当前位置:文档之家› 古希腊三大几何问题的解决

古希腊三大几何问题的解决

古希腊三大几何问题的解决
古希腊三大几何问题的解决

教学方案

课题

古希腊三大几何问题的解决

学院:数学学院

班级: 2010级师范3班

姓名:

学号:

古希腊三大几何问题的解决

教案

三大尺规作图问题

引人入胜的千古难题 ——三大尺规作图问题 尺规作图是我们熟知的内容。尺规作图对作图的工具——直尺和圆规的作用有所限制。直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。 公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。于是他们热衷于在尺规限制下探讨几何作图问题。数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。所谓三大几何作图难题就是在这种背景下产生的。 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。 任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。但是,尽管费了很大的气力,却没能把看来容易的事做成。于是,第二个尺规作图难题——三等分任意角问题产生了。 正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。 古希腊三大几何问题既引人入胜,又十分困难。希腊人为解决三大几何问题付出了许多努力,后来许多国家的数学家和数学爱好者也一再向这三大问题发起攻击,可是,这三大问题却在长达2000多年的漫长岁月里悬而未决。问题的妙处在于它们从形式上看非常简单,似乎应该可以用尺规作图来完成,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。

专题22 几何三大变换问题之旋转(中心对称)问题(原卷版解析版)-1.doc

2016中考数学预测押题--专题22 几何三大变换问题之旋转(中心对称)问题 轴对称、平移、旋转是平面几何的三大变换。旋转变换是指在同一平面内,将一个图形(含点、线、面)整体绕一固定点旋转一个定角,这样的图形变换叫做图形的旋转变换,简称旋转。旋转由旋转中心、旋转的方向和角度决定。经过旋转,旋转前后图形的形状、大小不变,只是位置发生改变;旋转前、后图形的对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上;旋转前、后的图形对应点与旋转中心所连线段的夹角等于旋转角。 把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫做旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角。 特别地,中心对称也是旋转对称的一种的特别形式。把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。 在初中数学以及日常生活中有着大量的旋转变换的知识,是中考数学的必考内容。 中考压轴题中旋转问题,包括直线(线段)的旋转问题;三角形的旋转问题;四边形旋转问题;其它图形的问题。 原创模拟预测题1.如图,直线l:y=+y轴交于点A,将直线l绕点A顺时针旋转75o后,所得直线的解析式为【】

A .y = B .y x =+ C .y x =-+ D .y x =- 【答案】B 。 【考点】旋转的性质,待定系数法,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。 故选B 。 原创模拟预测题2. 根据要求,解答下列问题: (1)已知直线l 1的函数表达式为y x 1=+,直接写出:①过原点且与l 1垂直的直线l 2的函数表达式;②过点(1,0)且与l 1垂直的直线l 2的函数表达式; (2)如图,过点(1,0)的直线l 4向上的方向与x 轴的正方向所成的角为600,①求直线l 4的函数表达式;②把直线l 4绕点(1,0)按逆时针方向旋转900得到的直线l 5,求直线l 5的函数表达式; (3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线11y x 55 =-垂直的直线l 6的函数表达式。

古希腊建筑的三大柱式

古代希腊是欧洲文化的摇篮,同样也是西欧建筑的开拓者,但毕竟还处在萌芽和胚胎的时期,它们的类型还少,形制很简单,结构比较幼稚,这是因为它的艺术的完美所致。 古希腊的纪念性建筑在公元前8世纪大致形成,公元前5世纪已成熟,公元前4世纪进入一个形制和技术更广阔的发展时期。由于宗教在古代社会据有重要的地位,因而古代国家的神庙往往是这一国家建筑艺术的最高成就的代表,希腊亦不例外。古希腊是个泛神论国家,人们把每个城邦,每个自然现象都认为受一位神灵支配着,因此希腊人祀奉各种神灵建造神庙。希腊神庙不仅是宗教活动中心,也是城邦公民社会活动和商业活动的场所,还是储存公共财富的地方。这样神庙就成了希腊崇拜的圣地,围绕圣地又建起竞技场、会堂旅舍等公共建筑。 希腊最早的神庙建筑只是贵族居住的长方形有门廊的建筑。在他们看来神庙是神居住的地方,而神不过是更完美的人,所以神庙也不过是更高级的人的住宅。 古希腊三柱式 柱式: 柱式是指一整套古典建筑立面形式生成的原则。基本原理就是以柱径为一个单位,按照一定的比例原则,计算出包括柱础(Base)、柱身(shaft)和柱头(Capital)的整个柱子的尺寸,更进一步计算出包括基座(Stylobate)和山花(Pediment)的建筑各部分尺寸。 古希腊的建筑从公元前7世纪末,除屋架之外,均采用石材建造。神庙是古希腊城市最主要的大型建筑,其典型型制是围廊式。由于石材的力学特性是抗压不抗拉,造成其结构特点是密柱短跨,柱子、额枋和檐部的艺术处理基本上决定了神庙的外立面形式。古希腊建筑艺术的种种改进,也都集中在这些构件的形式、比例和相互组合上。公元前6世纪,这些形式已经相当稳定,有了成套定型的做法,即以后古罗马人所称的“柱式”。 古希腊建筑基本上是三种主要柱式:

2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析 专题7:几何三大变换相关问题 授课老师:黄立宗 典型例题选讲: 例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对 应点A′落在线段BC上,再打开得到折痕EF. (1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长; (2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的 条件下,利用图4证明四边形AEA′F是菱形. 例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE ①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示); (2)如图2,若AB= BC=kAC,AD =ED=kAE 则线段BD与CE的数量关系为,∠BMC= (用α表示); (3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示). 例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点. (1) 求抛物线的解析式; (2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D

的坐标; (3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应). 例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。 (1)求该抛物线的解析式; (2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式; (3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线 OP与该抛物线交点的个数。 巩固练习 1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0). (1)结合坐标系用坐标填空. 点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称

三大几何难题

网易新闻 微博 邮箱 相册 有道 印像派 梦幻人生 更多博客首页风格 圈子 活动 娱乐中心 话题 找朋友 博客复制 手机博客 短信写博 热点专题 意见反馈 更多>> 相册摄影展区搜索搜博文搜博客随便看看>>注册登录独上高楼愿我的博客成为我与你友谊的桥梁,你的快乐是我最大的愿望。 导航 首页日志相册音乐收藏博友关于我日志笑书神侠我是一个爱交朋友、性格开朗的人,生活中纵然有很多的绊绊磕磕,但是我更喜欢自己和朋友过的快乐,希望有更多的人成为我的朋友。 加博友关注他 最新日志 预备党员转正申请书入团申请书范文商标注册申请书南非世界杯开幕式中国人首酒泉市中小学骨干教师、学科现代教师必备的素养博主推荐 I miss you so much!图片上加放飘动的小图片点MM的眼镜教你制作一个播放器古代美女剪纸艺术欣赏春节主题素材馆相关日志 首页推荐 人体女模遭老汉赶在南非遭小学生打劫菲律宾鲜花也沙拉好吃老人堵公交抓小偷车震是这样制造的陆川;鄢颇被砍八卦无良更多>>随机阅读 零分高考作文是伪造出来的富士康涨薪与高考独木桥没有模具照样做饼干-----口味超赞的香酥提子条饼干夷狄之辨:东亚及东南亚都是中国的版图自主招生为何走进死胡同剩饭的华丽变身——扬州炒饭初中语文教学案例之《老王》教学案例及反思 20种PS技术! 三大尺规作图难题初中数学 2010-02-05 13:17:21 阅读48 评论0 字号:大中小 三大几何难题 古典难题的挑战——几何三大难题及其解决 位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,

在科学史上留下了浓浓的一笔。这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。 一.三大难题的提出 实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。 古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。 漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。 1.三等分角问题:将任一个给定的角三等分。 2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。 3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。 这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。 二.貌以简单其实难 从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。 其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。 三.高斯的发现 历史的车轮转到了17世纪。法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。 最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。 由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。 四.最后的胜利 解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直

尺规作图三大几何难题教学提纲

尺规作图三大几何难 题

安溪六中校本课程之数学探秘 尺规作图三大几何问题 一、教学目标 1.让学生了解尺规作图三大几何问题如何产生的? 2.经历探索尺规作图三大几何问题如何解决的过程,进一步体会数学方法思想。 3.学生通过自主探究、合作交流体会尺规作图三大几何问题有什么教育价值? 二、问题背景 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是

“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。 2.化圆为方,即作一正方形,使其与一给定的圆面积相等。 3.三等分角,即分一个给定的任意角为三个相等的部分。 三、问题探秘 1.立方倍积 关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟

中考数学专题 几何三大变换问题之对称

2004-2013年浙江11市中考数学选择填空解答压轴题分类解析汇编 专题13:几何三大变换问题之对称 一、选择题 1.(2004年浙江绍兴4分)如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD等于【】 A.108°B.144°C.126°D.129° 【答案】C。 【考点】矩形的性质,折叠对称的性质。 【分析】展开如图:五角星的每个角的度数是: 0 180 36 5 。 ∵∠COD=3600÷10=360,∠ODC=360÷2=180, ∴∠OCD=1800-360-180=1260。故选C。 2.(2004年浙江湖州3分)小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是【】 A. B. C. D. 【答案】D。 【考点】剪纸问题,折叠对称的性质,正方形的性质。 【分析】按照图中的顺序向右下对折,向左下对折,从上方角剪去一个等腰直角三角形,展开得:剪去的为一正方形,且顶点在原正方形的对角线上。故选D。 3.(2007年浙江绍兴4分)如图的方格纸中,左边图形到右边图形的变换是【】

A.向右平移7格 B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 C.绕AB的中点旋转1800,再以AB为对称轴作轴对称 D.以AB为对称轴作轴对称,再向右平移7格 【答案】D。 【考点】轴对称和平移变换。 【分析】观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格。故选D。 4.(2008年浙江台州4分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移, 我们把这样的图形变换叫做滑动对称变换 .......在自然界和日常生活中,大量地存在这种图形变换(如图1).结 合轴对称变换和平移变换的有关性质,你认为在滑动对称变换 ......过程中,两个对应三角形(如图2)的对应点所具有的性质是【】 A.对应点连线与对称轴垂直B.对应点连线被对称轴平分 C.对应点连线被对称轴垂直平分D.对应点连线互相平行 【答案】B。 【考点】新定义,轴对称变换和平移变换的性质。 【分析】观察图形,因为进行了平移,所以有垂直的一定不正确,A、C是错误的; 对应点连线是不可能平行的,D是错误的; 由对应点的位置关系可得:对应点连线被对称轴平分。故选B。 5.(2011年浙江温州4分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,

希尔伯特23个数学问题7大数学难题全解

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

三大柱式

希腊三大柱式 1.爱奥尼柱式优雅高贵的女性柱式Ionic Order 特点:同希腊多立克柱式不同,爱奥尼柱通常竖在一个基座上,将柱身和建筑的柱列脚座(stylobate)或平台分开。爱奥尼柱的柱头由一对标志性的涡形装饰(volute)置于模塑的柱帽(echinus)之上,或是从内绽放出。柱帽通常附以蛋与标(egg and dart),一种椭圆与箭头交替排列的装饰线条。最初涡形装饰位于同一个平面上(如右图所示),后来在角落上它们被安排呈角度突出。爱奥尼柱式的这个特点使得它在前4世纪挑剔的眼光中比多利克柱式更为多变适用,同时在角落将它扭转也使得不论在正面或侧面观察,它们都呈同样的宽度。16世纪文艺复兴建筑师和神学家斯卡默基(Vincenzo Scamozzi)设计了这种完美排列的四边爱奥尼柱头的一个版本,它是如此成功以至于成为了当时的标准,而当希腊的爱奥尼柱式在18世纪希腊复兴式风格(Greek Revival)中重新被介绍回来的时候,人们重新发现它是如此古朴和原始。 在涡形装饰之下,爱奥尼柱可以有一个宽的柱环或带将柱头从刻有凹槽的柱身上分割开,或者由一个花和水果的垂花饰从涡纹的缝隙中,或从它们的“眼”中转出。经过一些早期尝试后,柱身上的凹槽数被固定在24个。这个标准化将刻槽同直径的比例维持在一个相似的程度,即便柱子的高度被延伸亦如此。罗马人在凹槽之间留出一些柱身表面,而希腊人将它们用完只剩刀口以便雕刻。 爱奥尼柱总是比多利克柱要纤细:爱奥尼柱为8或9个直径高,在美国的改良格式中甚至更高。它们通常刻有凹槽。 爱奥尼柱式的主要特征是它的柱头,它也是许多理论和实践论述的主题,全赖维特鲁威(Vitruvius)的一段简短和晦涩的描述*。仅有的工具是一把直尺、直角器、线索(以量度半长)以及一个圆规。

几何三大变换(习题及答案)

几何三大变换(习题) ?例题示范 例1:如图,四边形ABCD 是边长为9 的正方形纸片,将该纸片折叠,使点B 落在CD 边上的点B′处,点A 的对应点为A′,折痕为MN.若B′C=3,则AM 的长为. 【思路分析】 要求AM 的长,设AM=x,则MD=9-x. 思路一:考虑利用折叠为全等变换转条件,得AM=A′M=x, A′B′=AB=9.观察图形,∠A′=∠D=90°,△MA′B′和△MDB′都是 直角三角形,MB′是其公共斜边,则MB′可分别在两个直角三角形中借助勾股定理表达,列方程. 思路一思路二 思路二:MN 是对称轴,考虑利用对称轴上的点到对应点的距离相等转条件,得MB=MB′.观察图形,∠A=∠D=90°,MB,MB′ 可分别放到Rt△ABM 和Rt△DB′M 中借助勾股定理表达,列方程. 例2:如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD 的面积为24,则AC 的长为. 【思路分析】 已知四边形ABCD 的面积,要求AC 的长,考虑借助AC 表达四 边形ABCD 的面积.四边形ABCD 为不规则四边形,考虑割补法或转化法求面积.分析题目中条件AB=AD,存在等线段共端点的 结构,且隐含∠B+∠D=180°,故考虑通过构造旋转解决问题,可把△ABC 绕点A 逆时针旋转90°.

1

?巩固练习 1.如图,将边长为2 的等边三角形ABC 沿BC 方向平移1 个单 位得到△DEF,则四边形ABFD 的周长为. 第1 题图第2 题图 2.如图,已知△ABC 的面积为8,将△ABC 沿BC 方向平移到 △A′B′C′的位置,使点B′和点 C 重合,连接AC′,交A′C 于点D,则△CAC′的面积为. 3.如图,在6 4 的方格纸中,格点三角形甲经过旋转后得到格点 三角形乙,则其旋转中心是() A.格点M B.格点N C.格点P D.格点Q 第3 题图第4 题图 4.如图,已知OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将△CDE 绕点 C 逆时针旋转75°,点 E 的 对应点N 恰好落在OA 上,则OC 的值为.CD 5.如图,E 是正方形ABCD 内一点,连接 AE,BE,CE,将△ABE 绕点B 顺时针 旋转90°至△CBE′的位置.若AE=1, BE=2,CE=3,则∠BE′C= . 6.如图,在□ABCD 中,∠A=70°,将该 平行四边形折叠,使点C,D 分别落 在点E,F 处,折痕为MN.若点E, F 均在直线AB 上,则∠AMF= .

七年级数学下册第九章《三角形》9.1三角形的边三大几何作图问题素材(新版)冀教版

七年级数学下册第九章《三角形》素材: 三大几何作图问题 三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明. 倍立方 A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视. B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯

古希腊三大柱式

古希腊三大柱式 柱式是指一整套古典建筑立面形式生成的原则。基本原理就是以柱径为一个单位,按 照一定的比例原则,计算出包括柱础(Base)、柱身(shaft)和柱头(Capital)的整个 柱子的尺寸,更进一步计算出包括基座(Stylobate)和山花(Pediment)的建筑各部分 尺寸。 15世纪以来,建筑学研究者发现了包括古希腊的三个柱式和古罗马的五个柱式。最早的柱式来源于古希腊,之后为古罗马所使用和修改。每种类型都有各异的柱头形式,包括 过梁(额枋)、雕带和檐口。 按柱式雕刻的顺序,由最粗壮原始的到最苗条奢华的柱式依次是塔司干柱式(古罗马)、多立克柱式(古希腊和古罗马)、爱奥尼克柱式(古希腊)、爱奥尼克柱式(古罗马)、科林斯 柱式(古希腊和古罗马)以及组合柱式(古罗马)。这其中有三种柱式:多立克、爱奥尼克和 科林斯是由古希腊人发明的。随后古罗马人增加了比多立克柱式简单的塔司干柱式,以及 比科林斯柱式还繁杂的组合柱式。 古罗马建筑师和工程师维特鲁威在《建筑十书》中介绍了有关古希腊柱式的传说。文 艺复兴时期的意大利建筑教育家塞利奥出版一系列关于古典建筑样式的书,在第四册书中,首次出现了对古罗马的五种柱式划分等级的说法。随后著名的建筑大师安德烈亚·帕拉弟 奥(Andrea Palladio,1508—1580)在威尼斯发表的论文《建筑四书》中明确将柱式系 统规范化,形成了被建筑界广为接受的建筑立面设计规范。他设计的维琴察圆厅别墅(Rotonda in Villa Capra,1550)就是采用此规范的典范。 1.多立克柱式 出现于公元前5世纪前叶.由来自巴尔干半岛的侵略者---多立安人建造. 这种柱式直接插入地面,没有柱基,柱子上只有平淡的柱头(上面平放着一块支撑屋顶 结构的木块)和带凹槽的柱身,无其它装饰. 横跨在两柱头之间的为额枋式的石梁(接点在柱头中间),额枋上是装饰性的檐壁,它由 2.爱奥尼亚柱式 爱奥尼亚柱式比多立克柱式出现稍晚一些,爱奥尼亚柱式神庙一般是在岛屿和小亚细 亚海岸线上发现的,这些地区居住着为逃避多立安人侵略的希腊人. 其柱式比较纤细轻巧并富有精致的雕刻.其明显的标志是柱头上的旋涡饰呈号角形两 端轻轻卷成旋涡.只要看一眼这训柱式的整个外观,就可以分辨出它比多立克式复杂的程度. 修长的柱子,位于多层富有装饰的柱础上,布满柱身的凹槽上窄下宽,凹槽端头呈扇形 彼些间有窄平的隔条.这里没有嵌板与三槽板,但腰线与山墙几乎全部以雕刻装饰.

【整理】中考几何三大变换(含答案17页)

中考几何变换专题复习(针对几何大题的讲解) 几何图形问题的解决,主要借助于基本图形的性质(定义、定理等)和图形 之间的关系(平行、全等、相似等).基本图形的许多性质都源于这个图形本身的“变换特征”,最为重要和最为常用的图形关系“全等三角形”极多的情况也同 样具有“变换”形式的联系.本来两个三角形全等是指它们的形状和大小都一样, 和相互间的位置没有直接关系,但是,在同一个问题中涉及到的两个全等三角形, 大多数都有一定的位置关系(或成轴对称关系,或成平移的关系,或成旋转的关 系(包括中心对称).这样,在解决具体的几何图形问题时,如果我们有意识地 从图形的性质或关系中所显示或暗示的“变换特征”出发,来识别、构造基本图 形或图形关系,那么将对问题的解决有着极为重要的启发和引导的作用.下面我们从变换视角以三角形的全等关系为主进行研究. 解决图形问题的能力,核心要素是善于从综合与复杂的图形中识别和构造出基 本图形及基本的图形关系,而“变换视角”正好能提高我们这种识别和构造的能力. 1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请 说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

考点:旋转的性质;全等三角形的判定与性质;直角三角形斜边上的中线;正方 形的性质。 专题:压轴题。 分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. 解答:(1)证明:在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)解:(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG, ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG,

几何的三大问题

几何的三大问题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。 几何三大问题是: 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。 三大问题的第二个是三等分一个角的问题。对於某些角如90。、180。三等分并不难,但是否所有角都可以三等分呢?例如60。,若能三等分则可以做出20。的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。/18=20。)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。 第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

中考数学 专题 几何三大变换问题之轴对称(折叠)问题(含解析)

专题20 几何三大变换问题之轴对称(折叠)问题 轴对称、平移、旋转是平面几何的三大变换。由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。 一. 有关三角形的轴对称性问题 1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF . 2. 如图,在Rt △ABC 中,∠C=900 ,∠B=300 , BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。 F D C E A B

【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。 二. 有关四边形的轴对称性问题 3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】 A.4种 B.5种 C.6种 D.7种 【答案】B。 【考点】利用旋转的轴对称设计图案。 【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.doczj.com/doc/2011445357.html,/liaoning/

几何三大变换讲义及答案

几何三大变换(讲义) 一、知识点睛 1.________、________、____________统称为几何三大变换.几 何三大变换都是_______________,只改变图形的________,不改变图形的_________________. 2.三大变换思考层次 三 大 变 换 基本要素基本性质延伸性质应用 平移平移方向 平移距离 1.对应点所连的线 段平行且相等 2.对应线段平行且 相等 3.对应角相等 平移出现 __________ 天桥问题、 平行四边形 存在性等 旋转旋转中心 旋转方向 旋转角度 1.对应点到旋转中 心的距离相等 2.对应点与旋转中 心的连线所成的角 等于旋转角 3.对应线段、角相 等,对应线段的夹 角等于旋转角 4.对应点所连线段 的垂直平分线都经 过旋转中心 旋转出现 __________ 旋转结构 (等腰)等 轴 对称对称轴 1.对应线段、对应 角相等 2.对应点所连线段 被对称轴垂直平分 3.对称轴上的点到 对应点的距离相等 4.对称轴两侧的几 何图形全等 折叠出现 __________ 折叠问题、 最值问题等

二、精讲精练 1. 如图,将周长为8的△ABC 沿BC 方向平移1个单位得到 △DEF ,则四边形ABFD 的周长为( ) A .6 B .8 C .10 D .12 F C E D B A B 1 A 1 y x B A O 第1题图 第2题图 2. 如图,在平面直角坐标系xOy 中,已知点A ,B 的坐标分别 为(1,0),(0,2),将线段AB 平移至A 1B 1,若点A 1,B 1的坐标分别为(2,a ),(b ,3),则a b +=___________. 3. 如图,在44?的正方形网格中,△MNP 绕某点旋转一定的角 度得到△M 1N 1P 1,则其旋转中心可能是( ) A .点A B .点B C .点C D .点D D C B A N 1 M 1 P 1N M P 4. 如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°, ∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路径长为________________.(结果保留π) C B A l …

简述三大几何难题

三大几何难题 古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。 古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。它们分别是化圆为方、三等分任意角以及倍立方问题。这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。 这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。化圆为方 圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。 三等分任意角 用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗? 倍立方 关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题. 由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。而倍立方则是起源于建筑的需要,这也反应了数学的发展是离不开现实社会的推动的。 三个几何难题提出后,有很多人都为之做了不懈的努力。可以说,但凡是数学史上称得上是数学家的人,都研究过这个问题。由三大难题引出的各种结论与发现也数不胜数,例如割圆曲线、阿基米德螺线等。但这些解法并没有完全遵从尺规作图的要求,因此也不算解决了三大难题。但是由19世纪所证出的三大几何难题的不可解,可以发现,只有冲破尺规的限制才能解决问题。正如很多事情,我们觉得无论如何也找不到解决的办法,就是因为有太多的枷锁罩在我们身上,只有打破这些桎梏,才会豁然开朗,找到一片新天地。 三大几何问题的真正解决是在19世纪解析几何创立之后,人们知道了直线与圆分别是二元一次方程和二元二次方程的轨迹,交点则是方程组的解,因此一个几何量是否能用尺规作出,则是它能否由已知量经过有限次加、减、乘、除、开平方运算得到。那么三大难题就可以转换成代数的语言来表示: 1化圆为方设圆的半径为一个单位,要作一面积等于单位圆的正方形,设这个正方形连长为x,则x2=π.集能否用尺规作出一条长为π的线段?

相关主题
文本预览
相关文档 最新文档