛋白(LDL-C)胆固醇水平。由于他汀类药物安全有效、不良反应

少,在临床上,他汀类药物广泛应用于高脂血症的治疗。近年来,对他汀类药物的开发是降血脂药物研究的热点之一。为探究他汀类药物的构效关系,本文将从其基本骨架、构效关系、溶解性、亲脂亲水性等方面进行论述。

【关键字】基本骨架降脂性构效关系

1.对他汀类药物的基本介绍

他汀类药物可分为天然化合物(如洛伐他丁、辛伐他汀、普伐他汀、美伐他汀)和完全人工合成化合物(如氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、pitavastatin)

1.1已上市或正在开发的他汀类药物

目前,已上市或正处于开发中的他汀类药物包括:洛伐他汀、辛伐他汀、普

伐他汀、阿托伐他汀等,具体情况详见表1

表1 他汀类药物概况

——————————————————————————————

药名英文名商品名上市时间(年)

洛伐他汀 Lovastatin 美降之 1987

辛伐他汀 Simvastatin 舒降之 1988

普伐他汀 Pravastatin 普拉固 1989

氟伐他汀Fluvastatin来适可 1994

阿托伐他汀 Atorvastatin 立普妥 1997

西立伐他汀Cerivastatin拜斯亭 1997

罗伐他汀Rosuvastatin - 2003

匹伐他汀Pitavastatin - 处于注册前——————————————————————————————

1.2作用

此类药物通过竞争性抑制内源性胆固醇合成限速酶(HMG-CoA)还原酶,阻断细胞内羟甲戊酸代谢途径,使细胞内胆固醇合成减少,从而反馈性刺激细胞膜表面(主要为肝细胞)低密度脂蛋白受体数量和活性增加、使血清胆固醇清除增加、水平降低。他汀类药物还可抑制肝脏合成载脂蛋白B-100,从而减少富含甘油三酯AV、脂蛋白的合成和分泌。

他汀类药物除降低胆固醇、甘油三酯、预防中风发作、降低缺血性心脏病病人做冠脉搭桥手术的必要以外,还具有抗增殖作用;并具有免疫抑制性,因而可能成为器官移植后排斥疗法的常规药物。另有因为它们能使中枢神经系统的载脂蛋白E4水平下降。

作用过程如下:①他汀类药物靶器官为肝脏,其结构与 HMC-CoA相似,可在胆固醇合成的早期阶段竞争性抑制 HMC-CoA 还原酶活性,从而降低LDL-C的浓度。②负反馈调节使肝细胞表面LDL受体代偿性增加,致使血浆LDL降低,继而导致VLDL代谢加快。

1.3.应用前景

他汀类药物除降低胆固醇、甘油三酯、预防中风发作、降低缺血性心脏病病人做冠脉搭桥手术的必要以外,还具有抗增殖作用;并具有免疫抑制性,因而可能成为器官移植后排斥疗法的常规药物。另有因为它们能使中枢神经系统的载脂蛋白

E4水平下降。这些将扩大HMG-CoA还原酶抑制剂的临床适应症,其市场正不断扩大,其主要的研究领域有:

1.骨质疏松症;2.老年痴呆症治疗;3.心脏病治疗;4.器官移植;5.中风治疗;6.糖尿病治疗

2.基本骨架

以下为他汀类药物的几种结构

阿托伐他汀

匹伐他汀

结合以上两种他汀类药物的结构,可以总结出其基本骨架如下:

A部分:一个与HMG结构类似的β、δ-二羟基戊酸结构,他汀类药物的药效基团。B部分:疏水性环状结构,决定药物与还原酶的结合。环上的取代基决定药物溶解性和药动力学特性。C部分:上述二者之间的连接部分,可以是乙基、乙烯基、乙炔基等。

3.构效关系

A部分:分为内酯结构(活性较低),开环结构。构象:两个羟基位于两手性碳上并处于顺式、β-羟基为R构型才能保证药物活性。β,δ-二羟基戊酸是发挥抑制活性的必需基团,对HMG-CoA还原酶有抑制作用。通过该基团,他汀发挥抑制胆固醇合成,降低血清胆固醇水平。给药后在体内开环转化为有效的羟基酸。

B部分:以共价键连接到3,5- 二羟基庚酸上的疏水性环状结构,为一个憎水性的刚性平面结构,可分为苯环,萘环、脱氢萘环、芳杂环和稠杂环等(一般稠

合苯环或稠杂环的活性优于相应的苯环或芳杂环。),它在药物与还原酶的结合中起重要作用。取代基可分为:

①邻位1:苯基(4-氟苯基活性最佳)、环己基、环己甲基

②邻位2:异丙基(代谢稳定)、环丙基、螺戊烷

③其他位:极性取代基(抑制作用加强)

取代基如下图所示:

其他位邻位2

邻位1

C部分:可分为较高活性的乙烯基(反式具高活性)、乙基以及较低活性的乙炔基、氧亚甲基。为母环上的取代基,它们决定药物溶解性和药动学性质。连接A和B部分的最佳长度为两个碳原子的长度,以乙烯基或乙基为最佳,若以乙炔基或氧亚甲基取代则活性明显下降。若为乙烯基时。A和B部分需处于反式位置,若为顺式则会导致活性明显下降。C部分结构举例:

阿托伐他汀:

氟伐他汀

3.1理化性质及药动学特性

相较于洛伐他汀与辛伐他汀,普伐他汀结构中用羟基取代前两者中的一个甲基,亲水性较大。氟伐他汀和之后开发的他汀类药物在疏水性环状结构中均有氟苯取代基,表现出两亲性。而舒瑞伐他汀引入甲磺酰胺基,具有较强的亲水性。由结构导致的不同亲水/亲脂性决定了药物在体内跨膜转运的方式,影响吸收、分布、肝脏提取及代谢排泄的不同特征。

3.1.1.溶解度

市售类他汀类药物中除洛伐他汀、辛伐他汀外,其余均成钠盐或钙盐,成钠盐的药物均能溶于水,成钙盐的药物在水中的溶解度较低。

3.1.2.亲脂性

洛伐他汀、辛伐他汀为内酯化合物,logD值较大,亲脂性较强,其余他汀类药物均为开环羟基酸化合物,相应logD值较小,亲脂性较弱,其中普伐他汀、瑞舒伐他汀因疏水性环状结构上分别各有一个羟基及甲磺酰胺基,使得这两个药物表现为亲水。

3.1.3.吸收方面

市售他汀类药物均由小肠吸收,匹伐他汀在结肠中也有少量吸收。药物溶解及亲水/亲脂性决定了药物的吸收程度。所有药物给药后均迅速吸收,在4h内达峰,吸收率30﹪—98﹪。普伐他汀、瑞舒伐他汀水溶性好,在胃肠道能迅速溶解,但不易通过被动扩散透膜主要是通过主动转运进入肝细胞。氟伐他汀的两亲性使其易于溶解,同时也能通过被动扩散透膜。由于肝首过提取,除西立伐他汀生物利用度为60﹪外,其余他汀类药物的利用率均较低。洛伐他汀与辛伐他汀进入体内后会首先转换成有效的抑制剂,再通过被动扩散透膜吸收

4.总结

他汀类药物特殊的结构决定了其发挥药效的有效性。除氟伐他汀外,他汀类类药物吸收不完全。除普伐他汀外,大多与血浆蛋白结合率较高。辛伐他汀(Simvastatin是洛伐他汀(Lovastatin)的甲基化衍化物,美伐他汀(Mevastatin,)药效弱而不良反应多,未用于临床,目前主要用于制备它的化衍化物普伐他汀(Pravastatin)。洛伐他汀和辛伐他汀口服后要在肝脏内将结构中的其内酯环打开才能转化成活性物质;相对于洛伐他汀和辛伐他汀,普伐他汀本身为开环羟酸结构,在人体内无需转化即可直接发挥药理作用,且该结构具有亲水性,不易弥散至其他组织细胞,极少影响其他外周细胞内的胆固醇合成。

对于他汀类药物的开发,改造母环是其研究热点,在设计新药时,除包括基本结构外,还应适当引入极性取代基,增加亲水性,以提高药物溶解度和肝脏提取率。

5【参考文献】

1.周小华、周天红 .辛伐他汀5mg与普伐他汀10mg治疗高胆固醇血症的比较{J} 中国新药与临床杂志. 1998.17:152-153

2.罗雪琚.舒降之临床应用进展{J},心血管病学进展,1998.19:65—69

3.Lusis AJ.Atherosclerosis {J}.Nature,2000,407:234

4.张美慧、梁大伟.他汀类化合物构效关系研究进展.中国药物化学杂志,2014,4

5.吴万泰.羟甲基戊二酰辅酶A还原酶抑制剂发展与构效特征.中国新药与临床杂志.2000.5.19(3)214-216

6.尤启东.他汀类药物作用模式和构效关系研究进展.中国药学杂志,2003,6

他汀类药物临床应用

他汀类药物临床应用 他汀类药物是当前临床较为热门的话题,事实上,“他汀”只是一类药物的俗名,其实质上是 一种还原酶抑制剂。之所以将其称作“他汀类”原因在于,该类药品在最初时均为进口药物, 而其英文名称中都带有“statin”这一单词,翻译过来就是“他汀”了!他汀类药物在临床上运用 较广,下面就他汀类药品在临床的具体应用做一详细介绍。 他汀类药物临床运用 他汀类药物在最开始时是被用于Ⅱa与Ⅱb高脂血症的医治中,包含家族性、原发性高胆固 醇血症等,同样也适用于因遗传性高脂血症诱发的并发性高胆固醇血症。伴随研究不断深入,许多资料显示,他汀类药物不但有降低胆固醇的效果,且在非调脂方面发挥着促进作用,比 如提升血管内皮功能、抑制血小板集聚等,而其在应用范围上已远超出既定适用范围。 临床应用一——冠心病 许多随机研究表明,冠心病病人可在他汀类药物中获得理想效果,能够调节冠心病病人血脂 水平,特别是LDC-C减少至30%以上,可显著降低冠心病患病率与病死率。他汀类药物于冠 心病中的应用可谓是近几年临床药学的最大突破,特别是在能够诱发死亡的急性冠脉综合征 诊治中,在采取抗凝和抗栓诊疗的同时,运用他汀类药物实施调脂诊疗,且借助其药物功效,提升血管内皮功能,在血小板聚集与炎症因子释放过程中发挥较强的抑制作用,同时能够减 少病人在急性期间的死亡率,从而改善病人预后。除此之外,他汀类药物还在某些手术中起 着不可替代的作用,如冠状动脉旁路植入术等。 临床应用二——心力衰竭 与他汀类药物有关的临床实践,比如北欧辛伐他汀存活实验和胆固醇及冠心病反复发作事件 研究均提示他汀类药物能使心力衰竭发生率有效降低。在一项研究中,讨论分析中度心衰病 人应用他汀类药物的临床效果。研究表明,在采取他汀类药物治疗时可在2年内降低心衰死 亡风险,且降低效果明显。但是在一些前瞻性研究中却得出阴性结论,所以临床在心力衰竭 中应用他汀类药物仍需谨慎。 临床应用三——免疫调节与抗感染 有资料显示,普伐他汀与辛伐他汀可阻滞体外培养淋巴细胞,对T细胞活性有较好的调节作用。一些专业人士认为,免疫调节很有可能是他汀类药品的另一种药理作用,其有可能成为 新的免疫抑制剂,专门用于炎性疾病的诊治。同时经临床实践表明,普伐他汀与辛伐他汀及 阿伐他汀均对C-反应蛋白有降低效果,也正因这点为其具备抗感染作用奠定了理论依据。近 几年诸多研究结果表明,在类风湿性关节炎中他汀药物运用效果良好,可以控制疾病对骨组 织的损害。当前还不能确立所有他汀类药物是否都具备抗感染效应,这一点还需大量实验证明,能否在临床大面积使用还有待考证。 临床应用四——抑制肾脏细胞增殖 诸多进展性肾小球病症中,系膜细胞的增殖与活化是关键性因素,可加大细胞外基质。在肾 病综合征研究过程中,他汀类药物能削弱肾脏结构与功能恶化进程。该药物能将缺失性突变 细胞停驻在细胞周期G1期,对人体补充胆固醇对该现象无任何改善效果,提示他汀类药物 在肾脏病症的作用至少一部分和其对细胞的作用相关。辛伐他汀与洛伐他汀以依赖性特征阻 断内皮素和血管紧张素Ⅱ引发的DNA合成;降低肾脏系膜细胞活化。资料指出,早期采用他汀类药物能延迟糖尿病肾病发生与进展,这一点足以说明他汀类药品可提升肌酐清除率,改 善肾衰竭。 临床应用五——抗肿瘤

药物结构与药效关系

根据药物化学结构对生物活性的影响程度,或根据作用方式,宏观上将药物分为非特异性结构药物和特异性结构药物。前者的药理作用与化学结构类型关系较少,主要受理化性质影响。大多数药物属于后一类型,其活性与化学结构相互关联,并与物定受体的相互作用有关。决定药效的主要因素有二: (1)药物必须以一定的浓度到达作用部位,才能产生应有的药效。 (2)药物和受体相互作用,形成复合物,产生生物化学和生物物理的变化。依赖于药物的特定化学结构,但也受代谢和转运的影响。 第一节药物的基本结构和结构改造 作用相似的药物结构也多相似。在构效关系研究中,对具有相同药理作用的药物,剖析其化学结构中的相同部分,称为基本结构。基本结构可变部分的多少和可变性的大小各不相同,有其结构的专属性。基本结构的确定却有助于结构改造和新药设计。 第二节理化性质对药效的影响 理化性质影响非特异性结构药物的活性,起主导作用。特异性结构药物的活性取决于其与受体结合能力,也取决于其能否到达作用部位的性质。药物到达作用部位必须通过生物膜转运,其通过能力有赖于药物的理化性质及其分子结构。对药物的药理作用影响较大的性质,既有物理的,又有化学的。 一、溶解度、分配系数对药效的影响 药物转运扩散至血液或体液,需有一定的水溶性(又称亲水性或疏脂性)。通过脂质的生物膜转运,需有一定的脂溶性(又称亲脂性或疏水性)。 脂溶性和水溶性的相对大小一般以脂水分配系数表示。即化合物在非水相中的平衡浓度Co 和水相中的中性形式平衡浓度Cw之比值:P=Co/Cw 因P值效大,常用lgP。非水相目前广泛采用溶剂性能近似生物膜、不吸收紫外光、可形成氢键及化学性质稳定的正辛醇。 分子结构的改变将对脂水分配系数发生显著影响。卤原子增大4~20倍,—CH2—增大2~4倍。以O代-CH2-,下降为1/5~1/20。羟基下降为1/5~1/150。脂氨基下降为1/2~1/100。 引入下列基团至脂烃化合物(R),其lgP的递降顺序大致为: C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2 引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大致为: C6H5 > C4H9 >> I > Cl > Ar > OCH3> NO2 ≥COOH > COCH3> CHO > OH > NHCOCH3> NH2 > CONH2 > SO2NH2 作用于中枢神经系统的药物,需通过血脑屏障,需较大的脂水分配系数。全身麻醉药和镇静催眠药的活性与lgP值有关。但脂水分配系数也有一定限度,即化合物也需有一定的水溶度,才能显示最好效用。

他汀类药物临床应用

他汀类药物临床应用 他汀类药物,即羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,国内现有他汀类药物有洛伐他汀、辛伐他汀、普伐他汀、氟伐他汀、匹伐他汀、阿托伐他汀、瑞舒伐他汀等。他汀类药物种类多,临床应用广,不同他汀类药物有哪些相同和不同之处?临床使用中常见问题有哪些?我们应该如何合理用药? 一、他汀类的药理作用及适应症是什么? 主要药理作用为抑制肝脏内HMG-CoA还原酶及胆固醇的生物合成,从而降低血浆中胆固醇和血清脂蛋白浓度,现主要用于高胆固醇血症等患者。 二、他汀类药动学特点有哪些? 蛋白结合率高,首过代谢广泛,大部分生物利用度较低,主要通过肝脏P450酶代谢,主要经胆道从粪便排泄为主。 三、不同他汀类的代谢和排泄有何不同?

四、他汀类与其他药物相互作用有哪些? 他汀类(辛伐他汀、洛伐他汀、阿托伐他汀为主)与主要经CYP450 3A4代谢的药物发生相互作用,与CYP 3A4抑制剂联合应用时可增加不良反应发生的风险,甚至增加横纹肌溶解等严重不良反应的风险。如与环孢菌素、大环内酯类抗生素、胺碘酮、华法林、利福平等合用时,发生肌病的危险性增加。 五、他汀类常见不良反应有哪些? 常见不良反应包括胃肠道反应、头痛、失眠、转氨酶升高、肌病、过敏反应、横纹肌溶解等。其中肝脏毒性和肌肉毒性临床报道较多,故在用药过程中需监测肝功能,肌酸磷酸激酶等相关指标。 六、他汀类禁忌症有哪些? 对他汀类药物过敏者;活动性肝脏疾病者;原因不明的肝脏转氨酶持续升高者;妊娠及哺乳期妇女等。

七、他汀类何时服药? 人体合成胆固醇的酶在夜间活性最强,为达到最好的效果,夜间服用为主,一般每日一次即可。因阿托伐他汀和瑞舒伐他汀半衰期长,可在任意时间服用。同时他汀类药物可在饭前或饭后用药。 八、他汀类的用药剂量和使用强度有何不同? 1)低强度治疗用药剂量:辛伐他汀10mg、普伐他汀10-20mg、洛伐他汀10-20mg、氟伐他汀40mg、匹伐他汀1mg; 2)中等强度用药剂量:阿托伐他汀10-20mg、瑞舒伐他汀5-10mg、辛伐他汀20-40mg、普伐他汀40mg、洛伐他汀40mg、氟伐他汀80mg、匹伐他汀2-4mg; 3)高强度用药剂量:阿托伐他汀40-80mg、瑞舒伐他汀20-40mg; 九、糖尿病患者能否使用他汀类? 糖尿病患者常伴有血脂异常,增加心血管风险及死亡率。虽然有文献报道长期大剂量服用他汀类药物引起血糖升高,但他汀类带来的血管获益远大于对血糖的影

070他汀类药物的构效关系对药学研究的提示

发布日期20050606 栏目化药药物评价>>化药质量控制 标题他汀类药物的构效关系对药学研究的提示 作者张明平 部门 正文内容 审评四部张明平 他汀类血脂调节药是近来申报的一个热点。但由于申报单位对这类药物结构的复杂 性认识不足,能顺利通过审评的较少。大量的补充意见都集中在药学研究中与药物结 构有关的部分。因此本文总结了部分文献资料,针对发补问题,就药学研究中的注意 事项进行了探讨。 他汀类药物均属于HMG-CoA还原酶抑制剂。口服吸收的水解产物在体内竞争性地 抑制胆固醇合成过程中的限速酶羟甲戊二酰辅酶A还原酶,使胆固醇的合成减少,使 低密度脂蛋白受体增加,主要作用部位在肝脏,使血胆固醇和低密度脂蛋白胆固醇水 平降低,中度降低血清甘油三酯水平和增高血高密度脂蛋白水平。 在上述过程中,他汀类药物的HMG样部分占据了hHMGR 的酶活性位点。同时,他汀类药物的大体积的憎水性化合物占据了HMG 结合口袋和部分CoA 的结合表面。他 们的紧密结合是由于抑制剂和hHMGR 之间的大量的范德华力相互作用。这时,天然 底物HMG2CoA 与hHMGR 的结合通路就被阻断了。 他汀类药物的结构可分为3 个部分【1】,【2】:A 部分,一个与酶的底物 HMG2CoA 中HMG 结构类似的β,δ-二羟基戊酸结构;B 部分,一个与酶变构后产生的 憎水性浅沟相结合的憎水性刚性平面结构;C 部分,上述二者之间的连接部分。见下图。 A 部分: ①β,δ-二羟基戊酸是发挥抑制活性的必需基团, 其内酯结构可在体内经酶解作用转变为β,δ-二羟基戊酸形式而产生活性,但活性相对较低。β-甲基-β,δ-二羟 基戊酸结构与HMG结构更为接近,若替代β,δ-二羟基戊酸结构却导致活性明显降低。 ②β,δ-二羟基戊酸结构中两个羟基位于两个手性碳上,两个羟基处于顺式且β-羟基 为R 构型是活性所必需的。若构型发生改变,则活性急剧降低。

论他汀类药物的基本骨架及其结构与药效的关系

论他汀类药物的基本骨架及其结构与药效的关系目录: 1.对他汀类药物的基本介绍 3 1.1已上市或正在开发的他汀类药物 3 1.2作用 4 1.3.应用前景 4 2.基本骨架 5 3.构效关系 6 3.1理化性质及药动学特性 8 3.1.1.溶解度 9 3.1.2.亲脂性 9 3.1.3.吸收方面 9 4.总结 9 5【参考文献】 10 论他汀类药物的基本骨架及其结构与药效的关系 【摘要】他汀类药物泛指羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,能够调节低密度脂蛋白(LDL-C)胆固醇水平。由于他汀类药物安全有效、不良反应

少,在临床上,他汀类药物广泛应用于高脂血症的治疗。近年来,对他汀类药物的开发是降血脂药物研究的热点之一。为探究他汀类药物的构效关系,本文将从其基本骨架、构效关系、溶解性、亲脂亲水性等方面进行论述。 【关键字】基本骨架降脂性构效关系 1.对他汀类药物的基本介绍 他汀类药物可分为天然化合物(如洛伐他丁、辛伐他汀、普伐他汀、美伐他汀)和完全人工合成化合物(如氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、pitavastatin) 1.1已上市或正在开发的他汀类药物 目前,已上市或正处于开发中的他汀类药物包括:洛伐他汀、辛伐他汀、普 伐他汀、阿托伐他汀等,具体情况详见表1 表1 他汀类药物概况 —————————————————————————————— 药名英文名商品名上市时间(年) 洛伐他汀 Lovastatin 美降之 1987 辛伐他汀 Simvastatin 舒降之 1988 普伐他汀 Pravastatin 普拉固 1989 氟伐他汀Fluvastatin来适可 1994

第三章 药物的化学结构与药效的关系

药物的化学结构与药效的关系 A型题(最佳选择题) (1题-20题) 1.下列对生物电子等排原理叙述错误的是 A以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效。 B以生物电子等排体的相互替换,对药物进行结构的改造,以降低药物的毒副作用。 C凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。 D生物电子等排体可以以任何形式相互替换,来提高药物的疗效,降低毒副作用。 E 在药物结构中可以通过基团的倒转、极性相似、范德华半径相似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。 2.下列对前药原理的作用叙述错误的是 A 前药原理可以改善药物在体内的吸收; B 前药原理可以缩短药物在体内的作用时间; C前药原理可以提高药物的稳定性; D前药原理可以消除药物的苦味; E前药原理可以改善药物的溶解度; 3.药物分子中引入烃基、卤素原子、硫醚键等,可使药物的 A 脂溶性降低; B 脂溶性增高; C 脂溶性不变; D 水溶性增高; E 水溶性不变; 4.药物分子中引入羟基、羧基、脂氨基等,可使药物的 A 水溶性降低; B 脂溶性增高; C 脂溶性不变; D 水溶性增高; E 水溶性不变; 5.一般来说,酸性药物在体内随介质pH增大 A解离度增大,体内吸收率降低; B解离度增大,体内吸收率升高;

C解离度减小,体内吸收率降低; D解离度减小,体内吸收率升高; E解离度不变,体内吸收率不变; 6.一般来说,碱性药物在体内随介质pH增大 A解离度增大,体内吸收率降低; B解离度增大,体内吸收率升高; C解离度减小,体内吸收率降低; D解离度减小,体内吸收率升高; E解离度不变,体内吸收率不变; 7.药物的基本结构是指 A具有相同药理作用的药物的化学结构; B 具有相同化学结构的药物; C 具有相同药理作用的药物的化学结构中相同部分; D 具有相同理化性质的药物的化学结构中相同部分; E 具有相同化学组成药物的化学结构; 8.在药物的基本结构中引入烃基对药物的性质影响叙述错误的是 A 可以改变药物的溶解度; B 可以改变药物的解离度; C 可以改变药物的分配系数; D 可以改变药物分子结构中的空间位阻; E 可以增加位阻从而降低药物的稳定性; 9.在药物的基本结构中引入羟基对药物的性质影响叙述错误的是 A 可以增加药物的水溶性; B 可以增强药物与受体的结合力; C 取代在脂肪链上,使药物的活性和毒性均下降; D取代在芳环上,使药物的活性和毒性均下降; E可以改变药物生物活性; 10.在药物的基本结构中引入羧基对药物的性质影响叙述错误的是

本科《药物化学》

2016-2017-1学期期末考试卷 专业:2015级药学专升本班 课程名称:药物化学 10氯喹主要对疟原虫的红内期起作用,有效性控制疟疾的临床发作,不能用于直接杀死疟原虫,但能干扰它的繁殖。

莨菪酸用发烟硝酸加热处理,发生硝基化反应,生成三硝基衍生物;再加氢氧化钾醇液和一小粒固体氢氧化钾,初显深紫色,后转暗红色,最后颜色消失(产物为有色醌型物)。此反应称为Vitali反应. 为莨菪酸的特征反应。 3 抗生素 抗生素是在低浓度下就能选择性地抑制某些生物生命活动的微生物次级代谢产物,及其化学半合成或全合成的衍生物。抗生素对病原微生物具有抑制或杀灭作用,是防治感染性疾病的重要药物。抗生素不仅有抗菌作用,其作用还包括抗肿瘤、抗病毒、抑制免疫、杀虫作用、除草作用等。 4药物的不良反应 药物不良反应在药理学中,指某种药物导致的躯体及心理副反应、毒性反应、变态反应等非治疗所需的反应。可以是预期的毒副反应,也可以是无法预期的过敏性或特异性反应。 三选择题(A 型题每题1分共10分) 1他汀类药物与以下哪种药物合用致横纹肌溶解性增加A A 阿米卡星 B 非诺贝特 C 伯氨喹 D 双香豆素 2 风湿热及活动型风湿性关节炎的首选药物是A A 对乙酰氨基酚 B 布洛芬 C 吲哚美辛 D 阿司匹林 3 药物的纯杂程度也称药用纯度或药用规格,是药物中杂质限度的一种体现,具体表现在D A 药物的治疗量 B 药物的性状 C 物理常数 D 有效成分的含量 4 巴比妥类药物的药效主要受下列哪种因素的影响D A体外的解离度 B体内溶解度 C 体外溶解度 D 体内的解离度 5其饱和水溶液加碘试液不产生沉淀,再加稀盐酸即生成红棕色沉过量的氢氧化钠试液中溶解的药物是C A 茶碱 B 尼可刹米 C 咖啡因 D 可可豆碱 6 下列关于硝酸异山梨酯的叙述错误的是C A 具有右旋光性 B 在酸碱溶液中硝酸酯易水解 C在光作用下可被氧化变色应遮光保存 D 受到猛烈撞击或者高热时可发生爆炸 7 钠盐水溶液与硫酸铜试液作用,产生草绿色铜盐沉淀药物的是B A 磺胺异恶唑 B 磺胺甲噁唑 C 磺胺嘧啶 D 磺胺醋酰钠 8 以下哪个药物是治疗室上性心动过速的首选药 B A 盐酸普罗帕酮 B 盐酸维拉帕米 C 氟桂利嗪 D 硝酸甘油 9 以下属于水溶性维生素的是D A β-胡萝卜素 B 生育酚 C 维生素K D 呋喃硫胺 10阿苯达唑在稀硫酸遇化铋钾试液产生红棕色沉淀,是因为本品含有A A 叔胺基 B伯胺基 C 仲胺基 D 季胺基

药物化学药物的化学结构与药效的关系-1

第一章药物的化学结构与药效的关系 本章提示: 大多数药物的作用依赖于药物分子的化学结构,因此药物的药效和药物的理化性质,如疏水性、酸碱性、药物的解离度等有关;与药物结构的立体构型、空间构型、电子云密度等有关。此外还与药物与生物分子的作用强弱有关。 第一节影响药物药效的因素和药效团 药物从给药到产生药效是一个非常复杂的过程,包括吸收、分布、代谢、组织结合,以及在作用部位产生作用等等。在这一过程中影响药物产生药效的主要因素有两个方面: 1.药物到达作用部位的浓度。对于静脉注射给药时,由于药物直接进入血液,不存在药物被吸收的问题。而对于其它途径给药时都有经给药部位吸收进入血液的问题。进入血液后的药物,随着血液流经各器官或组织,使药物分布于器官或组织之间,这需要药物穿透细胞膜等生物膜,最后到达作用部位。而药物只有到达作用部位,才能产生药效。在这一系列的过程中,药物的理化性质产生主要的影响。此外药物随血液流经肝脏时会产生代谢,改变药物的结构和疗效,流经肾脏时产生排泄,减少了药物在体内的数量。这些也与药物结构中的取代基的化学反应性有一定的联系。 2.药物与受体的作用。药物到达作用部位后,与受体形成复合物,产生生理和生化的变化,达到调节机体功能或治疗疾病的目的。药物与受体的作用一方面依赖于药物特定的化学结构,以及该结构与受体的空间互补性,另一方面还取决于药物和受体的结合方式,如化学的方式通过共价键结合形成不可逆复合物,或以物理的方式,通过离子键、氢键、离子偶极、范德华力和疏水性等结合形成可逆的复合物。 这二个影响因素都与药物的化学结构有密切的关系,是药物结构-药效关系(构-效关系)研究的主要内容。 但对于药物的作用方式来讲,又有两种不同类型。一类是药物的药效作用主要受药物的理化性质影响而与药物的化学结构类型关系较少,如全身麻醉药,尽管这些药物的化学结构类型有多种,但其麻醉作用与药物的脂水分配系数有关,这类药物称为结构非特异性药物;另一类药物的作用依赖于药物分子特异的化学结构,该化学结构与受体相互作用后才能产生影响,因此化学结构的变化会直接影响其药效,这类药物称为结构特异性药物。而大多数药物属于结构特异性药物。 结构特异性药物中,能被受体所识别和结合的三维结构要素的组合又称为药效团。这样受体必须首先要识别所趋近的分子是否具有结合所需的性质,然后与其结合。药效团又可分为两种类型:一类具有相同药理作用的类似物,它们具有某种基本结构;另一类则可能是一组化学结构完全不同的分子,但可以与同一受体以相同的机理键合,产生同样的药理作用。受体与药物的结合实际上是与药物结构中药效团的结合,这与药物结构上官能团的静电性、疏水性及基团的大小有关。 第二节药物理化性质和药效的关系 在药物作用的过程中,药物的理化性质对药物的吸收、转运都产生重要的影响,而且对于结构非特异性药物,药物的理化性质直接影响药物的活性。药物的理化性质主要有药物的溶解度、分配系数和解离度。

他汀类药物的临床应用进展知识讲解

他汀类药物的临床应用进展 他汀类药物(statins)即3-羟基-3-甲基戊二酰辅酶A(HMG-CoA)还原酶抑制药,能有效地降低胆固醇水平,也已成为预防和治疗冠心病最有效的药物。近年来临床研究发现他汀类药物还能改善内皮细胞功能,抑制纤维蛋白的产生和血栓形成,改善非动脉硬化性心脏病的症状,有降低血压、抗炎、抗心律失常等作用。本文就近年来他汀类药物的临床应用进展简述如下。 1.他汀类药物的降血脂作用 他汀又名羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶抑制剂,由于HMG-CoA还原酶是合成胆固醇的限速酶,HMG-CoA还原酶抑制剂通过对该酶的特异性竞争抑制,从而使内源性胆固醇合成减少,降低血清中LDL-C及总胆固醇的水平,增强细胞表面低密度脂蛋白(LDL)受体表达,加速血循环中LDL和极低密度脂蛋白(VLDL)残粒清除,是临床治疗高胆固醇血症和高低密度脂蛋白胆固醇血症的首选药物,是临床上疗效明确的调脂药。有研究显示,口服罗伐他汀5mg可使大多数高脂血症患者血浆中LDL-C水平减少42%~52%,三酰甘油降低16%,总胆固醇降低30%,载脂蛋白B2减少33%,HDL-C提高8%~13%。多个随机双盲和安慰剂对照的临床研究均证实,他汀类药物能显着降低高脂血症患者的病死率及其心血管事件的发生率。 2.他汀类药物的抗高血压作用 临床回顾性分析发现,高血压病患者中,使用他汀类药物患者的血压比不使用者控制的更好,且更易于使血压<140/90mmHg(1mmHg=0.133kPa)。大多数他汀类药物抗高血压作用的临床研究亦支持Statins的降压作用。Strazzullo等荟萃分析发现与安慰剂组及其他降脂药比较,他汀类药物可以明显降低高血压病患者的血压;当血压>130/80mmHg时他汀类药物可使收缩压平均降低4mmHg,使舒张压平均降低1.2mmHg,基线血压越高其降压作用越明显,并且与血脂变化无关。 3.他汀类药物治疗肺高压的作用 肺高压(pulmonary】hypertension,PH)是最严重而且具有潜在破坏力的慢性肺循环疾病,临床研究发现他汀类药物能有效减轻甚至逆转PH及肺血管重塑。Kao等应用辛伐他

药物的化学结构与药效

第二章药物的化学结构与药效的关系 本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。 第一节药物化学结构的改造 药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展 一、生物电子等排原理 在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。 生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。 (一)经典生物电子等排体 1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。 2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。 3.三价原子和基团如—CH=、—N=等都有5个外层电子。 4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。 这些电子等排体常以等价交换形式相互替换。如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2O C H 2N (二)非经典生物电子等排体 常见可相互替代的非经典生物电子等排体,如 —CH =、—S —、—O —、—NH —、—CH 2— 在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。如甲氰咪胍(3-3)为H 2受体拮抗剂,自应用于临床以来,能有效地抑制胃液分泌,治疗胃 及十二指肠溃疡疗效显著。但有报道,有些病人长期使用甲氰脒胍后,有致癌和精神混乱迹象。应用生物电子等排原理对甲氰咪胍结构进行改造,以呋喃环替代咪唑环,并在5位引入二甲胺基甲基,补偿甲氰咪胍分子中咪唑环所具有的碱性,同时,考虑到侧链取代基的碱性过强,因而以硝基亚甲基取代氰基亚氨基,以协调整个分子的脂溶性和电性效应等因素,由此得到的雷尼替丁(3-4)。该药对胃和十二指肠溃疡的疗效更好,且具有速效和长效的特点,是新型的H 2受体拮抗剂。 O N N H C NHCH 3N C N CH 3C NHCH 3NCH 2H 3C H 3C (3-3)NO 2(3-4)CH 2SCH 2CH 2NH CH 2SCH 2CH 2NH 二、前药原理 保持药物的基本结构,仅在结构中的官能团作一些修改,以克服药物的缺点,这称为药物结构修饰。结构修饰后的衍生物常失去原药的生物活性,给药后,可在体内经酶或非酶的作用(多为水解)又转化为原药,使药效更好的发挥。这种无活性的衍生物称为前药,采用这种方法来改造药物的结构以获得更好药效的理论称为前药原理。 利用前药原理对药物进行结构的修饰,可以提高或改善药物的性质: 1.改善药物在体内的吸收 药物被机体吸收必须具有合适的脂水分配系数。若药物的脂溶性差,脂水分配系数小,则应制成脂溶性大

最新他汀类药物的临床应用进展

他汀类药物的临床应用进展 [导读]他汀类药物(statins)即3-羟基-3-甲基戊二酰辅酶A(HMG-CoA)还原酶抑制药,能有效地降低胆固醇水平,也已成为预防和治疗冠心病最有效的药物。近年来临床研究发现他汀类药物还能改善内皮细胞功能,抑制纤维蛋白的产生和血栓形成,改善非动脉硬化性心脏病的 他汀类药物(statins)即3-羟基-3-甲基戊二酰辅酶A(HMG-CoA)还原酶抑制药,能有效地降低胆固醇水平,也已成为预防和治疗冠心病最有效的药物。近年来临床研究发现他汀类药物还能改善内皮细胞功能,抑制纤维蛋白的产生和血栓形成,改善非动脉硬化性心脏病的症状,有降低血压、抗炎、抗心律失常等作用。本文就近年来他汀类药物的临床应用进展简述如下。 1.他汀类药物的降血脂作用 他汀又名羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶抑制剂,由于HMG-CoA还原酶是合成胆固醇的限速酶,HMG-CoA还原酶抑制剂通过对该酶的特异性竞争抑制,从而使内源性胆固醇合成减少,降低血清中LDL-C及总胆固醇的水平,增强细胞表面低密度脂蛋白(LDL)受体表达,加速血循环中LDL和极低密度脂蛋白(VLDL)残粒清除,是临床治疗高胆固醇血症和高低密度脂蛋白胆固醇血症的首选药物,是临床上疗效明确的调脂药。有研究显示,口服罗伐他汀5mg可使大多数高脂血症患者血浆中LDL-C水平减少42%~52%,三酰甘油降低16%,总胆固醇降低30%,载脂蛋白B2减少33%,HDL-C提高8%~13%。多个随机双盲和安慰剂对照的临床研究均证实,他汀类药物能显着降低高脂血症患者的病死率及其心血管事件的发生率。 2.他汀类药物的抗高血压作用 临床回顾性分析发现,高血压病患者中,使用他汀类药物患者的血压比不使用者控制的更好,且更易于使血压<140/90mmHg(1mmHg=0.133kPa)。大多数他汀类药物抗高血压作用的临床研究亦支持Statins的降压作用。Strazzullo等荟萃分析发现与安慰剂组及其他降脂

论他汀类药物的基本骨架及其结构与药效的关系

论他汀类药物的基本骨架及其结构与药效的关系 目录: 1.对他汀类药物的基本介绍 (2) 1.1已上市或正在开发的他汀类药物 (2) 1.2作用 (3) 1.3.应用前景 (4) 2.基本骨架 (4) 3.构效关系 (5) 3.1理化性质及药动学特性 (6) 3.1.1.溶解度 (7) 3.1.2.亲脂性 (7) 3.1.3.吸收方面 (7) 4.总结 (8) 5【参考文献】 (8) 论他汀类药物的基本骨架及其结构与药效的关系【摘要】他汀类药物泛指羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,能够调节低密度)胆固醇水平。由于他汀类药物安全有效、不良反应少,在临床上,他汀类LDL-C脂蛋白(. 药物广泛应用于高脂血症的治疗。近年来,对他汀类药物的开发是降血脂药物研究的热点之一。为探究他汀类药物的构效关系,本文将从其基本骨架、构效关系、溶解性、亲脂亲水性等方面进行论述。 【关键字】基本骨架降脂性构效关系 1.对他汀类药物的基本介绍 他汀类药物可分为天然化合物(如洛伐他丁、辛伐他汀、普伐他汀、美伐他汀)和完全人工合成化合物(如氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、pitavastatin) 1.1已上市或正在开发的他汀类药物 目前,已上市或正处于开发中的他汀类药物包括:洛伐他汀、辛伐他汀、普伐他汀、阿托伐他汀等,具体情况详见表1 表1 他汀类药物概况

—————————————————————————————— 药名英文名商品名上市时间(年) 洛伐他汀 Lovastatin 美降之 1987 辛伐他汀 Simvastatin 舒降之 1988 普伐他汀 Pravastatin 普拉固 1989 氟伐他汀 Fluvastatin 来适可 1994 1997 立普妥 Atorvastatin 阿托伐他汀. 西立伐他汀 Cerivastatin 拜斯亭 1997 罗伐他汀 Rosuvastatin - 2003 匹伐他汀 Pitavastatin - 处于注册前—————————————————————————————— 1.2作用 此类药物通过竞争性抑制内源性胆固醇合成限速酶(HMG-CoA)还原酶,阻断细胞内羟甲戊酸代谢途径,使细胞内胆固醇合成减少,从而反馈性刺激细胞膜表面(主要为肝细胞)低密度脂蛋白受体数量和活性增加、使血清胆固醇清除增加、水平降低。他汀类药物还可抑制肝脏合成载脂蛋白B-100,从而减少富含甘油三酯AV、脂蛋白的合成和分泌。 他汀类药物除降低胆固醇、甘油三酯、预防中风发作、降低缺血性心脏病病人做冠脉搭桥手术的必要以外,还具有抗增殖作用;并具有免疫抑制性,因而可能成为器官移植后排斥疗法的常规药物。另有因为它们能使中枢神经系统的载脂蛋白E4水平下降。 作用过程如下: ①他汀类药物靶器官为肝脏,其结构与 HMC-CoA相似,可在胆固醇合成的早期阶段竞争性抑制 HMC-CoA 还原酶活性,从而降低LDL-C的浓度。 ②负反馈调节使肝细胞表面LDL受体代偿性增加,致使血浆LDL降低,继而导致VLDL代谢加快。 1.3.应用前景 他汀类药物除降低胆固醇、甘油三酯、预防中风发作、降低缺血性心脏病病人做冠脉搭桥手术的必要以外,还具有抗增殖作用;并具有免疫抑制性,因而可能成为器官移植后排斥疗法的常规药物。另有因为它们能使中枢神经系统的载脂蛋白E4水平下降。这些将扩大HMG-CoA还原酶抑制剂的临床适应症,其市场正不断扩大,其主要的研究领域有: 4.器官移植;骨质疏松症;1.5.中风治疗;老年痴呆症治疗;2.6.糖尿病治疗.心脏病治疗;32.基本骨架 以下为他汀类药物的几种结构 阿托伐他汀 匹伐他汀 :下如架骨本基其出结总以可,构结的物药类汀他种两上以合结. 二羟基戊酸结构,他汀类药物的药效基-部分:一个与HMG结构类似的β、δA 团。部分:疏水性环状结构,决定药物与还原酶的结合。环上的取代基决定药物溶B 解性和药动力学特性。部分:上述二者之间的连接部分,可以是乙基、乙烯基、

药物化学-他汀

题目:他汀类药物及其研究进展 组员:余**、俞*、王**、陈**、李* 一、前言: (一)他汀类药物现状 当世界上第一个由默克公司生产的HMG-CoA还原酶抑制剂降血脂药物洛伐他汀于1987年经FDA批准上市后,立即引起医药学界的关注,被认为该药的开发成功,是降血脂药物研究的新进展。 目前国际上常用的他汀类药物有 5 种( 按问世先后顺序) : 洛伐他汀( lovastat in) 、普伐他汀( pravastat in ) 、辛伐他汀( simvastatin) 、氟伐他汀( fluvastatin) 和阿托伐他汀( atorvastatin) 。 (二)作用机理 他汀类药物( 羟甲戊二酰辅酶A 还原酶抑制药)是一类治疗高胆固醇血症的有效药物,主要通过竞争性抑制细胞内胆固醇合成早期过程中限速酶的活性,减少胆固醇的合成,并上调肝细胞表面低密度脂蛋白( low density lipoprotein,LDL) 受体的表达,加速血液中LDL 胆固醇向肝脏的转移与代谢清除,从而达到降低血脂的目的。他汀类药物还可抑制极低密度脂蛋白( VLDL) 的合成。因此,他汀类药物能显著降低总胆固醇( cholesterol,TC) 、低密度脂蛋白胆固醇( low density lipoprotein cholesterin,LDL-C) 和载脂蛋白B( ApoB) ,也降低三酰甘油( triacylglycerol,TG) 和轻度升高高密度脂蛋白胆固醇( high-density lipoprotein cholesterol,HDL-C) 。此外,他汀类药物还可能具有抗炎、保护血管内皮功能等非降脂作用 (三)不足之处 他汀类药物不良反应主要发生在皮肤、胃肠道、神经系统、肝脏和肌肉等组织,消化系统症状表现为恶心、腹泻、腹胀、腹痛、便秘等; 精神神经系统表现为烦躁、失眠、易激、头昏、失眠、头痛、视觉障碍、眩晕、感觉异常、睡眠紊乱、注意力不集中、外周神经病变等; 皮肤反应为皮疹、瘙痒等; 变态反应主要

构效关系

一、喹诺酮类构效关系: 1、A环是必须的药效团,3羧和4酮为抗菌活性不可少的部分; 2、B环可以是苯、吡啶、嘧啶; 3、1位乙基及环丙基活性强,环丙基最佳(环丙沙星); 4、2位取代活性低; 5、5位氨基可增强活性.(司帕沙星) 6、6位F改善细胞的通透性; 7、7位引入杂环,增强抗菌活性,哌嗪最好; 8、8位F、甲氧基或与1位成环,增强活性(左氧氟沙星),甲基、甲氧基光毒性减少 二、苯二氮卓构效关系要点. 1、3位引入羟基(奥沙西泮)降低毒性,并产生手性碳,右旋体作用强。 2、7位有吸电子基可增加活性,吸电子越强,作用越强,其次序为NO 2>Br>CF3>Cl 3、5位苯是产生药效的重要基团,5位苯环的2’位引入体积小的吸电子基团.(如F、Cl )可使活性增强。 4、1,2位拼入三氮唑可提高稳定性,并提高与受体的亲和力,活性显著增加。 5、苯环用生物电子等排体噻吩杂环置换,保留活性。 6、1位取代基在体内代谢去烃基,仍有活性。 三、吩噻嗪类药物的构效关系: 以氯丙嗪为先导化合物,对吩噻嗪类进行结构改造。三方面: 1、吩噻嗪环上的取代基:吩噻嗪环只有2位引入吸电子基团时可增强活性。作用强度与吸电子性能成正比,CF3>Cl>COCH3>H>OH。2位乙酰基可降低药物的毒性和副作用。 2、10位N上的取代基:母核上的10位N原子与侧链碱性氨基之间相隔3个直链碳原子时作用最强,是吩噻嗪类抗精神病药的基本结构。侧链末端的碱性基团常为叔胺,也可为氮杂环,以哌嗪取代作用最强。 3、三环的生物电子等排体。 四、μ受体选择性激动剂构效关系 1、芳环和碱性叔胺氮原子是μ受体激动剂的必要结构部分,二者通过2个或3个碳原子的碳链相连接。 2、芳环3位酚羟基的存在使活性显著增强。氮原子上以甲基取代活性好,当N-取代基增大到3~5个碳原子时,如烯丙基(纳洛酮)、环丁基甲基时,由激动剂转变为拮抗剂。 3、μ受体选择性激动剂的药效构象相同,其芳环以直立键与哌啶环相连。 五、抗胆碱药构效关系 1、6,7位有氧桥(东莨菪碱),分子极性减少,中枢作用增强。 2、6位有羟基(山莨菪碱),分子极性增强,中枢作用减弱。中枢作用强度顺序是:东莨菪碱>阿托品>山莨菪碱 3、引入季铵(丁溴东莨菪碱),不进入中枢神经 六、作用于肾上腺素受体药物构效关系 (一)肾上腺素受体激动剂的结构及构效关系

药学专业知识一讲义:药物的结构与药物作用

药学专业知识一讲义:药物的结构与药物作用 考情分析 属药物化学的学科范畴; 每年考试分比:9~11分; 难度偏大,内容基础,知识点零碎。 建议:熟读,诵记,模糊理解。 高频考点 药物的溶解度、分配系数和渗透性对药效的影响 药物的酸碱性、解离度和pK a值对药效的影响 药物化学结构与生物活性,对映异构体的活性 药物代谢,包括Ⅰ相和Ⅱ相生物转化规律 化学药物是具有一定化学结构的物质。只要化学结构确定,其理化性质也就确定,进入人体内后和人体相互作用就会产生一定的生物活性(包括毒副作用)。 化学结构→→→理化性质→→→生物活性/毒副作用

第一节药物理化性质与药物活性 一、溶解度、分配系数和渗透性对药效的影响 药物转运扩散至血液或体液,需要溶解在水中,故要求药物有一定的水溶性(亲水性)。 生物膜主要由磷脂组成,药物要具有脂溶性(亲脂性)。 中庸平衡。亲水性或亲脂性过高或过低对药效都不利。 药物在体内的吸收、分布、排泄需在水相和脂相(有机相,油相)间多次分配,因此要求药物兼具脂溶性和水溶性。 脂水分配系数:评价药物亲水性或亲脂性大小的标准,用P表示,定义:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。 脂水分配系数,脂前水后,所以是脂相除以水相(脂上水下);P值越大,脂相中浓度相对越高,脂溶性越高。 药物分子结构改变对药物脂水分配系数的影响比较大。 引入极性较大的羟基(-OH,脱胎于H2O)时,药物的水溶性加大,脂水分配系数下降5~150倍。 引入吸电子的卤素原子(F、Cl、Br、I),亲脂性增大,脂水分配系数增加; 引入硫原子(S,想象硫磺)、烃基(烷基,碳链,如-CH2CH3,火字旁,火上浇油)或将羟基换成烷氧基(如-OCH2CH3),药物的脂溶性也会增大。 二、药物的酸碱性、解离度和pKa对药物的影响 有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型)或非解离的形式(分子型)同时存在于体液中。 计算题:解离型和非解离型药物浓度的比值。

药物化学构效关系

局部麻醉药构sheng效关系 1.分类 芳酸酯类、酰胺类、氨基醚类、氨基酮类、其他类 2.构效关系 亲酯部分中间链亲水部分 ⑴亲脂部分: 芳烃或芳杂环,这一部分修饰对理化性质变化大,但苯环作用较强。 苯环上引入给电子取代基,麻醉作用增强,而吸电子取代基则作用减弱。 ⑵中间部分:此部分决定药物稳定性,和局麻作用持续时间有关 ⑶亲水部分:常为仲胺和叔胺,仲胺刺激性较大;烃基链3~4个碳原子作用最强,杂环以哌啶环作用最强 巴比妥类药构效关系 (1)、分子中5位上应有两个取代基。(2)、5位上的两个取代基的总碳数以4—8为最好(3)、5位上的两个取代基的总碳数以4—8为最好. (4)、在酰亚胺氮原于上引入甲基,可降低酸性和增加脂溶性。(5)、将C2上的氧原子以硫原子代替,则脂溶性增加,起效快,作用时间短。 苯二氮卓类药物的构效关系 (1)1,3-二氢-5-苯基-2H-1,4-苯二氮卓-2-酮是此类药物基本结构;(2)环A7位引入吸电子取代基活性增加(3)环B为七元亚胺-内酰胺结构是产生药理作用的必要结构(4)5位苯环上的取代基时产生药效的重要结构之一,(5)1,2位的酰胺键和4,5位的亚胺键在酸性条件下易水解开环. 吩噻嗪类药构效关系 R1 部分必须由三个成直链的碳原子组成,若为支链,与多巴胺受体B 部分立体上不匹配,抗精神病活性明显下降,抗组胺作用增强。 顺式吩噻嗪类药物与多巴胺的优势构象能部分重叠,活性高(当侧链与氯取代的苯环同侧时,成为顺式构象)。 丁酰苯类药物的构效关系 (1)丁酰苯基为必需的基本骨架(2)侧链末端连一碱性叔胺(3)苯环的对位一般具 有氟取代(4)侧链湠基于碱基之间以三个碳原子最好 镇痛药的一般特征 (1)分子中具有一个平坦的芳香结构(2)有一个碱性中心能在生理PH条件下大部分电离为阳离子(3)含有哌啶或类似于哌啶的空间结构 吗啡的构效关系(半合成类镇痛药) 叔胺是镇痛活性的关键基团,氮原子引入不同的取代基可使μ 受体激动剂转变为拮抗剂。酚羟基被醚化和酰化后,活性及成瘾性均降低。羟基被烃化、酯化、氧化或去除后,活性及成瘾性均增加。 解痉药构效关系 (1)该部分可以为叔胺或季胺(2)中间脂肪连接部分n在2-4之间(3)一般来讲,X为酯键,醚键和烷基(4)R1和R2为饱和的碳环或杂环,也可以为芳环或芳杂环 氢氯噻嗪结构改造药的构效关系

执业药师考试药学专业知识一第02章 药物的结构与药物作用练习题

第二章药物的结构与药物作用 考情分析 属药物化学的学科范畴; 每年考试分比:9~11分; 难度偏大,内容基础,知识点零碎。 建议:熟读,诵记,模糊理解。 高频考点 药物的溶解度、分配系数和渗透性对药效的影响 药物的酸碱性、解离度和pK a值对药效的影响 药物化学结构与生物活性,对映异构体的活性 药物代谢,包括Ⅰ相和Ⅱ相生物转化规律 化学药物是具有一定化学结构的物质。只要化学结构确定,其理化性质也就确定,进入人体内后和人体相互作用就会产生一定的生物活性(包括毒副作用)。 化学结构→→→理化性质→→→生物活性/毒副作用

第一节药物理化性质与药物活性 一、溶解度、分配系数和渗透性对药效的影响 药物转运扩散至血液或体液,需要溶解在水中,故要求药物有一定的水溶性(亲水性)。 生物膜主要由磷脂组成,药物要具有脂溶性(亲脂性)。 中庸平衡。亲水性或亲脂性过高或过低对药效都不利。 药物在体内的吸收、分布、排泄需在水相和脂相(有机相,油相)间多次分配,因此要求药物兼具脂溶性和水溶性。 脂水分配系数:评价药物亲水性或亲脂性大小的标准,用P表示,定义:药物在生物非水相中物质的量浓度与在水相中物质的量浓度之比。 脂水分配系数,脂前水后,所以是脂相除以水相(脂上水下);P值越大,脂相中浓度相对越高,脂溶性越高。 药物分子结构改变对药物脂水分配系数的影响比较大。 引入极性较大的羟基(-OH,脱胎于H2O)时,药物的水溶性加大,脂水分配系数下降5~150倍。 引入吸电子的卤素原子(F、Cl、Br、I),亲脂性增大,脂水分配系数增加; 引入硫原子(S,想象硫磺)、烃基(烷基,碳链,如-CH2CH3,火字旁,火上浇油)或将羟基换成烷氧基(如-OCH2CH3),药物的脂溶性也会增大。 二、药物的酸碱性、解离度和pKa对药物的影响 有机药物多数为弱酸或弱碱,在体液中只能部分解离,以解离的形式(离子型)或非解离的形式(分子型)同时存在于体液中。

相关主题
文本预览
相关文档 最新文档