当前位置:文档之家› 8.2-母线差动保护的基本原理

8.2-母线差动保护的基本原理

8.2 母线差动保护原理

——单母线完全电流差动保护

——高阻抗母线差动保护

——具有比率制动特性的中阻抗母线差动保护

为了满足速动性和选择性的要求,母线保护都是按差动原理构成的。实现母线差动保护必须考虑在母线上一般连接着较多的电气元件(如线路、变压器、发电机等),因此就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。

(1)在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等。

(2)当母线上发生故障时,所有与母线连接的元件都向故障点供给短路电流或流出残留的符合电流。

(3)从每个连接元件中电流的相位来看,在正常运行及外部故障时,至少有一个元件中的电流相位和其余元件中德电流相位是相反的。

根据原则(1)和原则(2)可构造电流差动保护,根据原则(3)可以构造电流比相式差动保护。

负荷1

电源

负荷2

1

I 2

I 3

I 3

21I I I +=负荷1

电源

负荷2

1

I 2

I 3

I 03

21=++I I I 若支路1、2、3上均安装相同变比的电流互感器,则三个电流互感器的电流之和应等于0(理想情况)。

=∑I

母线故障时的电流特征

若支路1、2、3上都安装有相同变比的电流互感器,则母线故障时,三个电流互感器的电流之和应等于短路电流(二次值)。

电源

1

I 2I 3

I 0321=+++k

I I I I k

I 依KCL :

即:

k

I I I I -=++321

8.2.1 单母线完全电流差动保护

KD

1p I 2p I 3

p I pn

I

1

s I 2

s I 3s I sn

I KA

I 0

11

TA

1

===∑∑==n

i pi n

i si

KA I n I I 正常工作时

8.2.1 单母线完全电流差动保护

KD

1p I 2p I 3

p I pn

I

1

s I 2s I 3s I sn

I KA

I k

n

i pi n

i si KA I n I n I I TA 1

TA 111

===∑∑==k

I 母

线故障时

8.2.1 单母线完全电流差动保护

差动继电器的整定方法

(1)躲过最大不平衡电流

(2)躲开任一TA 二次回路断线引起的差动电流

TA

max .max ../1.0n I K I K I k rel unb rel set r ?=?=TA

max ../n I K I L rel set r ?=max

.L I 任一元件中的最大负荷电流。

可靠系数,取1.3

母线以外短路时的最大电流

8.2.2 高阻抗母线差动保护

引入高阻抗母线差动保护的原因(电流互感器的极度饱和情况)

δ1X δ2X m X L

Z p

I ' s

I μ

I δ

1X δ

2X m X L

Z p

I ' s

I μ

I 当TA 不饱和时,较小,一般不会超过的10%,此时较大,基本能正确反映电流变换关系。

μ

I p

I ' s

I 当TA 极度饱和时,励磁电抗很小,很大,严重时可近似认为:m

X μ

I 0

≈s

I

2

I 3

I 当励磁电流非常小时,由此产生的不平衡电流尚可通过设臵差动继电器的整定值来躲过。

正常工作时的情况区外故障使互感器严重饱和的情况

)()()()(3

21332211321μμμμμμI I I I I I I I I I I I I p p p s s s KA ++-≈-'+-'+-'=++=)9.09.0(0)()(2

12211321p p p p s s s KA I I I I I I I I I I '+'>+-'+-'≈++= μμ流过差动继电器的电流较大,可能引起差动继电器的误动作。

1I 2

I 3

I 1I

8.2.1 单母线完全电流差动保护

KD

1p I 2p I 3

p I pn

I

1

s I 2s I 3s I sn

I KA

I 0

11

TA 1

≠=

=∑∑==n

i pi n

i si KA

I n I I 外部故障工作时

饱和

8.2.2 高阻抗母线差动保护

解决电流互感器极度饱和问题的方法

将低内阻的电流型差动继电器换成高内阻的电压型差动继电器,一般内阻为:2.4~7.5kΩ。电压型差动继电器的动作判据为:

set

r U U

高阻抗继电器的电路原理

非常小非常大

当外阻非常小时,各支路电流将会通过外电路形成回路。此时,几乎所有电流都会流经外电路。当外阻非常大时,各支路电流将会在由支路自身构成的回路中流动,外电路中的电流是非常小的。

+ -+

-

+

-

+

-

1p I 2p I 3

p I pn

I

1

s I 2s I 3s I 0≈sn

I >

I 0

1

1

≠∑-=n i si I 由于电流继电器的阻抗非常小,所以各个电流互感器的电流基本上都通过电流继电器构成回路。此时,第n 条支路电路互感器出现的严重饱和并不影响其它的n-1条支路的电流流入电流继电器。

1p I 2p I 3

p I pn

I

1

s I 2s I 3

s I >

U ∑-=11

n i si

I 由于电压继电器的阻抗非常高,兼之第n 条支路电流互感器严重饱和时相当于短路,所以其他n-1条支路的电流基本上不通过电压互感器而是通过构成回路。于是,流入电压继电器的电流非常小,电压继电器的端口电压也非常小,低于整定值,不会误动。

≈r I n TA

第n 个互感器严重饱和时的等效电路

∑-=1

1

n i si

I pn

I δ2Z δ1Z 0

≈μZ u

r Ω

=k 5.7~5.2u r

1

p I 2

p I 3

p I pn

I

1

s I 2s I 3

s I 采用高阻抗的电压继电器且区内(母线)故障时

>

U k

r I n I TA

1≈

sn

I k

I (二次侧)由于电压继电器的阻抗大,同时流过的电流

也较大,所以电压

继电器的端口处将出现较大的电压,电压继电器动作切除故障。注意:当内部短路电流非常大时,流过电压继电器的差动电流非常大,此时在电压继电器中将出现很高的电压,危及绝缘。

r I +

-

8.2.3 具有比率制动特性的中阻抗母线差动保护

将比率制动的电流型差动保护应用于母线:(1)最大值制动

(2)模值和制动

0.

max

1

}

{set

i

res

n

i

i

I

I

K

I≥-

∑=

0.

1

1

set

n

i

i

res

n

i

i

I

I

K

I≥-∑

= =

8.2.4 电流比相式母线保护

基本原理

当母线发生故障时,各有源支路的电流相位几乎是一致的;

当外部出现故障时,非故障有源支路的电流流入母线,故障支路的电流则流出母线,两者相位相反。

利用这种相位关系构成的母线保护称为电流比相式母线保护。

负荷1

电源

负荷2

1

I 3

I 4

I 电源

2

I k

I 母线故障时,有源支路的电流

是近似同相的,即和是近似同相的。

1I 2

I 负荷1

电源负荷2

1

I 3I 4

I 电源2

I 负荷1

电源

负荷2

1

I 3I 4

I 电源

2

I 2

1I I 、和4I 是反相的。1

I 和

是反相的。2

I 母线故障时

故障出现在非有源支路

故障出现在有源支路

16年继电保护试题A

一、选择题:(每小题2分,共16分) 1、双侧电源线路上发生经过渡电阻接地,流过保护装置电流与流过过渡电阻电流的相位() A.同相 B. 反相 C.不确定 2、下列关于电力系统振荡和短路的描述中,()是不正确的 A.短路时电流和电压是突变的,而电力系统振荡时各点电压和电流均做往复性摆动; B.振荡时系统任一点的电压和电流之间的相位角都随着功角的变化而变化; C.系统振荡时,将对以测量电流为原理的保护形成影响,如:电流速断保护、电流纵联差动保护等 3、发电机失磁后,发电机参数变化的不正确描述是() A. 励磁绕组电压降低 B.机端阻抗明显增加 C. 输出无功减少 4、微机保护中,常采用的数字滤波器类型是() A. FIR型 B. IIR型 C. DIR型 5、在变压器的复合电压启动过流保护中,复合电压由低电压和负序电压构成,其中低电压启动元件和负序电压启动元件的逻辑关系是() A.与逻辑 B. 或逻辑 C. 根据具体接线确定 6、微机保护定值保存在()中。 A.RAM B. ROM C.EEPROM 7、比较工作电压相位实现故障区段判断方法中,在正方向故障时,采用正序电压作为参考电压,其动作特性等价于() A.全阻抗特性的阻抗继电器 B.方向阻抗特性的阻抗继电器 C.偏移圆阻抗特性继电器 8、主保护或断路器拒动时,用来切除故障的保护是( )。 A.安全自动装置 B.异常运行保护 C.后备保护二、判断题(每空1.5分,共15分): 1、功率方向元件采用非故障的相间电压作为接入功率方向元件的电压参考相量,判别故障相电流的相位,可以完全消除功率方向元件的“电压死区”,因此获得广泛的应用。() 2、采用相电流差进行故障选相时,在发生单相接地故障时,与故障相无关的相电流差突变量最小。( ) 3、输电线纵联电流差动保护可以有效地躲过系统振荡,正确动作,但对于系统的非全相运行,会出现误动作。( ) 4、对检同期的自动重合闸,重合闸就必须装检同期元件。( ) 5、在双侧电源线路上短路点的零序电压始终是最低的,短路点的正序电压始终是最高的。( ) 6、变压器纵差保护定值按照躲过外部短路时的最大不平衡电流进行整定(1)和按躲过变压器励磁涌流整定(2),按1整定时的灵敏度一定低于2时的灵敏度。( ) 7、变压器二次谐波制动是指在差动保护的制动电流中加入二次谐波的因素,从而提高变压器出现励磁涌流时的制动性能。( ) 8、发电机不完全差动保护只对定子绕组相间短路有保护作用,而对绕组匝间短路不起作用。( ) 9、助增电流的存在,使距离保护的测量阻抗增大,保护范围缩短。( ) 10、继电保护的灵敏度校验是为了保证保护不误动的要求设置的。( ) 三、简答题:(44分) 1、(2分)给出一种发电机100%定子接地保护的典型构成方式。 2、(8分)简述母线故障的保护方式;单母线完全电流母线差动保护与高阻抗母线差动保护在实现上的最大差别,并说明高阻抗母线差动保护设置的原因。 3、(7分)引起变压器差动保护的不平衡电流的因素有哪几个?在变压器

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。即使是微机保护装置,其原理也是这样的。 但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。纵联保护的通道一般有以下几种类型: 1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号; 2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输; 3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道; 4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。 差动保护 差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名 差动保护 外文名 Differential protection 目录 1.1概述 2.2原理 3.3技术参数 4.?环境条件 1.?工作电源 2.?控制电源 3.?交流电流回路 4.?交流电压回路 5.?开关量输入回路 1.?继电器输出回路 2.4功能 3.5主要措施 4.6缺点 概述编辑

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。 差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,上位机报警保护出口动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。 原理编辑 差动保护

母线差动保护的整定计算

母线差动保护的整定计算 计算母差保护的主要工作量在于以下几个值的计算,计算方法如下: 1 比率差动元件的比率差动门坎按包括检修方式的各种运行方式下,母线发生各种类型短路的最小总短路电流(相电流)有足够灵敏度计算,灵敏度≥4,并尽可能躲过母线出线最大负荷电流。 比率差动门坎要整定得躲过母线出线最大负荷电流是为了防止CT断线时母线差动保护误动。 2低电压闭锁元件 以电流判据为主的差动元件,可以用电压闭锁元件来配合,提高保护整体的可靠性。复合电压闭锁包括母线线电压(相间电压),母线三倍零序电压,和母线负序电压。其动作表达式为: 以上三个判据中的任何一个被满足,则该段母线的电压闭锁元件动作。 U set按母线对称故障有足够灵敏度整定,灵敏度≥1.5。且应在母线最低运行电压下不动作,而在故障切除后能可靠返回。一般取65%至70%U e。 U0set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的零序分量。一般取6至10V。 U2set按母线不对称故障有足够灵敏度整定,灵敏度≥4。且应躲过母线正常运行时最大不平衡电压的负序分量。一般取4至8V。 1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为0.2In,定值范围为0.1In~0.5In。 2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In~0.5In。 3. 失灵保护零序定值:按躲过最大零序不平衡电流整定, 定值范围为0.1~20A。 4. 低功率因素角定值:整定值范围为45~ 90 ,整定步长为1度。 5. 低功率因素过流定值:表示线路有流,定值范围为0.1~20A 。 6. 负序过流定值:按躲过最大不平衡负序电流整定,定值范围为0.1~20A 。 7. 失灵跳本开关时间:失灵保护动作时,将以该时间定值跳开本开关。定值范围为0.01~20S,整定步长为0.01S。 8. 失灵动作时间:失灵保护动作时,将以该时间定值跳开相邻开关。定值范围为0.01~20S,整定步长为0.01S。

双母线电流差动保护的基本原理及发展过程

第3期(总第147期) 2008年6月 山 西 电 力 SHANXI EL ECTRIC POWER No 13(Ser 1147) J un 12008 双母线电流差动保护的基本原理及发展过程 王为华1,刘云峰2,郭小丽3 (11山西电力科学研究院,山西太原 030012;21晋城供电分公司,山西晋城 048000; 31太原供电分公司,山西太原 030012) 摘要:介绍了不同时期母线保护采用的技术,并进行了比较,分析了母线保护技术的发展趋势,阐述了母线微机保护技术的特点及其优越性。 关键词:母线保护;基本原理;发展过程中图分类号:TM77 文献标识码:A 文章编号:167120320(2008)0320066203 收稿日期:2008201205,修回日期:2008204202 作者简介:王为华(19632),男,山西榆社人,2000年毕业于太 原理工大学计算机及应用专业,工程师; 刘云峰(19782),男,山西晋城人,2000年毕业于华北电力大学电气专业,助理工程师; 郭小丽(19692),女,山西太原人,1990年毕业于临汾电力技校输配电运行与检修专业。 1 双母线完全电流差动保护和母联相位比 较式保护 20世纪70至80年代,双母线完全电流差动 和母联相位比较式母线保护,因其原理及二次接线简单等特点,在电网上广泛应用。111 元件固定连接的母线完全差动保护11111 工作原理(见图1) 双母线同时运行时,将元件固定连接于2条母线上,这种母线称为固定连接母线。其差动保护称为固定连接方式的母线完全差动保护 。 图1 原理接线图 在正常运行及区外故障时,启动元件KA ,选择元件KA1,KA2均无电流通过。区内母线1故障时,启动元件KA ,选择元件KA1均有故障电流通过,选择元件KA2的电流为零,因此母联断 路器及连接在1母上元件的断路器均动作跳闸。同理区内母线2故障时,将母联断路器及连接在2母 上元件的断路器动作跳闸。11112 双母线完全电流差动保护的评价 双母线完全电流差动保护的优点是: a )接线比较简单,调试方便,运行人员易于掌握; b )当元件固定连接时,母差保护有很好的选择性; c )当母联断路器断开时,母线差动保护仍有选择能力;在2组母线先后发生短路时,母线差动保护仍能可靠的动作。 其缺点是:当元件固定连接方式破坏时,若任1组母线上发生短路故障时,就会将2组母线上的连接元件全部切除,因此它适应运行方式变化的能力较差。 112 母联相位比较式母线差动保护11211 工作原理 总差动电流回路由母线上连接元件(不包括母联断路器)的电流互感器的二次回路组成,母联断路器的电流互感器的二次回路单独引出,接入相位比较回路(见图2)。 a 交流电流回路 · 66·

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

母线差动保护的工作原理和保护范围

母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些

必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出 “在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

母线差动保护调试方法

母线差动保护调试方法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

母线差动保护调试方法 1、区内故障模拟,不加电压,将CT断线闭锁定值抬高。 选取Ⅰ母上任意单元(将相应隔离刀强制至Ⅰ母),任选一相加电流,升至差动保护动作电流值,模拟Ⅰ母区内故障,差动保护瞬时动作,跳开母联及Ⅰ母上所有连接单元。跳开Ⅰ母、母联保护信号灯亮,信号接点接通,事件自动弹出。在Ⅱ母线上相同试验,跳开母联及Ⅱ母上所有连接单元。 将任一CT一次值不为0的单元两把隔刀同时短接,模拟倒闸操作,此时模拟上述区内故障,差动保护动作切除两段母线上所有连接单元。(自动互联)。 投入母线互联压板,重复模拟倒闸过程中区内故障,差动保护动作切除两段母线上所有连接单元。(手动互联) 任选Ⅰ母一单元,Ⅱ母一单元,同名相加大小相等,方向相反的两路电流,电流大于CT断线闭锁定值,母联无流,此时大差平衡,两小差均不平衡,保护装置强制互联,再选Ⅰ母(或Ⅱ母)任一单元加电流大于差流启动值,模拟区内故障,此时差动动作切除两段母线上所有连接单元。 任选Ⅰ母上变比相同的的两个单元,同名相加大小相等,方向相反的的两路电流,固定其中一路,升高另外一路电流至差动动作,根据公式计算比率制动系数,满足说明书条件。(大差比例高值,大差比例低值,小差比例高值,小差比例低值,当大差高值或小差高值任一动作,且同时大差和小差比例低值均动作,相应比例差动元件动作。) 2、复合电压闭锁。非互联状态,Ⅱ母无压,满足复压条件。Ⅰ母加入正常电压,单独于Ⅰ母任一支路加入电流大于差动启动电流定值,小于CT断线闭锁定值,

8.2-母线差动保护的基本原理

8.2 母线差动保护原理 ——单母线完全电流差动保护 ——高阻抗母线差动保护 ——具有比率制动特性的中阻抗母线差动保护

为了满足速动性和选择性的要求,母线保护都是按差动原理构成的。实现母线差动保护必须考虑在母线上一般连接着较多的电气元件(如线路、变压器、发电机等),因此就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。

(1)在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等。 (2)当母线上发生故障时,所有与母线连接的元件都向故障点供给短路电流或流出残留的符合电流。 (3)从每个连接元件中电流的相位来看,在正常运行及外部故障时,至少有一个元件中的电流相位和其余元件中德电流相位是相反的。 根据原则(1)和原则(2)可构造电流差动保护,根据原则(3)可以构造电流比相式差动保护。

负荷1 电源 负荷2 1 I 2 I 3 I 3 21I I I +=负荷1 电源 负荷2 1 I 2 I 3 I 03 21=++I I I 若支路1、2、3上均安装相同变比的电流互感器,则三个电流互感器的电流之和应等于0(理想情况)。 =∑I

母线故障时的电流特征 若支路1、2、3上都安装有相同变比的电流互感器,则母线故障时,三个电流互感器的电流之和应等于短路电流(二次值)。 电源 1 I 2I 3 I 0321=+++k I I I I k I 依KCL : 即: k I I I I -=++321

8.2.1 单母线完全电流差动保护 KD 1p I 2p I 3 p I pn I 1 s I 2 s I 3s I sn I KA I 0 11 TA 1 ===∑∑==n i pi n i si KA I n I I 正常工作时

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

35kV 母线差动保护的调试

35kV母线差动保护的调试 周剑平(镇海炼化检安公司) 摘要: 对BUS1000母线差动保护继电器的原理进行分析,介绍了镇海炼化公司第二热电站35kV母线差动保护的调试方法。通过合理的调试,减少由于35kV母线差动保护出现误动而引起故障。关键词:继电器差动保护调试 1概述 镇海炼化公司第二热电站35kV及110kV母线的差动保护采用美国通用电气公司(GE)生产的BUS1000保护装置,BUS1000保护装置是一种高速静态保护系统,动作时间可达到10毫秒,灵敏度高,防误动性能好,运行中如出现电流回路断线,经10秒延时即闭锁继电器出口,防止误动作。BUS1000保护装置对电流互感器的要求不高,允许各回路的电流互感器具有不同的变比,但变比差异不能超过10倍,互感器的最小饱和电压应大于100V。 2000年8月,发生炼油303线电缆炸裂事故,二电站的35kV母差保护出现误动,至使部分装置失电,影响到生产。因此,搞清BUS1000保护装置误动的原因及采取何种方法解决,如何通过合理的调试来验证保护装置的完好显得尤为重要。 2BUS1000保护装置的动作原理 图1和图2分别为BUS1000保护装置内部故障及外部故障的原理图。

图1内部故障时BUS1000原理图 图2外部故障时BUS1000原理图

被保护母线上各线路的电流互感器(即主电流互感器)二次电流经BUS1000装置中的辅助电流互感器转换为统一的0~1A的电流,再经电流/电压转换板变成0~1V交流电压信号,经整流后成为直流电压信号。由图中可以看出,整流后的直流电压VF与各线路的电流之和成正比,V D 与各线路的电流之差成正比。BUS1000保护装置是一个比率制动差动保护,用VF作制 动量,反应制动电流I F ,V D 作动作量,反应差动电流I D ,V D 和V F 经加法器和电平比较器后获得 以下动作特性: I D -KI F ≥0.1 式中:I D -差动回路电流; I F -制动回路电流; K-比率制动系数。 电平比较器是一个固定门槛的比较器,当输入差流大于0.1安培时输出信号,继电器动作。比率制动系数K可在0.5~0.9之间调节,它决定了继电器的动作特性和灵敏度。图3为继电器的动作特性曲线(图中电流值为辅助电流互感器二次值)。 图3BUS1000的比率差动特性曲线图

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

继电保护原理6—母线保护全解

第六章母线保护

第一节概述 一、母线保护的概述 母线是发电厂和变电站的重要组成部分。在母线上连接着电厂和变电所的发动机、变压器、输电线路和调相设备,母线的作用是汇集和分配电能。 如果母线的短路故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。 二、母线的主接线形式 单母线;单母分段(专设分段、分段兼旁路、旁路兼分段);单母多分段;双母线(专设母联、母联兼旁路、旁路兼母联);双母单分段(专设母联、母联兼旁路);双母双分段(按两面屏配置);3/2接线(按两套单母线配置)。 1、单母线 图6-1-1 单母线 2、单母分段(专设母联) 图6-1-2 单母分段(专设母联)

3、单母分段(母联兼旁路) 图6-1-3 单母分段(母联兼旁路)4、单母分段(旁路兼母联) 图6-1-4 单母分段(旁路兼母联)5、单母三分段 图6-1-5 单母三分段 6、双母线(专设母联)

图6-1-6 双母线(专设母联) 7、双母线(母联兼旁路) 图6-1-7 双母线(母联兼旁路)8、双母线(旁路兼母联) 图6-1-8 双母线(旁路兼母联)9、双母线单分段(专设母联)

图6-1-3 双母单分段(专设母联)10、双母线单分段(母联兼旁路) 图6-1-10 双母单分段(母联兼旁路)11、双母双分段 图6-1-11 双母双分段 三、母线保护的硬件组成 1、标准配置 1.1 保护箱

图6-1-12 保护箱(一)插件布置图(后视图) 1.1.1交流变换插件(NJL-801/NJL-818):将系统电压互感器、电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有8 路电流通道、6 路电压通道。 1.1.2交流变换插件(NJL-817/NJL-819):将系统电流互感器二次侧信号变换成保护装置所需的弱电信号,同时起隔离和抗干扰作用。该插件共有15 路电流通道。 1.1.3 CPU 插件(NPU-804):在单块PCB 板上完成数据采集、I/O、保护及控制功能等。 1.1.4 采保插件(NCB-801):将由变换器来的弱电信号经过低通滤波后,由多路转换开关对信号进行选通,然后通过电压跟随器对信号进行处理,以提高其负载能力。该插件还有+5V、-15V、+15V 及累加和自检功能。此外通过运算放大器过零比较检测电路可实现基频测量。能够完成80 路模拟信号采集,模拟量的输出幅值范围为-10V~+10V。 1.1.5 开入插件(NKR-810):每个开入插件提供30 路开关量输入回路。开入电源为直流220V 或110V;其正电源连接到开入节点,负电源接到31-32 端子。 1.1.6 开入插件(NKR-812):每个开入插件提供64 路开关量输入回路。开入电源为直流24V。 1.1.7 信号插件(NXH-808):主要提供保护的信号接点,共三组信号接点,两瞬动一保持。 1.1.8 通讯插件(NTX-803):提供的通讯接口有:一个就地打印口(RS232),两个GPS对时口(RS485、RS232),及与保护管理机通讯的LON网接口,与变电站自动化系统通讯的双通道接口(RS485,RS232,以太网口)。另外,必要时端子04、05可作为码对时通讯口。 1.1.9 稳压电源插件(NDY-801):直流逆变电源插件。直流220 V 或110 V 电压输入经抗

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2)

其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为: cdzd T m j j DI DI I +?>?∑=1 (1) ∑∑==?'>?m j j m j j I K I 1 1 (2) 其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。 3)故障母线选择元件

《《继电保护》练习册答案习题一一、填空_第(13)页》

二、判断题 1、对于中性点非直接接地电网,母线保护采用三相式接线. 2、母线完全电流差动保护对所有连接元件上装设的电流互感器的变比应相等.( √) 3、电流相位比较式母线保护的工作原理是根据母线外部故障或内部故障时连接在该母线上各元件电流相位的变化来实现的. 4、电流比相母线保护只与电流的相位有关,而与电流的幅值无关. 5、母线完全差动保护是在母线的所有连接元件上装设专用的电流互感器,而且这些电流互感器的变比和特性完全相同. 三、简答题 1、在母线完全电流差动保护中,母线的所有连接元件上,为什么都装设相同变比和特性的电流互感器?答:母线完全电流差动保护也是按差动原理构成的,正常运行及母线外部短路时,流进母线的电流等于流出母线的电流,对一次电流而言,,即,此时保护应可靠地不动作;当母线发生短路时,流进母线的电流为短路电流,流出母线的电流为零,即(短路点的总电流),此时流入差动继电器的电流为按电流互感器变比减小的短路电流,保护应可靠地动作.由以上分析可知,只有当电流互感器的变比选得相同时,才有即流入差动继电器的电流为零,从而保证保护不误动作.若变比选得不同,则 保护就可能误动作.在母线完全差动保护中,选择特性相同的电流互感器,是为了减小母线外部短路时流入差动继电器的不平衡电流,从而降低整定值,提高保护的灵敏度. 2、何谓母线不完全差动电流保护?它有何优缺点? 答:仅将对端有电源的连接元件,即发电机、变压器、分段断路器、母联断路器差入的保护,叫母线不完全差动电流保护. 其优点是:只需在供电元件上装电流互感器,且各自的变比可不相等.不需要在母线所有连接元件上装设电流互感器,这样既简化了接线又大大降低了费用.所以不完全差动保护广泛用于6~10kV配电母线上. 其缺点是:正常运行时差回路的不平衡电流较大,保护要按躲过最大不平衡电流整定. 这样,不完全差动保护的灵敏度较完全差动保护要低一些. 3、按照技术规程规定,哪些母线上应装设专用母线保护? 答:(1)110kV及以上的双母线和分段母线,为了保证有选择地切除任一故障母线; (2)110kV及以上单母线,重要发电厂或110kV以上重要变电所的35~66kV母线,按电力系统稳定和保证母线电压等要求,需要快速切除母线上故障时; (3)35~66kV电力网中主要变电所的35~66kV双母线或分段母线,当在母联或分段断路器上装设解列装置和其他自动装置后,仍不满足电力系统安全运行要求时; (4)对于发电厂和主要变电所的1~10kV分段母线或并列运行的双母线,需快速而有选择地切除一段或一组母线上的故障,或线路断路器不允许切除线路电抗器前的短路时. 4、母线发生故障的原因有哪些? 答: (1)母线绝缘子或断路器套管的闪络; (2)装在母线上的电压互感器及装在母线和断路器之间的电流互感器故障; (3)操作切换时引起空气断路器及隔离开关的支持绝缘子损坏; (4)由于运行人员的误操作. 四.综合题 1.典型事故 事故简述:1999年3月23日7时36分,某变电站220KV甲乙线线路单相瞬时故障,重合成功、故

差动保护基本原理

差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK 为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了 4、变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

母线差动保护原理推导..

目录 摘要 (1) 第一部分继电保护概述 ................................... 错误!未定义书签。 1.1继电保护技术的发展................................... 错误!未定义书签。 1.2继电保护的种类....................................... 错误!未定义书签。 1.3继电保护的分类....................................... 错误!未定义书签。 1.4系统保护概述......................................... 错误!未定义书签。 1.5继电保护的条件....................................... 错误!未定义书签。 1.6对继电保护的要求..................................... 错误!未定义书签。 1.7继电保护的结构....................................... 错误!未定义书签。第二部分母线保护的概述 .. (1) 2.1母线保护的重要性 (1) 2.2母线保护的要求及原理 (1) 2.3母线保护的相关技术原则 (3) 2.4母线保护反措要求 (4) 2.5装设母线保护的基本整定原则 (4) 2.5.1母线完全差点保护 (5) 2.5.2固定连接母线的差动保护 (6) 2.5.3电流比相式母线保护 (8) 总结 .................................................. 错误!未定义书签。致谢 .................................................. 错误!未定义书签。参考文献 ................................................ 错误!未定义书签。

差动保护原理

前提是变压器为常见的星星三角接线,点数11. 所谓差流平衡,就是当正常运行或主变区外故障时的状态,装置感受到的变压器两侧电流方向相反,大小相等。这里暂且称装置感受到用来计算差流的量为装置量。 先计算1202的平衡系数。方法如下: 高压侧:PH高=变压器绕组星形接线1/√3 中压侧:PM中=变压器绕组星形接线Mct*Mdy/(Hct*Hdy*√3) 低压侧:PL低=变压器绕组角形接线Lct*Ldy/(Hct*Hdy) 装置量=输入值*平衡系数 例:CT变比H:1200/5 M:1200/5 L:2000/5 PT变比H:230/100 M:115/100 L:37.5/100 变压器星星角接线,CT二次星星星接线 可计算得Ph高,Ph中和Ph低值 当做高低压侧差流平衡时,加量方法如下:任取一个装置制动量X A(装置量), 则测试仪加入X/PH高 0度(加在高压侧A相) X/ PH低 180度(加在低压侧A相) (补偿电流) X/PH低 0度(加在低压侧C相) 楼主给的是3A,取X为3代入,就可以得到测试仪加入的量了。这样加一定是装置无差流的。 至于为什么要加补偿电流,是因为从前的主变保护如果两侧为星型和三角型,则CT二次侧星型接为三角,三角接为星型,以补偿相位达到差流的平衡。但是现在的微机保护装置,统一二次侧全接为星型,因此需要软件中进行相位补偿。1202相位校正采取方法是星变三角,即将高压侧二次电流进行以下公式变换,也就是楼主所提供的公式。 IAH=(Iah-Ibh)/根3 IBH=(Ibh-Ich)/根3 ICH=(Ich-Iah)/根3 其实就是将来自高压侧的电流互相相减再除以根3 根据上式,如果做高低压侧差流平衡,本来在高压侧A相和低压侧A相通入相同幅值,相位相反的装置量,就应该差流平衡的。但是因为高压侧进行了以上的相位变换,所以当高压侧A相通入电流时,高压侧C相也产生了反相的同幅值电流,所以C相产生了差流。这样没有办法差流平衡。所以要进行补偿,同时在高压侧C相或者低压侧C相也加入一个同相同幅值的装置量来抵消。这就是C相补偿电流的来源。注意上面所

相关主题
文本预览
相关文档 最新文档