当前位置:文档之家› 高性能复合材料拉挤成型工艺技术.ppt

高性能复合材料拉挤成型工艺技术.ppt

高性能复合材料拉挤成型工艺技术聚氨酯拉挤技术需改进之处:

1 玻纤的处理

2 注射箱的设计

3 模具方面的特征

4工艺参数

5 机器设计

聚氨酯拉挤设备简介及运用

玻纤处理在玻纤中的水分可导致表面起泡

筒子架成形区域

灌注/钢型

辐射加热

玻纤中水分导致表面水泡的应对措施

检查下多余的水汽和溶剂是否是在混合过程中或由于不正确的加热而导致。水和溶剂在放热过程中会沸腾蒸发,造成表面的气泡或气孔。

降低线速,和/或升高模温,通过增加表面树脂硬度来更好地克服这个问题。

使用表面罩或表面毡。这将加固表层树脂,有助消除气泡或气孔。水式水蒸气会和材料起反应,改善生产环境,纱房抽湿处理。

低压注射优点:

?用尼龙或高密度聚乙烯制成?加工设计相对简单

-成本低

?可以适用现有的模具

-适合研发用

?质轻,方便处理

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec velit neque, auctor sit amet aliquam vel, ullamcorper sit amet ligula. Nulla quis.

高压注射

入口

出口

优点:

?可实现增强纤维的完全浸渍?复杂的截面

?连续毡、针织毡、复合毡等?没有多余的树脂?更长的操作窗口期

缺点:

?费用?时间?重量

?不适合研发

设计要求

?不锈钢

?根据模具定型

模具特征比普通模具更严格

PU模腔尺寸的允许偏差不能超过0.001英寸。

需要镀铬后重新打磨。

在有负锥度或类似阻塞的情况下聚氨酯不能平稳穿过模具。

正锥度可能导致堵模。

加热管内部热电偶紧密公差集成散热

模具特征比典型的钢模更加关键

容许公差尺寸的聚氨酯钢模的误差不能超过0.001英寸

要求在镀以铬后都要再次碾磨

聚氨酯不会通过或者相似的障碍物而随之移动

不必要的锥形物可能会导致设备停机

在铬的表面重新打磨平整可以防止堵模

.001"

镀铬钢型底层

工艺参数

入口冷却防止料回到注射箱反应

2-3个加热区域

250-425 F

加热管道设置在

需要加热的地方

出口冷却是一个有效

的水槽帮助加速冷却内部的热电偶

严格流程控制

加热块

工艺参数

在线冷却可避免压坏、滑移和形变

强制空气、水/雾、冷空气

机器设计牵引稳定性、夹紧区域和牵引

力是牵引设计所要考虑的。

减小滑移:

接触面的尺寸

夹持力和分布

牵引前先冷却

为分散载荷,在大的夹紧区域用

两个或多个气缸增加夹紧效率

机器设计

聚氨酯拉挤温度较高. 延长模具到牵引机的长度来增加冷却时间,避免压坏、形变和滑移。

+6'

结论:

聚氨酯拉挤和传统的树脂系统相比面临着更加独特的挑战。

用合适的系统来应对这些挑战将会使聚氨酯拉挤技术的采用更加顺利有效。现代化的设备,高性能的工具,适应形势的聚氨酯拉挤将会得到越来越多的拉挤技术的使用者和贴牌加工者的青睐。

JHPK-G20 Pultrusion Machine(JHPK-G20拉挤成型设备)

Pultrusion Machine(拉挤成型设备JHPK-G20系列)

一、设备的基本介绍:可应用于新型聚氨酯型材的拉挤生产,产品可完全替代玻璃钢拉挤型材,包括聚氨酯门窗型材、聚氨酯导槽、聚氨酯管及其它成型件。

The general introduction and special function :applied in the new type polyurethane profile extruding production which can completely replace the fiberglass extruding profile, including the polyurethane profile of window and door, polyurethane guide groove, polyurethane pipe and other molding products.

二、注胶(拉挤成型)设备必要的几点功能

1、设备对于温度控制的精准性

The accurancy of temperature controlling

2、AB组分比例控制的的准确性

The accurancy of the ratio of the raw material

3、系统的稳定性:对与控制器及编程要求较高

The stability of the system : accompanying system

4、拉挤线速度的探测性:能精准的反馈拉挤速度,根据拉挤线速度控制原料输出的多、少、停止The detectability of the speed : the accurancy of the speed feedback , high safety factor

4、自动上料:保证原料处于充足状态,确保连续生产。

Automatically supply raw materil

Application of JHPK-G20 Pultrusion Machine (JHPK-G20拉挤成型设备运用)

THANK YOU

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

拉挤成型工艺及应用

展-囝1为现今的拉挤成型工艺流程示意图。 拉挤成型工艺及应用 黄克均张建伟 .济南250031) 内容提要概述拉挤成型工艺及其应用前景,通过对拉挤成?工艺与其它复合材料加工工艺的 比较,阐述了拉挤戋型工艺的特点和这种新的复合材料加工工艺在航空、躭天、交通、电气、化工和建 筑等领域的发展潜力。 关键词拉挤成5复合杈枰树脂材料工艺应明 1前言 拉挤成型工艺是复合材料的主要成型工艺方法 之一。用拉挤成型工艺可以全自动地生产不变截面 的棒、板,如c 型槽(板)、丨型梁、圆柱棒、j 型棒等。 最初的拉挤制品是钓鱼竿和电机檜楔等。自70年代 以来,拉挤成型工艺不断完善,拉挤成型制品应用范 围已遍及航天,航空、交通、建筑、化工和电气等各个 领域,甚至用来制造桥梁结构架、汽车和轮船传动轴 等主承力结90年代初拉挤制品的世界年产量 为复合材料总年产量的3%?5%,达9万?15万t, 其中美国占一半左右。拉挤制品的年增长率达到 10%?15%,是复合材料制品中增长最快的- 种[卜 2拉挤工艺过程 21拉挤工艺 拉挤成型工艺是指将浸溃了树脂的连续纤维粗 纱经加热模拉出形成预定截面型材的过程。在拉挤 成型 工艺的发展中,有三种同时发展起来的工艺: (1) 隧道炉拉挤工艺该工艺是把玻纤粗纱或 类似的增强材料牵引穿过树脂浴后,经过整形套管 除去包藏的空气和多余的树脂达到预定的直径,然 后牵引穿过隧道炉并悬空连续固化得到最终产品。 (2>间歜成型拉挤工艺该工艺是把增强纤维 牵引穿过树脂浸溃槽并进入对分式阴模,在脖止状 态下由模外加热固化。通常模具的进入端要冷却以 防树脂固化.当一段增强纤维上的浸溃树脂完全固 化后,打开模具再把下一段牵引到模中。 (3)高频或微波加热拉挤工艺该工艺与上述 两种方法类似,但采用高銕或微波加热,这种方法树 脂固化速度快,在模内即可固化。 由于70年代初连续纤维毡的问世解决了拉挤 型材的横向强度问题,使拉挤成型工艺获得高速发 1一纱团架>2纤维控制系统,3树脂浸溃槽; 4 加热的模具,5牵引机,6切割锯 图1拉挤成 型工艺流程图 通常拉挤过程包括纤维粗纱自纱团架经纤维控 制系统向前牵引,在浸溃槽中用适宜的浸溃树脂浸 润并整理,将合在一起的浸溃过树脂的纤维束穿过 成型模.使已成型的浸溃了树脂的预浸件穿过拉挤

拉挤工艺

摘要 乙烯基酯树脂拉挤工艺(简称VER Pultrusion Process)是国内外近年来迅速发展的一种低成本高品质复合材料制造技术,其制品以独特的性能而被广泛应用于结构、防腐、电力、建筑等诸多领域。但对其工艺的研究论文少见发表,有些VER拉挤产品性能也名不符实,本文依此而立。 本文在拉挤工艺共性理论的指导下,通过对VER分子结构及其固化行为的分析,采用“特殊”SPI凝胶试验法,在大量试验的基础上确定VER拉挤配方初型和最佳成型温度区域,再通过10mm棒在线试验,以“性能容忍速度”恒大于等于“工作效率容忍速度”作为指标来确定其工艺参数,并通过成型物中心温度在线测量对配方及工艺参数的合理性进行验证。并在前人大量工作的基础上对VER拉挤工艺过程进行了数值模拟。通过用户委托产品验证,本文配方和工艺参数设计过程及结论对VER拉挤工艺具有一定的指导作用。 1. 模具温度设置采用前低后高对VER拉挤工艺来说是合理的,与VER固化过程的先快后慢相对应。 2. 每一树脂配方体系都有最佳成型温度区域,并不是越高越好,在某一温度范围内体系的反应速率并不是温度的增函数。 3. 为了提高VER的拉挤速度,固化剂的总量在UPR的基础上提高一个百分点是可行的。钴盐催化体系对提高生产效率很有帮助,但模具入口的冷却及适量阻聚剂的加入很有必要。 4. 本文的拉挤配方及工艺参数对壁厚少于10mm的VER拉挤制品只要稍加调整可以采用。 5. 拉载模型的建立对选择拉挤机的工作参数具有一定的指导意义。 目录 第一章绪论 §1.1 课题来源及其意义 §1.2 国内外的研究现状及发展 §1.3 本文的工作重点 第二章UPR拉挤工艺介绍及VER拉挤工艺预测 §2.1 UPR拉挤工艺介绍

高性能复合材料拉挤成型工艺技术.ppt

高性能复合材料拉挤成型工艺技术聚氨酯拉挤技术需改进之处: 1 玻纤的处理 2 注射箱的设计 3 模具方面的特征 4工艺参数 5 机器设计 聚氨酯拉挤设备简介及运用

玻纤处理在玻纤中的水分可导致表面起泡 筒子架成形区域 灌注/钢型 辐射加热

玻纤中水分导致表面水泡的应对措施 检查下多余的水汽和溶剂是否是在混合过程中或由于不正确的加热而导致。水和溶剂在放热过程中会沸腾蒸发,造成表面的气泡或气孔。 降低线速,和/或升高模温,通过增加表面树脂硬度来更好地克服这个问题。 使用表面罩或表面毡。这将加固表层树脂,有助消除气泡或气孔。水式水蒸气会和材料起反应,改善生产环境,纱房抽湿处理。

低压注射优点: ?用尼龙或高密度聚乙烯制成?加工设计相对简单 -成本低 ?可以适用现有的模具 -适合研发用 ?质轻,方便处理

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec velit neque, auctor sit amet aliquam vel, ullamcorper sit amet ligula. Nulla quis. 高压注射 入口 出口 优点: ?可实现增强纤维的完全浸渍?复杂的截面 ?连续毡、针织毡、复合毡等?没有多余的树脂?更长的操作窗口期 缺点: ?费用?时间?重量 ?不适合研发 设计要求 ?不锈钢 ?根据模具定型

模具特征比普通模具更严格 PU模腔尺寸的允许偏差不能超过0.001英寸。 需要镀铬后重新打磨。 在有负锥度或类似阻塞的情况下聚氨酯不能平稳穿过模具。 正锥度可能导致堵模。 加热管内部热电偶紧密公差集成散热

拉挤成型工艺及应用

54 工程塑料应用 1的7年,第25卷,第3期 ? 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved, 展-囝1为现今的拉挤成型工艺流程示意图。 拉挤成型工艺及应用 黄克均张建伟 (第五三研究所.济南250031) 内容提要概述拉挤成型工艺及其应用前景,通过对拉挤成?工艺与其它复合材料加工工艺的 比较,阐述了拉挤戋型工艺的特点和这种新的复合材料加工工艺在航空、躭天、交通、电气、化工和建 筑等领域的发展潜力。 关键词拉挤成5!复合杈枰树脂材料工艺应明 1前言 拉挤成型工艺是复合材料的主要成型工艺方法 之一。用拉挤成型工艺可以全自动地生产不变截面 的棒、板,如c 型槽(板)、丨型梁、圆柱棒、j 型棒等。 最初的拉挤制品是钓鱼竿和电机檜楔等。自70年代 以来,拉挤成型工艺不断完善,拉挤成型制品应用范 围已遍及航天,航空、交通、建筑、化工和电气等各个 领域,甚至用来制造桥梁结构架、汽车和轮船传动轴 等主承力结构件。90年代初拉挤制品的世界年产量 为复合材料总年产量的3%?5%,达9万?15万t, 其中美国占一半左右。拉挤制品的年增长率达到 10%?15%,是复合材料制品中增长最快的- 种[卜 2拉挤工艺过程 2- 1 拉挤工艺 拉挤成型工艺是指将浸溃了树脂的连续纤维粗 纱经加热模拉出形成预定截面型材的过程。在拉挤 成型工艺的发展中,有三种同时发展起来的工艺: (1) 隧道炉拉挤工艺该工艺是把玻纤粗纱或 类似的增强材料牵引穿过树脂浴后,经过整形套管 除去包藏的空气和多余的树脂达到预定的直径,然 后牵引穿过隧道炉并悬空连续固化得到最终产品。 (2>间歜成型拉挤工艺该工艺是把增强纤维 牵引穿过树脂浸溃槽并进入对分式阴模,在脖止状 态下由模外加热固化。通常模具的进入端要冷却以 防树脂固化.当一段增强纤维上的浸溃树脂完全固 化后,打开模具再把下一段牵引到模中。 (3)高频或微波加热拉挤工艺该工艺与上述 两种方法类似,但采用高銕或微波加热,这种方法树 脂固化速度快,在模内即可固化。 由于70年代初连续纤维毡的问世解决了拉挤 型材的横向强度问题,使拉挤成型工艺获得高速发 1 一纱团架> 2 —纤维控制系统, 3 —树脂浸溃槽; 4 —加热的模具, 5 —牵引机, 6 —切割锯 图1拉挤 成型工艺流程图 通常拉挤过程包括纤维粗纱自纱团架经纤维控 制系统向前牵引,在浸溃槽中用适宜的浸溃树脂浸 润并整理,将合在一起的浸溃过树脂的纤维束穿过 成型模.使已成型的浸溃了树脂的预浸件穿过拉挤 模等过程= 2- 2 材料 拉挤成型工艺中使用的材料包括树脂、增强材 料、无机填料和内脱模剂等[14〕。 拉挤成型工艺使用的树脂与其它复合材料成型 工艺使用的树脂不同。国外已推出的可用于拉挤工 艺的树脂如表1所示。 拉挤成型工艺使用的增强材料有玻璃纤维.石 墨纤维、芳纶纤维、硼纾维和混杂纤维等。国外使用 的增强材料见表2。 在拉挤工艺中适当加入填料可提高树腊基体的 酎热性,降低树腊收缩率,改善拉挤制品表面性能和 降低成本。还可賦予拉挤制品阻燃、耐化学腐蚀或电 绝缘等功能。 对拉挤工艺使用的无机填料的要求是填料的化 学成分稳定、杂质含量少、吸水率低于0. 5 %、帄均 收稹日期: I996-U-15

复合材料工艺与设备复习资料

《复合材料工艺与设备》简答与论述(▲为重点内容) 原材料、1生产工艺中,浸润剂分为哪几种类型?它们的作用是什么?)(1(概念题里有详解) ▲根据原丝的选择原则,生产常用的原丝种类有哪些?(聚)2(丙烯睛纤维,沥青纤维,粘胶纤维) 手糊成型工艺、2▲根据手糊成型的工艺特点,说明对增强纤维和基体树脂的)1(选择原则及常用制品和树脂的种类? P12-14高级模具的基本要求?如何制备高级模具?P17-19)(2▲手糊成型工艺对外脱模剂的基本要求?并举例说明外脱)(3模剂的主要类型及应用特点? P20-21 ▲分析手糊成型工艺制品常见缺陷的原因如:表面发粘、气)(4泡、流胶、胶衣层起皱、分层、固化不完全等。 P29-31 、喷射、热压釜工艺、3喷射成型有哪几种形式? P32)(1喷射成型中垂流与浸渍不良原因是什么?如何防治? P35(2)热压釜主要结构及装置有哪些? P41)3(▲与其他工艺相比,有哪些特点? P49(4)分别是反应注射模塑、增强型反应注射模、工艺?(何为、)5(. 塑、结构反应注射模塑) P51-54

夹层结构工艺 4、夹层结构的特点及应用。 P56-57 1()聚氨酯泡沫塑料夹芯材料的生产原理。 P66-68(2)金属蜂窝夹芯材料的生产流程。 P61(3)蜂窝夹层结构生产中常见问题和解决方法。 P64 4)(泡沫夹层结构通常有哪几种制造方法。 P66 5)(模压成型工艺、5▲树脂糊包括哪些基本组分? P83)(1中内脱模剂种类有哪些?作用机理如何? P91)(2▲常用增稠剂的化学增稠机理如何? P86)(3▲中低收缩添加剂的作用机理如何?P87(4) 6、层压成型工艺 (1)层压板的主要类型? P135 (2)▲胶布生产的工艺参数?质量指标?以及相互关系? P136-139 (3)▲在层压板热压曲线中,各个阶段的作用和目的? P148(4)如何解决层压板生产中出现的板材翘曲的问题? P151(5)卷管工艺原理及过程如何? P156 7、缠绕成型工艺 (1)缠绕成型工艺分为哪几类型? P159 (2)▲切点法分析缠绕规律的主要内容? P169 (3)▲纤维缠绕规律的实质是什么?何谓测地线缠绕、线性和发线性缠绕?(概念题型里有详解) (4)▲分析说明缠绕张力制度的内容及缠绕张力对制品性能的

复合材料拉挤工艺概览

复合材料拉挤工艺概览 拉挤工艺是一种能生产连续的具有固定横截面的复合材料型材的自动化工艺。在其最简单的形式中,拉挤工艺适用于非匀质材料或者材料(复合材料)的橱台体,使其通过模具拉出。拉挤工艺是一种可使高性能复合材料达到高工业化生产的制造技术。复杂形状的直线型型材运用连续纤维增强可获得超过传统缠绕材料的力学性能。聚合物基复合材料可以制成能大限度地满足结构、化学、阻燃、电学、防腐和环境要求的各类制品,而设计可行性十分丰富。 拉挤复合材料显示出其他复合材料产品的全部特征高比强、耐腐蚀性、电绝缘性和尺寸稳定性。另外,它们还具有与拉挤工艺相关的其它优点,如连续长度。就薄型板丽论,象空心截面型材,其复杂的形状均可拉制出来。同时,拉挤型材的内外表面通常光滑精致。在拉挤生产中,以金属丝、术质或泡椿材料为添加物。可将其在连继作业工艺中裹包起来。拉挤工艺可以使用各种增强型材料(E~玻璃、ECRGLAS、S一2玻璃连续粗纱,连续纤维毡、复杂的纤维编织物、无捻粗纱布)和多种加填料或不加填料的热同性树脂(具有良好化学性能和电稳定性能的聚酯、乙烯基酯树脂或具有较好机械性能和耐腐蚀性能的环氧挝脂及具有阻燃性的酚醛树脂或甲基丙烯酸甲酯树脂)在改善拉挤制品的物理/化学性能方面,高性能热塑性聚合物提供了引人注目的可能性。拉挤机能够生产较大截面的型材和部件,它们都具有质量和可靠性均佳的显著特点,井在价格上具有竞争力。 在拉挤工艺中使用的材料可分为三种不同的材料:

一增强材料I一基体J一添加剂。通过材料的选择以及各自用量的配比设计能够提供一个广泛的复合材料性能范围。 1.增强材料 最广泛使用的增强材料是可获得的各种形式的玻璃纤维。它是复台材料承载的成分,并可提供所需要的机械性能(强度,模量、耐冲击性等等) ,见表1。 袁f 材辩性艟 材辩墨量J葛麓度重 GRP拉挤型材● 毡斌粗妙 (5o嘧玻璃) 2 5 2I 200 I.65 粗纱 (2o和玻璃) 41 500 I.9 盎属 幅80-43O 7O 80一l8O 2.7 幅碳钢410-480 皿1O 410一‘BO 7.8 最通用且廉价的增强材料是连续纤维的R- 玻璃一步法无捻祖纱,它是由其te.x支数(重量~g/km为单位表示)标明的。 在拉挤中典型的tex值是2400和4 800rex。玻璃纤维厂家用一种称为浸润剂的涂层来简化拉挤工艺中的处理过程,更重要的是,这种涂层在玻璃纤维和基体之间起着粘结作用,使一步法无捻粗纱在给定最小体积的纤维包覆下沿型材纵向方向产生很高的性能,纤维的重量百

拉挤成型工艺及应用

一、概述和发展历史 拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片等)等。 拉挤成型技术是一种以连续纤维及其织物或毡类材料增强型材的工艺方法。基本工艺过程,增强材料在外力的牵引下,经浸胶、预成型、热模固化、在连续出模下经定长切割或一定的后加工,得到型材制品。 第一个拉挤成型工艺技术专利于1951年在美国注册。直到60年代,其应用也十分有限,主要制作实芯的钓鱼杆和电器绝缘材料等。60年代中期,由于化学工业对轻质高强、耐腐蚀和低成本的迫切需要,促进了拉挤工业的发展,特别是连续纤维毡的问世,解决了拉挤型材横向强度问题。70年代起,拉挤制品开始步入结构材料领域,并以每年20%左右的速度增长,成为美国复合材料工业十分重要的一种成型技术。从此,拉挤成型工艺也随之进入了一个高速发展和广泛应用的阶段。与此同时,国内也开始关注起拉挤成型工艺这一新型技术。 随着拉挤产品应用领域的不断拓展,人们对拉挤工艺有了全新的认识,从80年代起,秦皇岛玻璃钢厂、西安绝缘材料厂、哈尔滨玻璃钢研究所、北京玻璃钢研究设计院,武汉工业大学先后从英国PUITREX公司,美国PTI公司引进拉挤成型工艺设备。此外河北冀县中意玻璃钢有限公司从意大利TOP Glass公司引进5条拉挤生产线,其中有一条是我国首家引进的光缆增强芯拉挤设备,其拉挤速度可达15-35 m/min。 在借鉴和消化国外先进技术的基础上,业内人员不断研究新工艺,开发新产品,从而有力地推动了国内拉挤成型工业,目前这一技术正在向高速度、大直径、高厚度、复杂截面及复合成型的工艺方向发展。 二、拉挤工艺过程 1 拉挤工艺 拉挤成型工艺是指将浸溃了树脂的连续纤维粗纱经加热模拉出形成预定截面型材的过程。在拉挤成型工艺的发展中,有三种同时发展起来的工艺: (1)隧道炉拉挤工艺该工艺是把玻纤粗纱或类似的增强材料牵引穿过树脂浴后,经过整形套管除去包藏的空气和多余的树脂达到预定的直径,然后牵引穿过隧道炉并悬空连续固化得到最终产品。 (2) 间歜成型拉挤工艺该工艺是把增强纤维牵引穿过树脂浸溃槽并进入对分式阴模,在脖止状态下由模外加热固化。通常模具的进入端要冷却以防树脂固化.当一段增强纤维上的浸溃树脂完全固化后,打开模具再把下一段牵引到模中。 (3) 高频或微波加热拉挤工艺该工艺与上述两种方法类似,但采用高銕或微波加热,这种方法树脂固化速度快,在模内即可固化。 由于70年代初连续纤维毡的问世解决了拉挤型材的横向强度问题,使拉挤成型工艺获得高速发展。现今的拉挤工艺过程增强材料(玻璃纤维无捻粗纱、玻璃纤维连续毡及玻璃纤维表面毡等)在拉挤设备牵引力的作用下,在浸胶槽里得到充分浸渍后,经过一系列预成型模板的合理导向,得到初步定型,最后进入被加热的金属模具,在一定温度作用下反应固化,从而得到连续的、表面平滑、尺寸稳定且高强度的复合材料型材。 图1拉挤成型工艺流程图 2 材料 拉挤成型工艺中使用的材料包括树脂、增强材料、无机填料和内脱模剂等。 拉挤成型工艺使用的树脂与其它复合材料成型工艺使用的树脂不同。国外已推出的可

拉挤成型工艺及应用

拉挤成型工艺及应用 摘要:概述拉挤成型工艺及其应用前景,通过对拉挤成型工艺与其它复合材料加工工艺的比较,阐述了拉挤成型工艺的特点和这种新的复合材料加工工艺在航空、航天、交通、电气、化工和建筑等领域的发展潜力。 关键词:拉挤成型复合材料热塑性塑料应用 一、概述和发展历史 拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片等)等。 拉挤成型技术是一种以连续纤维及其织物或毡类材料增强型材的工艺方法。基本工艺过程,增强材料在外力的牵引下,经浸胶、预成型、热模固化、在连续出模下经定长切割或一定的后加工,得到型材制品。 第一个拉挤成型工艺技术专利于1951年在美国注册。直到60年代,其应用也十分有限,主要制作实芯的钓鱼杆和电器绝缘材料等。60年代中期,由于化学工业对轻质高强、耐腐蚀和低成本的迫切需要,促进了拉挤工业的发展,特别是连续纤维毡的问世,解决了拉挤型材横向强度问题。70年代起,拉挤制品开始步入结构材料领域,并以每年20%左右的速度增长,成为美国复合材料工业十分重要的一种成型技术。从此,拉挤成型工艺也随之进入了一个高速发展和广泛应用的阶段。与此同时,国内也开始关注起拉挤成型工艺这一新型技术。 随着拉挤产品应用领域的不断拓展,人们对拉挤工艺有了全新的认识,从80年代起,秦皇岛玻璃钢厂、西安绝缘材料厂、哈尔滨玻璃钢研究所、北京玻璃钢研究设计院,武汉工业大学先后从英国PUITREX公司,美国PTI公司引进拉挤成型工艺设备。此外河北冀县中意玻璃钢有限公司从意大利TOP Glass公司引进5条拉挤生产线,其中有一条是我国首家引进的光缆增强芯拉挤设备,其拉挤速度可达15-35 m/min。 在借鉴和消化国外先进技术的基础上,业内人员不断研究新工艺,开发新产品,从而有力地推动了国内拉挤成型工业,目前这一技术正在向高速度、大直径、高厚度、复杂截面及复合成型的工艺方向发展。

热塑性树脂基复合材料拉挤成型工艺的过程及

热塑性树脂基复合材料拉挤成型工艺 的过程及 热塑性树脂基复合材料拉挤成型工艺的过程及特点2010年08月15日 自上世纪80年代中期始,人们对采用拉挤工艺制造连续纤维增强热塑性塑料复合材料(frtp)产生了极大兴趣。这是因为采用热塑性复合材料可避免热固性复合材料固有的环境友好性差、加工周期长和难以回收等不足,并且可具有更好的综合性能,如:较强的柔韧性和抗冲击性能、良好的抗破坏能力、损伤容限高、可补塑、可焊接、生物相容性好、可回收、成型时无需固化反应、成型速度快及可以重复利用等特点。 尽管热塑性塑料拉挤成型具有上述优点,但迄今仍未获得普遍的商业应用。原因在于这种工艺受到以下缺点的制约:如熔体黏度高、成型温度高、基体在室温下呈固态,需要精确控制冷却和熔体冷却时收缩率大,产品质量波动大等。 为了使热塑性材料的拉挤成型应用获得更广泛的应用,重要的任务是开发最合适的加工工艺、降低成本和提高质量。由于拉挤工艺本身是一种能够经济的连续生产复合材料的典型制造工艺,并且可以实现自动化连续生产及制品的用途广泛,所以该工艺在工业发达国家已受到普遍重视,发展速度很快。如美国专利(专利号:us5091036)以及dr.scotttaylor 对热塑性复合材料的研究成果的发表,给热塑性复合材料拉挤成型的工业应用带来突破性的推进。

概括而言,从热固性基体拉挤成型转变到热塑性基体拉挤成型所遇到的关键问题主要包括:基体在室温下呈固态、在熔融温度下流动性差(黏度高)和熔体冷却时收缩率大等特点,目前,实施热塑性树脂基复合材料的拉挤成型典型研究成果及其进展可概括如下。 1、生产工艺方面 由于热塑性树脂融体的黏度大,浸渍困难,因而改进研究工作的关键点集中在浸渍技术方面,而不同拉挤工艺的根本区别也就在浸渍方法和浸渍工艺的差异上。通常,根据浸渍技术可把热塑性复合材料拉挤工艺分为非反应型拉挤工艺和反应拉挤工艺两大类。从目前应用情况来看,非反应型工艺占主体,应用较为广泛,相对来讲也比较成熟。图1 是采用2 种不同方式的热塑性复合材料拉挤工艺示意图。 热塑性树脂基复合材料拉挤成型工艺的过程及特点 1.1 非反应型拉挤工艺 1.1.1 熔体浸渍 浸渍方法一般是让均匀分散、预加张力的连续纤维束通过一连串轮系,使纤维在熔融树脂中充分浸渍。为提高浸透性,还通常加一定的压力,或混入低相对分子质量同种类的改性组份(或增塑剂)等。该工艺目前已比较成熟,具有浸渍时纤维不易缠绕,且能加工一切可以熔融流动的塑料材料的优点。 1.1.2 溶剂浸渍 该方法是选用一种合适的溶剂,也可以是几种溶剂配成的混合溶剂,将树脂完全溶解,制得低黏度的溶液,并以此浸渍纤维,然后将溶剂挥发、回收制得预浸料。该方法克服了热塑性树脂熔融黏度高的缺点,可以很好地浸渍

复合材料及其成型技术

1.什么是复合材料?简述复合材料的特点与应用。 复合材料是由两种或两种以上的不同材料组合而成的机械工程材料。各种组成材料在性能上能互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料,从而满足各种不同的要求。复合材料的组成包括基体和增强材料两个部分。 复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。 复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。 复合材料的主要应用领域有: ①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载

复合材料成型工艺发展综述

上海海事大学 先进复合材料成型工艺课程论文 学院:海洋科学与工程学院 专业: 班级:材料132 姓名: 学号: 论文题目:复合材料成型工艺发展综述 指导老师: 二〇一六年一月 复合材料成型工艺发展综述 XXXXX 上海海事大学海洋科学与工程学院 【摘要】本文主要介绍了树脂基复合材料成型工艺及其发展趋势。其中提到了“手糊成型”、“拉挤成型”、“模压成型”等。也从复合材料生产各要素的方面,简要阐述其发展的趋势。本文章也表明了复合材料作为国家建设的战略材料,得到了越来越来多的重视,了解其成型工艺的发展有其重要的意义。 【关键词】复合材料成型工艺发展 The Summary of Development on Composites Molding Technology Xxxx Onion College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai Abstract:This thesis describes the resin composites molding process and its development trend. Some specific processes are mentioned, such as ‘Hand paste molding’ , ‘Pull extrusion forming’ ,‘Compression molding’ and so on. Also, a brief description of its development trend are made in terms of of manufacturing composites. This thesis also shows the composite material, as a nation-building strategy material, has been more popular and it’s important to understand the development of its molding process. Key Words: composites molding process development 前言 人类在生产生活中需要利用到各种各样的材料,它是人们生产生活水平能够提升物质保障。在人类的发展历史中,材料工业的大的革新往往能够引起人类社会大的变革,推动人类社会的发展。复合材料就是指由两种以上的材料进行加工合成后产生的新型材料,它与陶瓷、金属、高聚物被人们称之为四大材料。[1-5]

复合材料-拉挤成型工艺-(综合版改)

复合材料拉挤成型工艺 ——纺硕1205班柴寅芳、丁倩、刘冰、刘小梅、戎佳琦、王卷1 拉挤成型定义 拉挤成型是指玻璃纤维粗纱或其织物在外力牵引(外力拉拔和挤压模塑)下,经过浸胶、挤压成型、加热固化、定长切割,连续生产长度不限的玻璃钢线型制品的一种方法。这种工艺最适于生产各种断面形状的型材,如棒、管、实体型(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片)等。 2 拉挤成型的特点 2.1优点: 1)典型拉挤速度0.5-2m/min,效率高,适于批量生产,制造长尺寸制品; 2)树脂含量可精确控制; 3)主要用无捻粗纱增强,原材料成本低,多种增强材料组合使用,可调节制品 力学性能; 4)拉挤制品中纤维含量可高达80%,浸胶在张力下进行,能充分发挥连续纤维 的力学性能,产品强度高; 5)原材料利用率在95%以上,废品率低; 6)制品纵、横向强度可任意调整,可以满足不同力学性能制品的使用要求。2.2缺点: 1)不能利用非连续增强材料; 2)产品形状单调,只能生产线形型材(非变截面制品),横向强度不高; 3)模具费用较高; 4) 一般限于生产恒定横截面的制品。 3 拉挤成型所需的材料 拉挤成型工艺中使用的材料包括树脂、增强材料、辅助材料等。 3.1拉挤成型工艺所用树脂 拉挤成型工艺要求所用的树脂黏度低,主要使用不饱和聚酯树脂和环氧树脂或改性环氧树脂。 不饱和聚酯树脂用作拉挤的基本上是邻苯和间苯型。间苯型树脂有较好的力

学性能、坚韧性、耐热性和耐腐蚀性能。目前国内使用的较多的是邻苯型,因其价格较间苯型有优势。 环氧树脂和不饱和聚酯树脂相比,具有优良的力学性能、高介电性能、耐表面漏电、耐电弧,是优良绝缘材料。常用拉挤工艺用树脂如表1所示,树脂生产配方如表2和表3。 表1 拉挤工艺用树脂 表 2 典型拉挤用不饱和聚酯树脂配方 树脂196 100份 填料(轻质碳酸钙)5~15份 脱模剂(硬脂酸锌)3~5份 固化剂(过氧化物)1~3份 低收缩剂(PVC树脂)5~15份 颜料0.1~1份 表 3 环氧树脂配方 环氧树脂E-55 100份 脱模剂(硬脂酸锌)3~5份 固化剂(590#)15~20份 增韧剂10~15份 稀释剂适量

复合材料工艺大全(终审稿)

复合材料工艺大全 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

复合材料工艺大全复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺;

(17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。 复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。

玻璃钢复合材料拉挤成型工艺容易遇到的问题和解决办法

剥落 当部件表面有固化树脂颗粒从模中出来时,这种现象称为剥落或脱落。纠正措施: 提高固化树脂早期模的入口喂料端温度。 降低线速度,使树脂更早固化。 停线清理(30至60秒)。 增加低温引发剂的浓度。 起泡 部件表面出现起泡现象时。 纠正措施: 提高入口端模的温度,使树脂更快固化 降低线速度,与上述措施作用相同 提高强化水平。起泡经常由玻璃含量低导致的空隙引起。 表面裂缝 表面裂缝由过度收缩引起。 纠正措施: 提高模温以加快固化速度 降低线速度,与上述措施作用相同 增加装填物的加载量或玻璃含量,增加富含树脂表面的强韧性,从而减少收缩率、

压力和裂缝 增加低温引发剂的含量或使用低于当前温度的引发剂。 向部件添加表面衬垫或面纱 内部裂缝 内部裂缝通常与截面过厚有关,裂缝可能出现在层压制品的中心位置,也可能出现在表面。 纠正措施: 提高喂料端的温度,以使树脂更早固化 降低模尾端的模温,使其作为散热器,以降低放热曲线顶点 如无法改变模温,则提高线速度,以此来降低部件外部轮廓的温度以及放热曲线顶点,从而减少任何热应力。 降低引发剂水平,特别是高温引发剂。这是最好的永久解决方案,但需要一些实验进行辅助。 将高温引发剂替换为低放热但固化效果较好的引发剂。 色差 热点会导致不均匀收缩,从而产生色差(又称颜色转移) 纠正措施: 检查加热器,确保其处于适当位置,从而不会在模上出现温度不均匀的现象检查树脂混合料以确保填充物和/或颜料不会出现沉降或分离

(色差) 巴氏硬度低 巴氏硬度计的读数低;由于未完全固化 纠正措施: 降低线速度以加速树脂的固化 提高模温以提高模内的固化速率和固化程 检查导致过度塑化的混合物配方 检查其他污染物,例如水或能够影响固化速率的颜料 注意: 巴氏硬度读数只能被用于对比使用相同树脂的固化效果。它们不能被用于对比使用不同树脂的固化效果,因为不同树脂会使用各自特定的乙二醇来生产,其交联深度也不尽相同。 收缩 由过度收缩导致的表面形状不规则 纠正措施: 加入更多的玻璃,以降低固化过程的收缩率 加入一种减缩剂(低收缩添加剂)或增加填料加载量 模堵塞 模被玻璃堵塞,导致部件向外破出或拉拔头无法移动部件 纠正措施:

相关主题
文本预览
相关文档 最新文档