当前位置:文档之家› 06第六讲如何进行定量分析

06第六讲如何进行定量分析

射影几何的诞生与发展

射影几何的诞生与发展 一从透视学到射影几何 1.在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临这样的问题: (1)一个物体的同一投影的两个截影有什么共同的性质? (2)从两个光源分别对两个物体投影到同一个物影上,那么两个物体间具有什么关系? 2.由于绘画、制图的刺激而导致了富有文艺复兴特色的学科---透视学的兴起(文艺复兴时期:普遍认为发端于14世纪的意大利,以后扩展到西欧,16世纪大道鼎盛),从而诞生了射影几何学。意大利人布努雷契(1377-1446)是第一个认真研究透视法并试图运用几何方法进行绘画的艺术家。 3.数学透视法的天才阿尔贝蒂(1401-1472)的《论绘画》一书(1511)则是早期数学透视法的代表作,成为射影几何学发展的起点。 4.对于透视法产生的问题给予数学上解答的第一人是德沙格(1591-1661)法国陆军军官,后来成为工程师和建筑师,都是靠自学的。1639年发表《试论锥面截一平面所得结果的初稿》,这部著作充满了创造性的思想,引入了无穷远点、无穷远直线、德沙格定理、交比不变性定理、对合调和点组关系的不变性、极点极带理论等。 5.数学家帕斯卡(1623-1662)16岁就开始研究投射与取景法,1640年完成著作《圆锥曲线论》,不久失传,1779年被重新发现,他最突出的成就是所谓的帕斯卡定理,即圆锥曲线的内接六边形的对边交点共线 6.画家拉伊尔(1640-1718)在《圆锥曲线》(1685)这本射影几何专著中最突出的地方在于极点理论方面的创新。 7.德沙格等人把这种投影分析法和所获得的结果视为欧几里得几何的一部分,从而在17世纪人们对二者不加区别,但这一方法诱发了一些新的思想和观点: 1)一个数学对象从一个形状连续变化到另一形状 2)变换与变换不变性 3)几何新方法------仅关心几何图形的相交与结构关系,不涉及度量 二射影几何的繁荣 1.在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,并且由于18世纪解析几何、微积分的发展洪流而被人遗忘,到

小学数学所有图形计算公式

小学数学图形计算公式 1 正方形 C周长S面积a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高 面积=底×高 s=ah 7 梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积C周长∏ d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r

(2)面积=半径×半径×∏ 9 圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数

圆锥曲线和射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理与结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线12 2=-y x 的左支上,A D ≠,直线 CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直 线2 1= x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据与特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点 A 在一条双曲线内部,过A 引两条直线与双曲线分别交于 B , C , D , E 。连 BD ,CE 交于点P ,且P 点在四边形BCDE 外部。 又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连 BE ,CD 交于点Q ,连PQ ,先证明:直线PQ 是A 点的极线。 D

证明: 对 C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于'DB 的交点P 三点共线, 同理P ,Q ,N 三点共线 所以 P ,Q ,M ,N 四点共线。 又因为 BC 是M 的极线,DE 是N 的极线,所以MN 是BC 与DE 的交点A 的极线,即 PQ 是A 的极线。 回到原图,由极线的定义与性质得 PQ OA ,且FAGH 为调与点列。

射影几何学

在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直线平行。 德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计 划书》中提出用变换群对几何学进行分类 在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。 由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。平行射影可以看作是经过无穷远点的中心投影了。这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。 射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。 在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。这两个图形叫做对偶图形。在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。这两个命题叫做对偶命题。这就是射影几何学所特有的对偶原则。在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。

浅析射影几何及其应用讲解

浅析射影几何及其应用 湖北省黄冈中学 一、概述 射影几何是欧几里得几何学的一个重要分支,研究的是在射影变换中图形所具有的性质。在高等数学中,射影几何的定义是根据克莱因的变换群理论与奥古斯特·费迪南德·莫比乌斯(1970-1868)的齐次坐标理论,这一部分已经涉及了群论和解析几何,但是这两位数学家对于射影几何的发展作出的巨大贡献是令人钦佩的。在本次综合性学习中小组成员对于射影几何的纯几何内容进行了探究,对以下专题进行了研究: 1、射影几何的基本概念及交比不变性 2、笛沙格定理(早期射影几何中最重要的定理之一) 3、对偶原理 4、二次曲线在射影几何上的应用 5、布列安桑定理和帕斯卡定理 6、二次曲线蝴蝶定理

二、研究过程 1、射影几何的基本概念及交比不变性 射影几何虽然不属于高考内容,射影几何与较为容易的中学几何具有更加抽象、难以理解的特点,但是射影几何所研究的图形的性质是极具有吸引力的,可以说是中学几何的一个延伸。 射影几何所研究的对象是图形的位置关系,和在射影变换下图形的性质。射影,顾名思义,就是在光源(可以是平行光源或者是点光源),图形保持的性质。在生活中,路灯下人的影子会被拉长,矩形和圆在光源照射下会出现平行四边形和椭圆的影子,图形的形状和大小发生了变化。然而,在这种变换中图形之间的有些位置关系没有变,比如,相切的椭圆和直线在变换之后仍相切。此外,射影几何最重要的概念之一——交比也不会发生改变。 在中学的几何中,我们认为两条平行的直线是不相交的。但是在射影几何中,我们可以规定一簇平行直线相交于平面上一个无穷远点,而通过这个点的所有直线是一簇有确定方向的平行直线。一条直线有且只有一个无穷远点,平面上方向不同的直线经过不同的无穷远点。所有这样的无穷远点构成了一条无穷远直线,同样在三维空间中可类似地定义出无穷远平面,这样就扩充了两个公理: 1、过两点有且只有一条直线 2、两条直线有且只有一个交点 这两条公理对普通点(即非无穷远点)和无穷远点均成立。这两条公

小学数学中的计算公式大全完整

1、每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数= 1倍数 3、速度×时间=路程路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数 差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a 2、正方体:V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形: C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体:V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6、平行四边形:s面积 a底 h高 面积=底×高 s=ah 7、梯形:s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8 、圆形:S面 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9、圆柱体:v:体积 h:高 s:底面积 r:底面半径c:底面周长

小学几何图形基本概念及计算公式

小学几何图形基本概念及计算公式 轴对称图形:如果一个图形沿着一条直线对折,直线左右的两部分能够完全重合,那么这个图形就叫做轴对称图形.这条直线叫做对称轴.长方形(2条对称轴),正方形(4条对称轴),等腰三角形(1条),等边三角形(3条),等腰直角三角形(1条),等腰梯形(1条),圆(无数条). 点:线和线相交于点. 直线:某点在空间中或平面上沿着一定方向和相反方向运动,所画成的图形,叫做直线.直线是向相反方向无限延伸的,所以它没有端点,不可以度量. (可以用表示直线上任意两点的大写字母来记:直线AB,也可以用一个小写字母来表示:直线a) 射线:由一个定点出发,向沿着一定的方向运动的点的轨迹,叫做射线.这个定点叫做射线的端点,这个端点也叫原点.射线只有一个端点,可以向一端无限延长,不可以度量.(射线可以用表示他端点,和射线上任意一点的两个大写字母表示:射线OA)

线段:直线上任意两点间的部分,叫做线段.这两点叫做线段的端点,线段有长度,可以度量.(线段可以用两个端点的大写字母表示:线段AB,也可以用一个小写字母表示;线段a)线段的性质:在连接两点的所有线中,线段最短. 角:从一点引出两条射线所组成的图形,叫做角.这两条射线的公共端点,叫做角的顶点.组成角的两条射线,叫做角的边. 角的大小与夹角两边的长短无关. 角的分类: 直角:90度的角叫做直角 平角:一条射线由原来的位置,绕它的端点按逆时针方向旋转,到所成的角的终边和始边成一直为止,这时所成的角叫做平角.或者角的两边的方向相反,且同在一条直线上时的角叫做平角,平角是180度. 锐角:小于90度的角叫做锐角 钝角:大于90度的角叫做钝角 垂直与平行:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行. 如果两条直线相交成

小学数学计算公式全

小学数学计算公式全集 一、小学数学算式定律 加法交换律:a + b = b+a 加法结合律:(a + b)+ c = a +(b +c) 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a ×(b×c) 乘法分配律:(a + b)×c = a×c + b×c 减法的运算性 质:a-b-c=a-(b+c) 除法的运算定律:a÷b÷c=a÷(b×c) 1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、因数×因数=积 积÷一个因数=另一个因数8、被减数-减数=差 被减数-差=减数 差+减数=被减数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 二、小学数学图形计算公式 1、正方形 C:周长 S:面积 a: 边长 周长=边长×4 C=4a 面积=边长×边长S=a× a 2、正方体 V:体积 a:棱 长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形 周长=(长+宽)× 2 C=2(a+b) 面积=长× 宽S=ab 4、长方体 (1)表面积=(长×宽+长×高+ 宽×高)× 2 S=2(ab+ah +bh) (2)体积=长×宽×高 V=abh 5、三角形 面积=底×高÷2 s=ah÷ 2 三角形高=面积×2÷底 h=S×2÷a 三角形底=面积×2÷高 a=S×2÷h 6、平行四边形 面积=底×高s=ah 7、梯形 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8、圆形 (1)周长=直径×∏=2×∏× 半径 C=∏d=2∏r (2)面积=半径×半径×∏ S=rr∏ 9、圆柱体 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积× 2 (3)体积=底面积×高 10、圆锥体 体积=底面积×高÷3 三、其他: 1、总数÷总份数=平均数 2、和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 3、和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者:和-小数=大数) 4、差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或:小数+差=大数)

舞蹈动作的解剖学分析

舞蹈动作的解剖学分析 舞蹈动作姿态万千,变化无穷,不可能逐一介绍。下面仅选择几个基本动作做技术分析,以求举一反三,达到掌握舞蹈解剖学分析方法并运用于实践的目的,舞蹈的技术技巧种类繁多,如转和翻类技巧,不仅需要关节运动和肌肉用力,还需要大脑神经中枢的综合调配、身体平衡器官、本体感受器的敏感等,此类技术技巧问题不是通过解剖学分析就能全部解决的,因此也就不在此次动作分析之列: 下面就“胸腰”、“旁擦地”、 “控后腿”、“小跳”、“紫金冠眺”、“踹燕”等动作举例分析。(一)“胸腰”的解剖学分析 l、“胸腰”的动作要领 预备姿势:舞蹈演员身体直立,手臂自然下垂于身体两侧:胸腰动作始自头部,先向上方拎上去,好似有人在上面牵着,将颈椎、胸椎一节节拉开,而后向远、向后方伸展,肩胛骨向内夹,胸椎向上顶,最终面部及胸口朝向上方(图4—8),呈现女性极富表现力的胸腰姿态: 2.“胸腰”的解剖学分析

“胸腰”的解剖学分析见表4—1所示: 表4—1 “胸腰”动作分析表 3.小结 由解剖学分析可知: 一是“胸腰”动作主要运用肌肉是竖脊肌、斜方肌、菱形肌、胸锁乳突肌以及三角肌后部、大圆肌、小圆肌和冈下肌等;因为从人体结构看,由于胸椎棘突长且斜向后下方,又由于胸廓的存在,影响“胸腰”的幅度,所以“胸腰”的关键,—‘是伸开胸椎及颈椎间的距离,肩胛骨后缩(夹住) 二是肩关节外旋; 三是头颈部后伸的配合:舞蹈演员要想做好“胸腰 ”动作,一定抓住关键,有针对性地进行训练。该动作主要是通过关节活动幅度增大,提高“胸腰 ’’的动作质量:所以,压肩——提高肩关节灵活性,增长肩胛内缩肌肉力量,提高夹肌、胸锁乳突肌的伸展性、力量,是训练好“胸腰”的首要条件。 “胸腰”动作容易出现的错误包括: “梗脖子”——夹肌、胸锁乳突肌没有伸展,过分紧张所致; 胸部挑不上去——肩胛骨没有夹住。

几何图形计算公式汇总

小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h

小学数学几何形体周长面积体积计算公式

一、小学数学几何形体周长面积体积计算公式 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽S=ab 正方形的面积=边长×边长S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径 三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 二、单位换算 (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

位置几何──射影几何学

位置几何──射影几何学 射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。一度也叫做投影几何学,在经典几何学中,射影几何处于一种特殊的地位,通过它可以把其他一些几何学联系起来。 射影几何的发展简况 十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。 基于绘图学和建筑学的需要,古希腊几何学家就开始研究透视法,也就是投影和截影。早在公元前200年左右,阿波罗尼奥斯就曾把二次曲线作为正圆锥面的截线来研究。在4世纪帕普斯的著作中,出现了帕普斯定理。 在文艺复兴时期,人们在绘画和建筑艺术方面非常注意和大力研究如何在平面上表现实物的图形。那时候,人们发现,一个画家要把一个事物画在一块画布上就好比是用自己的眼睛当作投影中心,把实物的影子影射到画布上去,然后再描绘出来。在这个过程中,被描绘下来的像中的各个元素的相对大小和位置关系,有的变化了,有的却保持不变。这样

就促使了数学家对图形在中心投影下的性质进行研究,因而就逐渐产生了许多过去没有的新的概念和理论,形成了射影几何这门学科。 射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家──笛沙格和帕斯卡。 笛沙格是一个自学成才的数学家,他年轻的时候当过陆军军官,后来钻研工程技术,成了一名工程师和建筑师,他很不赞成为理论而搞理论,决心用新的方法来证明圆锥曲线的定理。1639年,他出版了主要著作《试论圆锥曲线和平面的相交所得结果的初稿》,书中他引入了许多几何学的新概念。他的朋友笛卡尔、帕斯卡、费尔马都很推崇他的著作,费尔马甚至认为他是圆锥曲线理论的真正奠基人。 迪沙格在他的著作中,把直线看作是具有无穷大半径的圆,而曲线的切线被看作是割线的极限,这些概念都是射影几何学的基础。用他的名字命名的迪沙格定理:“如果两个三角形对应顶点连线共点,那么对应边的交点共线,反之也成立”,就是射影几何的基本定理。 帕斯卡也为射影几何学的早期工作做出了重要的贡献,1641年,他发现了一条定理:“内接于二次曲线的六边形的三双对边的交点共线。”这条定理叫做帕斯卡六边形定理,也是射影

中小学几何图形周长、面积、体积计算公式汇总表

中小学几何图形 重要说明:周长——外周围的长度(单位:如m);体积(容积)——空间(单位:如m3)面积——平面(单位:如m2);侧面积——除底面外的表面积(单位:如m2) 一、平面图形: 1、长方形的周长=(长+宽)×2 C=(a+b)×2 面积=长×宽S=ab 2、正方形的周长=边长×4 C=4a 面积=边长×边长S=a.a= a2 3、三角形的周长=三边长之和C=a+b+d 面积=底×高÷2 S=ah÷2 4、平行四边形的周长=相邻两边之和的2倍C=(a+b)×2 ;面积=一边×这边上的高S=ah 5、梯形的周长=四边长之和C=a+b+d+e 面积=(上底+下底)×高÷2 S=(a+b)h÷2 6、菱形周长=边长×4 C=4a 面积=对角线乘积的一半s=ab÷2 7、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr ;面积=圆周率×半径的平方S=π r2 环形的面积=π×(大半径的平方-小半径的平方) 半圆的周长= 2πr/2 + 直径= πr + 2r 8、扇形周长=半径×2+弧长 C=2r+(n÷360)πR=2r+(n÷180)πr 面积S=πR2n÷360=I/2lR (其中l为弧长) 二、立体图形: 1、长方体的表面积=(长×宽+长×高+宽×高)×2 体积=长×宽×高V =abh 2、正方体的表面积=棱长×棱长×6 S =6a 体积=棱长×棱长×棱长V=a.a .a=a 3 3、圆柱的侧面积=底面圆的周长×高S=ch ;体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 4、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 附: 1、长方体(正方体、圆柱体)的体积=底面积×高V=Sh=π r2 h 2、弧度为弧长与半径之比。

小学几何形体周长面积体积计算公式小结

小学几何形体周长面积体积计算公式小结如何把小学各门基础学科学好大概是很多学生都发愁的问题,查字典数学网为大家提供了几何形体周长面积体积计算公式小结,希望同学们多多积累,不断进步! 1、长方形的周长=(长+宽)2C=(a+b)2 2、正方形的周长=边长4C=4a 3、长方形的面积=长宽S=ab 4、正方形的面积=边长边长S=a.a=a 5、三角形的面积=底高2S=ah2 6、平行四边形的面积=底高S=ah 7、梯形的面积=(上底+下底)高2S=(a+b)h2 8、直径=半径2d=2r半径=直径2r=d2 9、圆的周长=圆周率直径=圆周率半径2c=r 10、圆的面积=圆周率半径半径 定义定理公式 三角形的面积=底高2。公式S=ah2 正方形的面积=边长边长公式S=aa 长方形的面积=长宽公式S=ab 平行四边形的面积=底高公式S=ah 梯形的面积=(上底+下底)高2公式S=(a+b)h2 内角和:三角形的内角和=180度。 长方体的体积=长宽高公式:V=abh

长方体(或正方体)的体积=底面积高公式:V=abh 正方体的体积=棱长棱长棱长公式:V=aaa 圆的周长=直径公式:L=r 圆的面积=半径半径公式:S=r2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=rh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r2 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作

圆锥曲线与射影几何

圆锥曲线与射影几何

圆锥曲线与射影几何 射影几何是几何学的重要内容,射影几何中的一些重要定理和结论往往能运用在欧式几何中,有利于我们的解题。在这里,我们将对解析几何中一些常见的圆锥曲线问题进行总结,并给中一些较为方便的解法。 例1:设点C(2,0)B(1,0),A(-1,0),, D 在双曲线122=-y x 的左支上,A D ≠,直线CD 交双曲线122=-y x 的右支于点E 。求证:直线AD 与直线BE 的交点P 在直线2 1=x 上。 如果是用解析几何的做法,这将是非常麻烦的。但是如果用射影几何的知识求解,将会有意想不到的效果。 我们知道,圆与圆锥曲线在摄影变换下是可以互相转换的。我们先不考虑题目中的数据和特殊的关系,仅仅考虑点线之间的位置关系,那么题设变成: 有一点A 在一条双曲线内部,过A 引两条直线与双曲线分别交于B ,C ,D ,E 。连BD ,CE 交于点 P ,且P 点在四边形BCDE 外部。

又因为双曲线与圆在射影几何中属同一个变换群,所以可以将双曲线变为圆。如图1 连BE,CD交于点Q,连PQ,先证明:直线PQ 是A点的极线。 D

证明: 对C 于'C 重合,B 于'B 重合的六边形''EBB DCC 用帕斯卡定理得: DC 于EB 的交点Q ,'CC 于'BB 的交点M ,E C '于' DB 的交点P 三点共线,同理P ,Q ,N 三点共线 所以P ,Q ,M ,N 四点共线。 又因为BC 是M 的极线,DE 是N 的极线,所以MN

是BC 与DE 的交点A 的极线,即PQ 是A 的极线。 回到原图,由极线的定义与性质得PQ OA ⊥,且 FAGH 为调和点列。 有了前面的铺垫再证例1就简单了。 证明: 过P 点作X PH ⊥轴,则PH 是C 点的极线,AHBC 为调和点列 因为A (-1,0), B (1,0), C (2,0) 所以H (2 1,0) 即P 在直线2 1=x 上 关于极线的知识,下文仍有用到,这里不再叙述。 例2:M 是抛物线)0(22≥=p px y 的准线上的任意点,过M 点作抛物线的切线1l ,2l ,切点分别为 A , B (A 在X 轴的上方)。 (1) 求证:直线AB 过定点。 (2) 过M 作X 轴的平行线l 与抛物线交于P , 与AB 交于Q . 证明PQ MP =。

射影几何入门

(一) 1-1对应 1 1. 1-1对应的定义 1 2. 1-1对应的意义和性质 2 3. 1-1对应在数学中的应用4 4. 无穷集之间的1-1对应 4 5. 部分和整体的1-1对应, 无穷集的定义 9 6. 无穷远点. 点列和线束10 7. 轴束. 基本形 11 8. 三种基本形的六种透视对应12 9. 射影关系 14 10. 1到无穷或无穷到1的对应1611. 平面点的无穷阶数 17 12. 一阶与二阶无穷集 17 13. 通过空间一点的所有直线17 14. 通过空间一点的所有平面18 15. 平面上所有的直线 18 16. 平面系和点系 19 17. 空间中的所有平面 19 18. 空间中的所有点 20 19. 空间系 20 20. 空间中的所有直线 20 21. 点与数之间的对应 20 22. 无穷远元素 22 (二)1-1对应基本形之间的关

系 25 23. 七种基本形 25 24. 射影性 25 25. Desargues 定理 26 26. 关于二个完全四边形的基本定理 27 27. 定理的重要性 28 28. 定理的重述 28 29. 四调和点概念 29 30. 调和共轭的对称性 30 31. 概念的重要性 30 32. 四调和点的投影不变性31 33. 四调和线 31 34. 四调和平面. 3135. 结果的概要性总结 32 36. 可射影性的定义 33 37. 调和共轭点相互之间的对应33 38. 调和共轭的元素的隔离34 39. 无穷远点的调和共轭 34 40. 射影定理和度量定理, 线性作图法 35 41. 平行线与中点 36 42. 将线段分成相等的n个部分37 43. 数值上的关系 37 44. 与四调和点关联的代数公式37 45. 进一步的公式 38

射影几何与解析几何

第十章:射影几何与解析几何 第一节射影几何 一、历史背景 1566年,科曼迪诺(F.Commandino,1509—1575)把阿波罗尼奥斯(Apollonius)的《圆锥曲线论》(Conics)前四卷译成拉丁文,引起了人们对几何的兴趣,几何上的创造活动开始复兴.在短短几十年的时间里,便突破传统几何的局限,产生了一门崭新的学科——射影几何.由于新学科把无穷远点及图形连续变动的思想引入数学,它实际上已迈入高等数学的门槛.射影几何直接起源于透视法,而透视法是与绘画艺术分不开的.在中世纪,画家的主要任务是颂扬上帝和为圣经插图.但到了文艺复兴时期,描绘现实世界逐渐成为绘画的目标了.为了在画布上忠实地再现大自然,就需要解决一个数学问题:如何把三维的现实世界反映到二维的画布上.意大利的建筑师兼数学家阿尔贝蒂(L.B.Alberti,1404—1472)认真考虑了这一问题.他在1435年写成的《论绘画》(Dellapittura,1511年出版)一书中阐述了这样的思想:在眼睛和景物之间插进一张直立的玻璃板,并设想光线从眼睛出发射到景物的每一个点上,这些线叫投影线.他设想每根线与玻璃板交于一点,这些点的集合叫做截景.显然,截景给眼睛的印象和景物本身一样,所以作画逼真的问题就是在玻璃板(实际是画布)上作出一个真正的截景. 例如,人眼在O处观察水平面上的矩形ABCD、(图10.1)时,从O到矩形各点的连线形成一投影棱锥,其中OA,OB,OC,OD是四根典型的投影线.若在人眼和矩形间插入一平面,并连结四条线与平面的交点A′,B′,C′,D′,则四边形A′B′C′D′为矩形ABCD的截景.由于截景对人眼产生的视觉印象和原矩形一样,它们必然有相同之处.但从直观上看,截景和原形既不全等又不相似,也不会有相同的面积,截景甚至并非矩形.那么,截景与原形究竟有什么共性呢?这正是阿尔贝蒂苦苦思索而未找到答案的 问题. 阿尔贝蒂还考虑到:如果在眼睛和景物之间插进两张玻璃板,它们上面的截景将是不同的;如果从两个不同位置来观察景物,截景也将是不同的.但所有截景都反映同一景物,它们之间必存在某种关系.于是他进一步提出问题:同一景物的任意两个截景间有什么数学关系,或者说有什么共同的数学性质?他留给后人的这些问题成为射影几何的出发点.

小学数学几何形体周长、面积、体积计算公式及常见单位换算

小学数学几何形体周长、面积、体积计算公式

小学数学几何形体周长、面积、体积计算公式小测

常用单位换算 1、长度单位换算: 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2、面积单位换算: 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米 3、体(容)积单位换算: 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 4、重量单位换算:1吨=1000 千克 1千克=1000克 1千克=1公斤 5、人民币单位换算:1元=10角 1角=10分 1元=100分 6、时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1、3、5、7、8、10、12月 小月(30天)的有:4、6、9、11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒

小学数学常见单位换算小测 4、长度单位换算: 1千米=()米 1米=()分米 1分米=()厘米 1厘米=()毫米1米=()分米=()厘米=()毫米 5、面积单位换算: 1平方千米=( )公顷1公顷=( )平方米 1平方米=( )平方分米1平方分米=( )平方厘米1平方厘米=( )平方毫米1平方米=( )平方分米=( )平方厘米=( )平方毫米 6、体(容)积单位换算: 1立方分米=( )升 1立方厘米=( )毫升 1立方米=( )升 1立方米=( )立方分米 1立方分米=( )立方厘米 1立方厘米=( )立方毫米1立方米=( )立方分米=( )立方厘米=( )立方毫米 4、重量单位换算: 1吨=( )千克 1千克=( )克 1千克=( )公斤 1吨=( )千克=( )克 5、人民币单位换算: 1元=( )角 1角=( )分 1元=( )分 1元=( )角=( )分 6、时间单位换算: 1世纪=( )年 1年=( )月 大月(31天)有: ( )月 小月(30天)的有: ( )月 平年2月有( )天, 闰年2月有( )天 平年全年有 )天, 闰年全年有 )天 1日=( )小时 1时=( )分 1分=( )秒 1时=( )分=( )秒

运动解剖学动作分析

一、单手投篮动作分析 关节运动原动肌对抗肌工作性质工作条 件 肩胛骨上提斜方肌上部、菱形肌、 肩胛提肌、胸锁乳突 肌 斜方肌下部、胸小 肌、前锯肌下部肌 纤维 向心工作近固定 上回旋斜方肌上下部肌纤 维、前锯肌下部肌纤 维 菱形肌、胸小肌、 肩胛提肌 肩关节屈胸大肌、三角肌前部 肌纤维、肱二头肌、 喙肱肌三角肌后部肌纤维、肱三头肌长头、背阔肌、冈下肌、大圆肌、小圆肌 肘关节伸肱三头肌、肘肌肱肌、肱二头肌、 肱桡肌、旋前圆肌 腕关节屈桡侧腕屈肌、掌长肌、 尺侧腕屈肌、指深屈 肌、指浅屈肌桡侧腕长伸肌、桡侧腕短伸肌、尺侧腕伸肌、指伸肌和示指伸肌 二、引体向上动作分析 关节运动原动肌对抗肌工作性质工作条件 肩胛骨下降斜方肌下部、胸小 肌、前锯肌下部肌纤 维 斜方肌上部、菱 形肌、肩胛提肌、 胸锁乳突肌 向心工作远固定 下回旋菱形肌、胸小肌、肩 胛提肌 斜方肌上下部肌 纤维、前锯肌下 部肌纤维 肩关节伸三角肌后部肌纤维、 肱三头肌长头、背 阔肌、冈下肌、大圆 肌、小圆肌胸大肌、三角肌前部肌纤维、肱二头肌、喙肱肌 肘关节屈肱肌、肱二头肌、肱 桡肌、旋前圆肌 肘肌、肱三头肌 腕关节不动无静力工作(加固)上固定

三、俯卧撑动作分析 关节运动 原动肌 对抗肌 工作性质 工作条件 肩胛骨前伸 前锯肌、胸大肌、胸小肌 斜方肌、菱形肌 向心工作 远固定 肩关节屈 三角肌前部、胸大肌 、肱二头肌、喙肱肌 三角肌后部肌纤维、肱三头肌长头、背阔肌、冈下肌、大圆肌、小圆肌 肘关节伸 肘肌、肱三头肌 肱肌、肱桡肌、肱二头肌、旋前圆肌 腕关节不动 无 静力工作 (固定) 四、仰卧起坐动作分析 关节运动 原动肌 对抗肌 工作性质 工作条件 躯干屈 腹直肌、腹外斜肌、腹内斜肌、髂腰肌、胸锁乳突肌 竖脊肌、斜方肌、胸锁乳突肌、臀大肌 向心工作 下固定 五、纵跳动作分析 关节运动 原动肌 对抗肌 工作性质 工作条件 髋关节伸 臀大肌、大收肌、股二头肌、半腱肌、半膜肌 髂腰肌、股直肌、缝匠肌、阔筋膜张肌、耻骨肌 向心工作 远固定 膝关节伸 股四头肌 腓肠肌、股二头肌、半腱肌、半膜肌、股薄肌 踝关节屈 小腿三头肌、拇长屈肌、趾长屈肌、胫骨后肌、腓骨长肌、腓骨短肌 胫骨前肌、长伸肌和趾长伸肌

射影几何入门1

(一)1-1对应1 1.1-1对应的定义1 2.1-1对应的意义和性质2 3.1-1对应在数学中的应用4 4.无穷集之间的1-1对应4 5.部分和整体的1-1对应,无穷集的定义9 6.无穷远点.点列和线束10 7.轴束.基本形11 8.三种基本形的六种透视对应12 9.射影关系14 10.1到无穷或无穷到1的对应16 11.平面点的无穷阶数17 12.一阶与二阶无穷集17 13.通过空间一点的所有直线17 14.通过空间一点的所有平面18 15.平面上所有的直线18 16.平面系和点系19 17.空间中的所有平面19 18.空间中的所有点20 19.空间系20 20.空间中的所有直线20 21.点与数之间的对应20 22.无穷远元素22 (二)1-1对应基本形之间的关系25 23.七种基本形25 24.射影性25 25.Desargues定理26 26.关于二个完全四边形的基本定理27 27.定理的重要性28 28.定理的重述28 29.四调和点概念29 30.调和共轭的对称性30 31.概念的重要性30 32.四调和点的投影不变性31 33.四调和线3135.结果的概要性总结32 36.可射影性的定义33 37.调和共轭点相互之间的对应33 38.调和共轭的元素的隔离34 39.无穷远点的调和共轭34 40.射影定理和度量定理,线性作图法35 41.平行线与中点36 42.将线段分成相等的n个部分37 43.数值上的关系37 44.与四调和点关联的代数公式37 45.进一步的公式38 46.非调和比(交比)39 (三)射影相关基本形的结合41 47.叠加的基本形,自对应元素41 48.无自对应点的情况42 49.射影对应的基本定理,连续性假设43 50.定理应用于线束和平面束44 51.具有一公共自对应点的射影点列44 52.无公共自对应点的射影相关点列45 53.透视对应的两个射线束47 54.透视对应的面束(轴束)47 55.二阶点列47 56.轨迹的退化48 57.两阶线束48 58.退化情况48 59.二阶圆锥面49 (四)二阶点列49 60.二阶点列与二阶线束49

相关主题
文本预览
相关文档 最新文档