当前位置:文档之家› 采油设备综述

采油设备综述

采油设备综述
采油设备综述

采油设备综述

机械设计制造及其自动化11-02班

摘要:由于某些地质、技术或经济因素而未能有效的保持地层能力,以及在油田注水后期油井含水上升之后,为了保持油井产量而采用深井泵进行强采。因为我国的油田大多数处于长期开采后期的老油田,所以,深井泵采油法是一种主要的采油方法,采油设备的发展影响着我国的采油能力和产量。虽然随着技术的发展,适合于深井、大产量和较复杂条件的水力活塞泵及电动潜油泵的比例逐渐增加,但目前在机械采油中占绝对多数的还是游梁式深井泵装置。

关键词:采油方法、采油设备、机械采油、游梁式抽油机、抽油泵、有杆泵采油和无杆泵采油等。

在油田开发过程中,油田由于地层能量逐渐下降,到一定时期地层就不能油井保持自喷,有些油田则因为缘是底层能力低或油稠一开始就不能自喷。油井不能保持自喷时,或虽能自喷但产量过低时,就必须借助机械能量进行采油。目前,采用的机械采油方法有气举采油和深井泵采油,深井泵才有包括用游梁式深井泵装置的有杆泵采油及用水力活塞泵、电动潜油泵和射流泵等无杆泵采油。尽管国内外都广泛采用注水保持低层能量,然而,由于某些地质、技术或经济因素而未能有效的保持地层能力,以及在油田注水后期油井含水上升之后,为了保持油井产量而采用深井泵进行强采。因为我国的油田大多数处于长期开采后期的老油田,所以,深井泵采油法是一种主要的采油方法,采油设备的发展影响着我国的采油能力和产量。虽然随着技术的发展,适合于深井、大产量和较复杂条件的水力活塞泵及电动潜油泵的比例逐渐增加,但目前在机械采油中占绝对多数的还是游梁式深井泵装置。

国内外采油方法:

1自喷采油:利用地层自身能量将地层液体举升到地表面的方法。

2人工举升采油(机械采油):其形式包括很多种,如图1-1。

3二次采油:注水增加地层能量;透水。

4三次采油:聚合物调剖剂;生物降粘剂;钻水平井。

人类有着1600年左右的石油开采历史,直到1848年俄国工程师在巴库东北方的半岛开采了第一口现代油井后,人类才步入了现代化的石油开采时代。其中机械采油装备经过了一百多年的发展,逐渐形成了当今有杆采油装备和无杆采油装备两大体系。据统计,全世界约有100万口左右的在产油井,其中使用有杆采油装备的约占到90%以上,这些有杆采油装备的驱动装置采用游梁式抽油机的约占到80%以上。以下是对有杆采油设备和无杆采油设备原理结构的具体描述。(重点描述游梁式抽油机的特点。)

无杆采油:电动潜油泵、水力活塞泵、气举采油和潜油单螺杆泵等。

1电动潜油泵:潜油电泵采油原理是潜油电泵机组下入油井内一定深度,在一定的沉没压力下,电动机带动离心泵高速旋转;与此同时,井内油流

经过分离器分离出部分游离的气体后,进入多级离心泵,油流在多级离心

泵多级增压形成足够的压头,并被举升至地面。由于受到套管直径的限制,泵的直径很小,为了保持足够的压头,所以采用多级离心泵的结构,外观

看上去比较细长。

2水力活塞泵:水力活塞泵是一种液压传动的无杆抽油设备,其井下部分主要液压马达、抽油泵和滑阀控制机构组成。动力由地面加压后,经油管或

专用动力液管传至井下,通过滑阀控制及机构不断改变供给液马达的液体

流向来驱动液马达做往复运动,从而带动抽油泵进行抽油。水力活塞泵抽

油系统,是由许多不同的机械或设备联合成的一个整体。整个系统由两大

部分组成,即水力活塞泵抽油装置以及地面流程。水力活塞泵的抽油装置

包括:水力活塞泵井下机组、井下管柱结构和井口。地面流程包括:地面

高压泵组、高压管汇流、动力液处理装置和计量装置与地面管线。水力活

塞泵对含蜡、稠油、斜井及水平井具有将强的适应性,其主要缺点是机组

机构复杂,加工精度要求高,动力液处理费用高,计量困难。

3气举采油:是基于U型管的原理,利用高压压气机,从油管与套管的环形空间装

在油管上的气举阀将气体不断的注入到油管内,使油管内的液体与注入的气体混合,降低液柱的密度,减小液柱对井底的回压,从而使油层与井底之间形成足够的压力差,油层内的原油不断的流入油管内,并被举升到地面。

4 潜油单螺杆泵:这种装置类似于电动潜油泵,自上至下为单螺杆泵、保护器和潜

油电动机等。它的螺杆与螺旋输送机的螺旋桨类似,旋转时推动油液前移;又与专门的衬套配合,在轴向将油流分隔开,在径向将油流一分为二,使衬套的内螺旋面与螺杆表面之间形成一个一个密闭的腔室。当靠近吸入腔的第一个腔室容积增加时,油液在压差作用下进入油泵内,随着螺杆的转动,此腔室封闭,油液被推挤,像排出端移动,达到增压和排油的目的。以上是对无杆采油设备的几大典型设备综述。

有杆采油:三抽设备(抽油机、抽油杆、抽油泵。)

抽油机:将电动机的旋转运动转化为抽油杆的往复运动。

抽油杆:把地面驱动设备的运动和动力传递给抽油泵。

抽油泵:吸入并排出一定高压的原油。

抽油机的分类:

结构型式:常规型、前重型、偏置型、斜井式、低绞式、洁动式。

减速器传动方式:齿轮式、链条式、皮带式、行星轮式。

驴头结构驴头:上翻式、侧翻式、分装式、整体式、旋转式、大轮式、双驴

头式、异驴头式。

平衡方式:游梁平衡、曲柄平衡、复合平衡、液和平衡、气动平衡、差动平衡。

驱动方式:普通异步电机、多速通异步电机、变压异步电机、大转差率电机、超转差率电机、天然气发动机、柴油机、直线电机。

图1-1

1常规游梁式抽油机(以此作为示例描述。):是油田使用历史最悠久,使用数量最多的一种抽油机。该机采用具有对称循环四杆机构或近似对称循环四杆机构,结构简单,运行可靠,操作维护方便,长冲程时平衡效果差,效率低,能耗大。

其原理就是四连杆机构如图所示

常规抽油机的组成:主要由驴头、游梁、曲柄、连杆、平衡重、减速器、制动机构、支架、横梁、悬绳器等组成。(驴头:由钢板焊接而成,为了便于起放抽油杆,将其制成上翻式和侧转式。)

悬点:在驴头上的位置是变化的,所受的载荷也是变化的。

驴头悬点上作用有六种载荷:

1) P

杆:抽油杆自卫重,P’

(抽油杆在油中的重量),方向向下。

2) P油:油管内、柱塞上的油柱重,方向向下。

3)P

:油管外油柱对柱塞下端的压力,方向向上。

4)P

杆惯和P

油惯

:抽油杆柱和油柱运动产生的惯性载荷,大小与悬点的加速度成

正比,方向与加速度相反。

5)P

:抽油杆柱和油柱运动产生的振动载荷,大小和方向都是变化的。

6)P

摩干和P

摩液

:柱塞与泵筒间、抽油杆与油管间的半干摩擦力;抽油杆与油柱

间、油柱与油管间及油流通过抽油泵阀的液体摩擦力。方向与抽油杆的运动方向相反。

游梁式抽油机的平衡:上、下冲程时,悬点载荷不一样,发动机的载荷在上、下冲程时也不一样。上冲程时,发动面付出很大的能量,而下冲程时,发动机作负功。载荷的不均匀,将影响四连杆机构、减速器、发动机的效率和寿命;也恶化了抽油杆的工作条件,使抽油杆的断裂次数显著增加。设置平衡是为了尽可能消除负功,使减速器、发动机的载荷变均匀。避免以上缺点。可采用机械平衡方式、气动平衡方式和复合平衡方式。

常规游梁式抽油机缺点及其影响因素:常规游梁式抽油机自诞生以来,历经百年使用,经历了各种工况和各种地域油田的考验,经久不衰。目前仍在国内外油田普遍使用。常规机以其结构简单、制造容易、可靠性高、耐久性好、维修方便、适应现场工况等优点,在采油机械中占有举足轻重的地位。但是由于常规机的结构特征,决定了它平衡效果差,曲柄净扭矩脉动大,存在负扭矩、载荷率低、工作效率低和能耗大等缺点。在采油成本中,抽油机电费占30%左右,年耗电量占油田总耗电量的20~30%,为油田电耗的第二位,仅次于注水。抽油机的悬点载荷状况是影响抽油机能耗的主要因素。人们普遍认为,游梁机工作效率不高的主要原因是其载荷特性与所用普通三相异步电动机的转矩特性不相匹配,电机的负载率过低致使电机以较低的效率运行。抽油机的结构和抽油泵工作的特点,形成了抽油机特有的负荷特性:带有冲击的周期交变载荷。在抽油机运行的一个周期内:上冲程时,悬点要提升沉重的抽油杆和油液柱需要减速器传递很大的正向转矩:下冲程时,输出轴放下落的悬点负荷(抽油杆自重)正向拖动,使主动轴反向做功,减速器要传递较大的反向转矩。电机在一个冲程中的某些时段被下落的抽油杆反向拖动,运行于再生发电状态,抽油杆下落所释放的机械能有部分转交成了电能回馈电网,但所回馈的电能不能全部被电网吸收。引起附中能量损失。目前游梁式抽油机主要采用曲柄平衡,即使在平衡良好的情况下,减速器输出轴仍然存在较大正峰值转矩和较大的负转矩。平衡程度越差,其正、负转矩的峰值越大,抽油机的能耗也就反之增加。负转矩的存在必然导致电动机运行于再生发电状态,电能回馈电网造成电力系统的附加能量损失,这样一栗实际上使异步电机的运转参与了抽油机的平衡运动,因为抽油杆下落时所释放的机械能能除了部分转变成平衡重的位能,还有部分通过电机的再生发电状态转化成了电能,但所产生电能又不能被电网全部吸收,造成了能量的浪费。同时负转矩的存在又加速了曲柄销的破坏,使减速器的齿轮经常受反向负荷,降低了抽油机的使用寿命。

由于以上原因,各种类型的抽油机不断出现。

2前置式抽油机:前置式抽油机平衡后的理论净扭矩曲线是一条比较均匀的接近水平的直线,因此其运行平稳,减速箱齿轮基本无反向负荷,连杆、游梁不易疲劳损坏,机械磨损小,噪声比常规式抽油机低,整机寿命长。前置式抽油机可配

置较小功率的电动机,节能效果显著。与常规式抽油机相比,具有体积小、重量轻、节省钢材的优点。

3偏置式抽油机:又称异相曲柄平衡式抽油机,特点是平衡块中心线相对于曲柄中心偏转一个角度,这种机型国外60年代发展起来并得到API的承认。试验表明,经优化设计的偏置式抽油机节电可达20%。

4链条式抽油机:是一种无梁抽油机,具有惯性载荷小,冲程长度大的特点,重量轻,节省电能的优点。包括传动部分、换向部分、悬吊部分和机架等组成。主要的结构特点是采用链条为换向机构。轨迹链条上有一个特殊的链节,其上装有向外的主轴销和滑块。主轴销可在滑块的套筒中转动,滑块与往返架相连,并可在其中做水平运动。

5下偏杠铃游梁复合平衡抽油机:是在原常规游梁抽油机的游梁尾端,利用变矩原理增加简单的下偏杠铃所形成的一种新型节能抽油机。该机继承和保留了原常规游梁式抽油机的全部优点,这种类型可用于新机制造,又可用于现场在用的常规抽油机(含偏置机)的节能改造,其改造技术是目前最简单易行的,节能效果也较明显。

6液压抽油机:是在常规式游梁抽油机的基础上发展生产的新一代抽油设备,它不仅保持了常规机的优点,还具有运行参数可调,节能,系统效率高等特点,是一种新型节能抽油机。主要特点:能耗低、调参方便、体积小、重量轻、便于安装维修和搬运、平衡效果好、具有超载和断载保护装置,并能自动停机报警、产品通过美国石油学会 API Spec 11E 认证,并获得API会标使用权。

7双驴头游梁式抽油机:该机是将常规机游梁与横梁的铰链连接,改为变径圆弧的后驴头、钢丝绳与横梁之间的软连接,构成变参数四杆机构来传递运动和扭矩,克/]ItT原机构的死角,增加游梁摆角,冲程提高20%~70%,。由于采用变径圆弧的游梁后臂,使其实现负载大时平衡力矩大,负载小时平衡力矩小的工作状态。从而使减速器输出扭矩波动小,达到加强平衡,降低能耗的目的。这种机型是目前除常规机以外发展最迅速的机型。

此外,还有很多新型游梁式抽油机,例如大轮式抽油机、重锤式游梁液压抽油机、大圈式抽油机,调径变矩游梁平衡抽油机、悬挂偏置游梁平衡抽油机、斜井抽油机、活动式抽油机、低矮型游梁抽油机、前置式气动平衡游梁式抽油机等,这里不再赘述。

有杆抽油的井下抽油泵:管式泵、杆式泵等。

杆式抽油泵:检泵方便,但结构复杂,制造成本较高,在相同的油管直径下允许下入的泵径较管式泵要小,适用于下泵深度较大,产量较小的油井。该泵地面驱动装置为游梁式或非游梁式抽油机。

管式抽油泵:结构简单,成本低,在相同油管直径下允许下入的泵径比杆式泵大,因而排量大。但检泵时必须拆卸油管,修井工作量大,故适用于下泵深度不大,产量较高的井。该泵地面驱动装置为游梁式或非游梁式抽油机。

总结:通过对以上采油设备的描述,使我深刻了解到目前我国的采油方法和采油设备的结构原理等。同时,也剖析了常规式游梁抽油机的缺点以及产生的

原因等。作为一名机械生,要时刻去分析设备的合理性、原理、结构的优化等。采油设备决定了石油行业的采油能力和水平。因此,我们要不断创新,设计优化出更好的采油设备。

参考文献:《石油钻采机械概论》李继志主编

《石油钻采工程》尹向艺主编

《石油机械概论课件》魏昌祥编写

部分资料来自阿果石油英才网

采油机械复习题

. 采油机械复习题 一、选择题 1.抽油机按照平衡方式可分为机械平衡抽油机和(B气动平衡)抽油机。 2.抽油机按照结构和工作原理不同可分为游梁式抽油机和(C无游梁式)抽油机。 3.游梁式抽油机最主要的特点是有一个绕支架轴承上下摆动的(B游梁)。 4.第一代抽油机分为常规型、变型、退化有游梁和(A斜直井)四种类型。 5.第二代抽油机分为高架曲柄型、电动机换向型、(D机械换向型)和其他无游梁型四种类型。 6.第三代抽油机分为单柄型、直驱多功能型和(B高架作业型)三种类型。 7.抽油机主机和辅机中不包括(A水泥基础)。 8.抽油机主机部分不包括(D电动机)。 9.抽油机主要是由底座、减速箱、曲柄、平衡块、连杆、横梁、支架、游梁、驴头、悬绳器、(A刹车装置)和各种连接轴承组成。 10.常规型抽油机的代号( D、CYJ)。 11.异相形抽油机的代号(A、CYJY )。 12.前置型抽油机的代号(B、CYJQ )。 13.游梁式抽油机游梁平衡的平衡方式的代号为(D、Y )。 14.游梁式抽油机减速器点啮合双圆弧型齿轮齿形代号为(A、H )。 15目前应用广泛的抽油机动力机是电动机和(A天然气发动机)。 16抽油机的曲柄连杆机构的作用是将动力机的旋转运动变成驴头的(B往复运动)。 17.抽油机是一种地面采油设备,它和抽油杆、抽油泵配合使用能将井下的(C液体)抽到地面。 18.抽油机的工作原理是(C电动机)将其高速旋转运动传给减速箱的输出轴。 19.抽油机输出轴带动(D曲柄)做低速旋转运动。 20.抽油机曲柄通过(D连杆)、横梁拉着游梁后臂上下摆动。 21某游梁式抽油机型号CYJ10-3-53HB,表明该机驴头悬点最大负荷为(A、10) 22、某游梁式抽油机型号CYJ10-3-53HB,该机光杆最大冲程为(C 3)m。 23、某游梁式抽油机型号CYJ10-3-53HB,表明该机减速箱曲柄最大允许扭矩为(C53)kN/m。 24、某游梁式抽油机型号CYJ10-3-53HB,其中(D B)表示的是平衡方式。 25、某游梁式抽油机型号CYJ10-3-53HB,表明该机为(B曲柄)平衡方式。 26、直接与驴头相连接的抽油机部件是(B 游梁)。 27、抽油机驴头的作用是保证抽油时(C 光杆)始终对准井口中心位置。 28、抽油机曲柄上的孔是用来调(A 冲程)的。 29、抽油机的(D 平衡块)可以减小上下冲程负荷差别。 30、游梁抽油机的动力来自于(B)电动机)的高速旋转运动。 31、游梁抽油机中起变速作用的装置时(D)减速箱)。 32、游梁抽油机的电动机将其高速旋转运动传递给减速箱,由减速箱的(A)输出轴)带动曲柄做低速旋转运动。 33、游梁抽油机做低速旋转运动的部件是(C、曲柄)。 34、抽油机减速器一般采用(C、三轴二级)变速。 35、抽油机减速器输出轴键槽开(C、2)组。 36抽油机减速器中心与底座上中心标记应重合,其偏移量应小于±(D、1)mm。 37、抽油机井抽油参数不包括(C地面减速箱的扭矩)。 38、抽油机驴头上下往复运动时在光杆上的最大位移叫(B冲程)。39、每分钟抽油机驴头上下往复运动的次数叫(D冲速)。 40、抽油机井理论示功图是描绘载荷随(B冲程)的变化关系。 41、抽油机井理论示功图的纵坐标是(D悬点载荷)。 42、抽油机井理论示功图的横坐标是(C冲程)。 43、抽油机按结构和工作原理的不同可分为游梁式和(B无游梁式)抽油机两大类。 44、前置型抽油机的平衡方式由曲柄平衡和(C气动)平衡两种。 45、链条式抽油机的平衡系统是由平衡气缸、平衡活塞、平衡链轮、储能气包和(D压缩机)等组成的。 46、抽油机的(B曲柄)平衡方式会使曲柄上有很大的负荷和离心力。 47、游梁式抽油机平衡方式由(C、4)种。 48、根据游梁式抽油机平衡块所处的位置,平衡方式分为:游梁平衡、曲柄平衡和(A复合)平衡三种。 49、抽油机井热洗流程是在正常生产流程状态下打开(B套管)阀门和掺水热洗阀门。 50、抽油机井的双管生产流程是在正常生产流程状态下打开直通阀,关闭(A掺水)阀门,实 现双管出油生产。 51、注水井的注水量主要是靠注水井配水间的(C下流阀)来实现调控的。 52、电动潜油泵井的地面装置是指(D控制屏)。 53、电动潜油泵井的井下装置是指(B保护器)。 54、电动潜油泵井的专用电缆是在(A中间部分)。 55、电动潜油泵井电流卡片是描绘井下机组电流与(A时间)的关系曲线。 56、电动潜油泵井电流卡片是装在(C地面控制屏内)。 57、电动潜油泵井正常运行时电流卡片,呈(D均匀小锯齿状)。 58、螺杆泵系统由电控部分、(A地面驱动)部分、井下驱动部分、井下螺杆泵及一些配套工具组成。 59、地面驱动设备是螺杆泵采油系统的主要地面设备,是把(B动力)传递给井下转子,使转子运转,实现抽汲原油的机械装置。 60、螺杆泵井的动力源是(C电动机),它将电能转化为机械能。 二、判断题 (√)1.常规游梁式曲柄平衡抽油机结构肯定有尾轴、中轴、曲柄、横梁、驴头。 (×)2.常规游梁式曲柄平衡抽油机结构有一个游梁、两个驴头。 (×)3.变平衡抽油机主要特点是通过采用机械平衡和复合平衡两种平衡方式实现抽油机平衡。 (√)4.电动机是抽油机的辅机部分。 (√)5.常规型抽油机的类别代号是CYJ。 (×)6. CYJY14-4.8-73HB型抽油机额定悬点载荷为14KN。 (√)7.抽油机是一种地面采油设备,结构简单、性能可靠、便于制造,是适用性最强的采油设备。 (√)8.抽油机的工作原理是把由电动机供给动力,经减速箱将电动机的高速旋转变为抽油机曲柄的低速运动,并由曲柄-连杆-游梁机构将旋转运动变为抽油机驴头的往复运动。(×)9.抽油机的工作原理可简述为把机械能转换为电能。 (√)10.型号CYJ10-3-37B中的“10”表示该抽油机悬点最大负荷为100KN。 (√)11.型号CYJ10-3-37B中的“B”表示该抽油机的平衡方式为曲柄平衡。

采油厂设备管理总结

采油厂设备管理总结 2010年采油厂设备管理本着不断改善和提高企业装备技术素质,降低设备事故发生率,确保设备的合理使用和充分使用,实现设备完好可靠和低耗高效的统一的原则,结合我厂设备管理实际,深入开展设备管理工作。 一、认清肩负的历史使命,进一步增强做好设备安全工作的紧迫感和责任感 设备是企业生产的基础,在任何时候,不论体制如何改变,设备这个基础不能削弱。采油厂的设备管理工作从改革、发展和稳定的大局出发,增强做好设备安全工作的紧迫感和责任感,怀着对企业和职工高度负责的精神,用先进的设备管理理念和安全生产理念指导行动,用先进的管理体系规范设备管理,结合企业生产实际做深入细致、扎实有效的工作。 采油厂始终坚持“安全第一、预防为主”的方针,切实增强防范意识,深入细致地以预防促进设备安全,重点是提升设备管理制度的执行力,并制定详细的设备管理措施,认真抓好实施,使严格的设备管理制度在设备生产现场得到充分体现。 二、把设备安全管理当作设备管理的重要任务,确保设备的本质安全 采油厂结合设备检查,及时发现和消除设备的故障隐患,防止

设备重大事故的发生。各站队每月对设备故障隐患按照进行一次全面统计分析,按照ABC分类标准,明确隐患整改的责任单位和责任人,并制定整改措施,限期进行整改。对于因设备老化、投资不到位等原因造成的隐患,在近期无法整改而设备又不能停止运行的情况下,制定了周密的监督措施,加密设备的巡回检查频次,密切关注设备的运行动态,发现问题及时采取措施,确保设备的安全运行。 XX采油厂强调关键生产装置的安全防范措施,要求仪器仪表完好准确,重要装备做到了定期检测,安全隐患整及时。同时XX采油厂注意抓好整改典型,及时总结推广好的经验和办法。在整改过程中,注意抓好整改效果的巩固和提高,探索建立一套事故隐患及时发现、报告、处理的闭环循环机制,加强设备的跟踪检查,对新发现的缺陷及时采取对策和措施。 XX采油厂根据生产要求及设备的技术状况,充分利用设备故障诊断与状态检测技术,采取适当的维修方式和策略,坚持“该修则修,修则修好”的原则,高效使用设备维修资金。 三、加强设备使用管理,认真落实设备操作标准化 XX采油厂实现设备管理和安全管理紧密配合,既在设备本质安全化上常抓不懈,又结合安全生产动态和安全工作抓好设备的安全使用管理。在设备管理上,XX采油厂坚持“严”字当头,严格要求,严格检查,严明纪律,严格考核,做到了“严”字贯串于整个设备管理工作的始终。XX采油厂始终要求设备操作人员的持证上岗,在设备操作证的管理上坚持年度审验制度。做到了设备操作规程及时

采油工程课程设计

采油工程课程设计 课程设计 姓名:孔令伟 学号:201301509287 中国石油大学(北京) 石油工程学院 2014年10月30日

一、给定设计基础数据: (2) 二、设计计算步骤 (3) 2.1油井流入动态计算 (3) 2.2井筒多相流的计算 (4) 2.3悬点载荷和抽油杆柱设计计算 (12) 2.4抽油机校核 (16) 2.5泵效计算 (16) 2.6举升效率计算 (19) 三、设计计算总结果 (22) 四、课程设计总结 (23)

一、给定设计基础数据: 井深:2000+87×10=2870m 套管内径:0.124m 油层静压:2870/100×1.2 =34.44MPa 油层温度:90℃ 恒温层温度:16℃ 地面脱气油粘度:30mPa.s 油相对密度:0.84 气相对密度:0.76 水相对密度:1.0 油饱和压力:10MPa 含水率:0.4 套压:0.5MPa 油压:1 MPa 生产气油比:50m3/m3 原产液量(测试点):30t/d 原井底流压(测试点):16.35Mpa 抽油机型号:CYJ10353HB 电机额定功率:37kw 配产量:50t/d 泵径:56mm 冲程:3m 冲次:6rpm 柱塞与衬套径向间隙:0.3mm 沉没压力:3MPa

二、设计计算步骤 2.1 油井流入动态计算 油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。从单井来讲,IPR 曲线表示了油层工作特性。因而,它既是确定油井合理工作方式的依据,也是分析油井动态的基础。本次设计油井流入动态计算采用Petro bras 方法Petro bras 方法计算综合IPR 曲线的实质是按含水率取纯油IPR 曲线和水IPR 曲线的加权平均值。当已知测试点计算采液指数时,是按产量加权平均;预测产量时,按流压加权平均。 (1) 采液指数计算 已知一个测试点: wftest P 、txest q 和饱和压力b P 及油藏压力P 。 因为 wftest P ≥b P ,1j =txwst wfest q P P -=30/(34.44-12)= 1.3/( d.Mpa) (2) 某一产量t q 下的流压Pwf b q =j(b P P -1)=1.4 x (34.44-10)=34.22t/d m o zx q =b q +8.1b jP =34.44+1.4*10/1.8=42.22t/d omzx q -油IPR 曲线的最大产油量。 当0?q t ?b q 时,令q 1t =10 t/d ,则p 1wf =j q P t - 1=15.754 Mpa 同理,q 2t =20 t/d ,P 2wf =13.877 Mpa q 3t =30 t/d ,P 3wf =12.0 Mpa 当q b ?q t ?omzx q 时,令q 4t =50 t/d,则按流压加权平均进行推导得: P 4wf =f )(1j q P t w -+0.125(1-f w )P b =8.166Mpa

海洋石油装备发展综述

海洋石油装备发展综述 21世纪乃海洋世纪,发展海洋科技与高技术装备尤为重要。 近年来,随着世界范围内油气资源消耗的递增和陆地原油开采速度的加快,海洋领域内的油气勘探开发已成为新的焦点。未来的15-20年,将是我国海洋钻井市场实现快速发展的关键时期。由于我国对油气资源的巨大需求,国内主要石油公司均制定出各自的深水钻井装备计划。在未来5年里,中国海洋石油总公司将投资1200亿元用于海上油气勘探和开发,海洋工程装备投资是其中的主要部分,需新建各种固定和移动式生产钻井平台70多座,其中新建多座自升式和半潜式钻井平台。另外,我国中石油、中海油、中石化三大石油集团公司均已开始了海洋深水油气勘探开发装备的研究工作,计划在“十二五”期间研制我国具有自主知识产权的3000m深水半潜式钻井平台,这将有力促进我国海洋石油装备的快速发展。 一、我国海洋石油装备现状 当前,我国海上油气勘探开发主要集中在大陆架区块,水深不超过300m,钻井深度在7000m以内,水下生产系统设备几乎全部依赖进口,海上原油发现率仅为18.5%,天然气发现率仅9.2%。资料显示,我国拥有海洋钻井平台的数量相对较少。作为我国具有国际竞争力的海上石油公司,中海油拥有平台的基本情况为:固定平台65座、自升式平台9座、半潜式平台3座、FPSO 14座。 从海洋装备发展历史来看,我国海洋石油装备的研制始于20世纪70年代初期。80年代后,我国在半潜式钻井装备研制方面有所突破。进入21世纪后,尤其是近几年来,我国加大了海洋油气资源的勘探开发及石油钻采装备的研发更新力度,海洋装备技术有了较快发展。 从我国海洋装备造船业基本情况分析,当前我国还没有一家真正意义上的专门从事海洋石油钻采设备的专业造船公司。但就平台建造而言,国内目前具有一定研制基础和建造经验的公司主要包括沪东中华造船(集团)有限公司、上海外高桥造船有限公司、江南长兴造船有限责任公司、青岛北海船舶重工有限责任公司、大连船舶重工集团有限公司等。沪东中华造船(集团)有限公司是国内第1家年造船总量突破100万吨的企业,曾完成我国第1艘双体钻井浮船“勘探1号”的建造,并建造过4200m3LPG船,“胜利3号”坐底式钻井平台等。上海外高桥造船有限公司是国内第1家年产能力达到200万吨以上的船厂,目前已经建成30万吨级以上大型船坞2座和2台600T龙门起重机等。青岛北海船舶重工有限责任公司是中国船舶重工集团控股的大型船舶修造企业,曾建造了我国“胜利2号”钻井平台、“胜利3号”作业平台、“辽河1号”自升式钻修井平台等。大连船舶重工是中国船舶重工集团控股的特大型综合性造船企业,拥有一般船台4个,半坞式船台1个,船坞5座等,迄今为止,共建造自升式、半潜式等平台36座。 从海洋装备研究机构情况来看,我国专门从事海洋装备研究的机构较少,具有系统研究海洋石油钻采装备的机构则更少。就单元技术而言,主要研究单

采油采气装备的现状和发展趋势

采油采气装备的现状和发展趋势 高向前:各位来宾大家好!我汇报的题目是采油采气装备的现状和发展趋势。随着油气勘探开采对象的难度加大和日趋复杂,采油(气)技术装备作为油气田开发目标的实现载体和手段,其重要性愈显突出。近年来我国的采油采气装备技术有了长足的进步,为我国石油工业的发展做出了重大贡献,但整体技术水平与石油工业发展要求及国际先进水平相比仍有较大差距。为了满足生产需求和建设国际综合能源公司的战略要求,提升我国石油装备制造水平,促进我国装备制造业的发展,我所开展了采油采气技术装备现状和发展趋势研究。该报告分成八个领域共十章,并按完善推广、重点研究、超前储备提出了发展建议。本报告的内容多,涉及面广,由于时间紧,研究工作尚显粗略,还存在着一些不尽完善的地方,今后仍需要不断跟踪和研究。共分为十章。 一、概述近十年来采油(气)技术装备的总体发展状况未来面临的挑战和发展趋势 二、常规采油技术国外先进技术调研我国机械采油技术和装备的发展方向 三、注水技术及工具新技术及配套工具的应用情况面临的挑战 四、稠油开采新技术和新装备的使用情况面临的挑战 五、水平井、复杂结构井开采及完井技术水平井完井技术分支井及侧钻井完井技术水平井增产改造技术水平井井下作业技术面临的挑战 六、天然气开采高压高温酸性气藏的开采天然气地面集输技术气井排液采气技术面临的挑战 七、井下作业技术与装备新技术和新装备的使用情况面临的挑战 八、海洋石油钻采装备海洋油气开发装备海洋石油采油装备 九、数字油田数字油田的概念、分类和基本架构数字油田关键技术数字油田技术的发展需求数字油田在中国的发展现状中国数字油田面临的问题 十、采油采气技术装备发展方向及建议 近十年来采油(气)技术装备的总体发展状况 近年来,采油(气)技术和装备领域紧密结合油气田开发的需要,针对“油田整体老化”、“多井低产”、“低丰低质”的开发局面,紧密结合“重大开发试验”、“水平井规模应用”、“老油田二次开发”、“特、超低渗透油田有效规模动用”等发展战略举措,针对生产工艺要求,形成了高含水油田综合治理、低渗透油藏经济开发、稠油储量有效动用、气藏有效开发、超深及复杂类型油藏采油以及完井、井下作业和大修等配套技术和装备,改善了老区开发效果,加快了新增探明储量的产能转化效率,促进了各类油气田开发水平的提高,基本满足了油气田开发的需要。 第一章概述 未来采油采气工程技术装备面临的挑战: 随着稠油及高含水老油田开发程度持续加深,新投入开发的储量多属低渗、特低渗油藏,油田开发面临技术和经济的双重挑战,对采油采气工程技术和装备的要求越来越高。单井日产量的高低是关系到油田企业效益和抗风险能力的重要因素; 老油田进入特高含水期,进一步提高采收率是采油工程的历史责任; 低品位储量逐渐成为开发主体,急需发展经济有效开采新技术; “三高”气藏规模投入开发,对采气工艺提出了新的课题; 稠油开发进入“双高”开采阶段,急需转变开采方式;

汽油喷射系统概述

汽油喷射系统概述 目前,在许多汽车发动机上都装用了电子操纵汽油喷射系 统。它以一个电子操纵装置(又称电脑或ECU )为操纵中心,利 用安装在发动机不同部位的传感器,测得发动机的各种参数,按 照预先设置的程序,精确地计量进入气缸的空气量,通过操纵喷 油器精确地操纵喷油量,使发动机在各种工况下都能获得最佳浓 度的混合气,以求得最佳的动力性、经济性及排放性,提高汽车 的使用性能。 第一节 汽油喷射概论 随着电子装置在汽车内应用越来越广泛,电子操纵汽油喷射 系统的优点已日渐明显,同时随着时刻的推移,采纳电子操纵汽 油喷射系统的汽车将取代化油器式汽车。 一、化油器供油系统和汽油喷射 (-)阻碍汽油机性能的要紧因素 1.压缩比对发动机性能的阻碍 汽油机是按奥托循环即等容循环工作的,等容理论循环的热 效率公式为: 111--=k t εη

式中:ε——压缩比; k——气体的比热。 随着压缩比的提高,循环热效率增大。一般压缩比在10以下时,增大一个压缩比单位,热效率大致可提高2%。 发动机压缩比提高的同时.还可使功率略有增加,并使混合气成分的可用范围加宽。其缺点是发动机要求使用辛烷值高的汽油,否则易产生爆震。因而发动机的压缩比不能无限提高。 2.空燃比对发动机性能的阻碍 1kg汽油完全燃烧所需要的空气量约为 14.7 kg,此为理论空气量。在汽车的实际运行中,发动机要在各种工况下燃烧,实际燃烧的空气量不一定是理论空气量,它与发动机的结构和使用工况紧密相关。实际空气量与理论空气量的比值称为过量空气系数λ。 λ>1的混合气称为稀混合气,λ<1的混合气称为浓混合气。 混合气成分对燃烧过程和发动机的性能都有重大阻碍。图1-1为火焰温度T f、输出功率N e与燃油消耗率g e随空燃比的变化

中国石油大学采油工程课程设计

采油工程课程设计 姓名:魏征 编号:19 班级:石工11-14班 指导老师:张黎明 日期:2014年12月25号

目录 3.1完井工程设计 (2) 3.1.1油层及油井数据 (2) 3.1.2射孔参数设计优化 (2) 3.1.3计算油井产量 (3) 3.1.4生产管柱尺寸选择 (3) 3.1.5射孔负压设计 (3) 3.1.6射孔投资成本计算 (4) 3.2有杆泵抽油系统设计 (5) 3.2.1基础数据 (5) 3.2.2绘制IPR曲线 (5) 3.2.3根据配产量确定井底流压 (7) 3.2.4井筒压力分布计算 (7) 3.2.5确定动液面的深度 (21) 3.2.6抽油杆柱设计 (24) 3.2.7校核抽油机 (25) 3.2.8计算泵效,产量以及举升效率 (26) 3.3防砂工艺设计 (30) 3.3.1防砂工艺选择 (31) 3.3.2地层砂粒度分析方法 (31) 3.3.3 砾石尺寸选择方法 (32) 3.3.4支持砾石层的机械筛管规格及缝宽设计。 (32) 3.3.5管外地层充填砾石量估算。 (33) 3.3.6管内充填砾石量估算 (33) 3.3.7携砂液用量及施工时间估算 (33) 3.3.8防砂工艺方案施工参数设计表 (34) 3.4总结 (34)

3.1完井工程设计 3.1.1油层及油井数据 其它相关参数:渗透率0.027 2m μ ,有效孔隙度0.13,泥岩声波时差为3.30 /s m μ,原油粘度8.7Mpa/s,原油相对密度为0.8,体积系数为1.15。 3.1.2射孔参数设计优化 (1)计算射孔表皮系数 p S 和产能比 R p 根据《石油工程综合设计》书中图3-1-10和图3-1-11得 36.8 t = 18.38min 2 V Q ==注注=2.1,t S =22,R p =0.34。 (2)计算1 S , 1 R p , dp S , d S a) PR1=-0.1+0.0008213PA+0.0093DEN+0.01994PD+0.00428PHA-0.00142 7+0.20232z /r K K -0.1147CZH+0.5592ZC-0.0000214PHA2 =0.59248 b) PR1= 1(/)/[(/)] E W E W Ln R R Ln R R S +,得1S =5.03018 c) 因为S1=Sdp+Sp,所以Sdp=S1-Sp=5.03018-2.1=2.93018 d) 因为St=Sdp+Sp+Sd,所以Sd=St-Sdp-Sp=22-2.93018-2.1=16.96982

采油工程课程设计

采油工程课程设计指导书 中国石油大学(北京) 石油天然气工程学院 2013.3.5

本次采油工程课程设计的主要内容是进行有杆抽油生产系统设计,通过设计计算,让学生了解有杆抽油生产系统的组成、设计原理及设计思路。 1.有杆泵抽油生产系统设计 1.1有杆抽油生产系统设计原理 有杆抽油系统包括油层,井筒流体、泵、油管、抽油杆、抽油机、电动机、地面出油管线直到油气分离器。有杆抽油系统设计就是选择合理的机,杆,泵,管以及相应的抽汲参数,目的是挖掘油井潜力,使生产压差合理,抽油设备工作安全、高效及达到较好的经济效益。 在生产过程中,井口回压h p 基本保持不变,可取为常数。它与出油管线的长度、分离器的入口压力有关,此处取MPa p h 0.1 。 抽油井井底流压为wf p 向上为多相管流,至泵下压力降至泵的沉没压力(或吸入口压力)n p ,抽油泵为增压设备,故泵出口压力增至z p ,称为泵的排出口压力.在向上,为抽油杆油管间的环空流动.至井口,压力降至井口回压h p 。 (1)设计内容 对刚转为有杆泵抽油的井和少量需调整抽油机机型的有杆抽油井可初选抽油机机型。对大部分有杆抽油油井。抽油机不变,为己知。对于某一抽油机型号,设计内容有: 泵径、冲程、冲次、泵深及相应的泵径、杆长,并求载荷、应力、扭矩、功率、产量等技术指标。 (2)需要数据 井:井深,套管直径,油层静压,油层温度 混合物:油、气、水比重,饱和压力 生产数据:含水率,套压,油压,生产气油比,原产量,原流压(或原动液面)。 (3)设计方法这里介绍给定配产时有杆抽油系统的设计方法。首先需要获得油层的IPR 曲线。若没有井底流压的测试值,可根据测试液面和套压计算得井底流压,从而计算出采液指数及IPR 曲线。 1)根据测试液面计算测试点流压 从井口到井底可分为三段。从井口到动液面为气柱段,若忽略气柱压力,则动液面

采油设备综述

采油设备综述 机械设计制造及其自动化11-02班 摘要:由于某些地质、技术或经济因素而未能有效的保持地层能力,以及在油田注水后期油井含水上升之后,为了保持油井产量而采用深井泵进行强采。因为我国的油田大多数处于长期开采后期的老油田,所以,深井泵采油法是一种主要的采油方法,采油设备的发展影响着我国的采油能力和产量。虽然随着技术的发展,适合于深井、大产量和较复杂条件的水力活塞泵及电动潜油泵的比例逐渐增加,但目前在机械采油中占绝对多数的还是游梁式深井泵装置。 关键词:采油方法、采油设备、机械采油、游梁式抽油机、抽油泵、有杆泵采油和无杆泵采油等。 在油田开发过程中,油田由于地层能量逐渐下降,到一定时期地层就不能油井保持自喷,有些油田则因为缘是底层能力低或油稠一开始就不能自喷。油井不能保持自喷时,或虽能自喷但产量过低时,就必须借助机械能量进行采油。目前,采用的机械采油方法有气举采油和深井泵采油,深井泵才有包括用游梁式深井泵装置的有杆泵采油及用水力活塞泵、电动潜油泵和射流泵等无杆泵采油。尽管国内外都广泛采用注水保持低层能量,然而,由于某些地质、技术或经济因素而未能有效的保持地层能力,以及在油田注水后期油井含水上升之后,为了保持油井产量而采用深井泵进行强采。因为我国的油田大多数处于长期开采后期的老油田,所以,深井泵采油法是一种主要的采油方法,采油设备的发展影响着我国的采油能力和产量。虽然随着技术的发展,适合于深井、大产量和较复杂条件的水力活塞泵及电动潜油泵的比例逐渐增加,但目前在机械采油中占绝对多数的还是游梁式深井泵装置。 国内外采油方法: 1自喷采油:利用地层自身能量将地层液体举升到地表面的方法。 2人工举升采油(机械采油):其形式包括很多种,如图1-1。 3二次采油:注水增加地层能量;透水。 4三次采油:聚合物调剖剂;生物降粘剂;钻水平井。 人类有着1600年左右的石油开采历史,直到1848年俄国工程师在巴库东北方的半岛开采了第一口现代油井后,人类才步入了现代化的石油开采时代。其中机械采油装备经过了一百多年的发展,逐渐形成了当今有杆采油装备和无杆采油装备两大体系。据统计,全世界约有100万口左右的在产油井,其中使用有杆采油装备的约占到90%以上,这些有杆采油装备的驱动装置采用游梁式抽油机的约占到80%以上。以下是对有杆采油设备和无杆采油设备原理结构的具体描述。(重点描述游梁式抽油机的特点。) 无杆采油:电动潜油泵、水力活塞泵、气举采油和潜油单螺杆泵等。

采油系统概述

(1)当前主要应用采油系统的特点是: ①有杆泵采油系统的特点 抽油机发展时间最长,技术比较成熟,工艺配套完善,设备可靠耐用,故障率低。其缺点是抽深和排量都不如水力活塞泵和射流泵,单独排量不如电动潜油泵,柱塞泵对于出砂、高气油比、结蜡或流体中含有腐蚀性物质的井都会降低容积效率和使用寿命。抽油杆在不同程度腐蚀环境中承受着大交变载荷运行,产生腐蚀、磨损和疲劳破坏,还与油管存在偏磨,故障率升高,而且整个系统抽油时还要做举升抽油杆的无用功,由于抽油杆重量较大,因而这种抽油方式的效率比较低下。 地面驱动螺杆泵采油系统优点是地面设备体积小,对砂、气不敏感,能适应高气油比、出砂井,对高粘度的井也能适应。缺点是抽油杆存在管杆偏磨问题和脱扣问题,而且抽油杆限制了系统在定向井、水平井等特殊井的应用。螺杆泵的定子容易损坏,增加了检泵费用。定子橡胶不适合在注入蒸汽井中应用。螺杆泵的加工和装配要求较高,泵的性能对液体的粘度变化比较敏感。 ②无杆泵采油系统的特点 电动潜油泵采油方式具有井下工作寿命长、排量大、井上装置容易、管理方便、经济效益明显等优点,缺点是潜油电泵下入深度受电机额定功率、套管尺寸和井底温度所限制,特别是大型高功率潜油电机的使用寿命会由于井孔没有足够的环形空间冷却而大大缩短。而且多级大功率潜油电泵比较昂贵,使得初期投资比较高,特别是电缆的费用较高。由于整套装置都安装在井下,一旦出现故障,需要起出全部管柱进行修理,导致作业费用增加和停产时间过长。井下高温容易使电缆出现故障,高温、腐蚀和磨损可能造成电机损害。高气油比会使举升效率降低,而且会因气锁使潜油电泵发生故障。 潜油螺杆泵采油的最大特点是螺杆泵和潜油电机都处于井下,因而不需要抽油杆传递动力,特别适合于深井、斜井和水平井采油作业,具有很多优势,但也存在一些不足。螺杆泵的缺陷与地面驱动螺杆泵系统相同,缩短了检泵周期。采用减速传动装置的潜油螺杆泵系统,减速装置也影响了系统的效率和可靠性。 水力活塞泵其优点是扬程范围较大,起下泵操作简单。可用于斜井、定向井和稠油井采油。缺点是地面泵站设备多、规模大,动力液计量误差未能完全解决。

采油工程新技术的发展趋势分析

采油工程新技术的发展趋势分析 发表时间:2019-08-06T16:16:37.907Z 来源:《防护工程》2019年9期作者:田永宏马建明 [导读] 文中对采油工程新技术的发展趋势进行了分析。 长庆油田分公司第七采油厂陕西西安 745708 摘要:目前,随着石油能源的不断枯竭,目前最紧要的任务是要在采油工程进行的过程中,发展采油技术,提升采油工作的工作效率。在采油工程进行的时候,我们为了有效的提升石油的开采效率以及回收效率,我们要对采油新技术进行研发和应用,尤其是在面对油藏含量较为复杂的时候,我们更是要利用先进的开采技术进行石油开采。文中对采油工程新技术的发展趋势进行了分析。 关键词:采油工程;新技术;发展趋势 1 采油工程技术措施应用的现状 油田开发进入后期,油井的产量逐年递减,注水开发的油田,随着注水时间的延续,越来越多的油井见水,严重的情况甚至被水淹,需要采取最佳的堵水技术措施,才能保证开采出更多的油流,降低油田油气集输处理的成本,影响到油田开采储量的开采程度,通过对油田实施精细的地质研究,重新认识油藏,解决剩余油的开采问题。将更多的薄差油层的油流开采出井,才能作为油井产能的补充,提高油田生产的经济性。油田开发后期不断完善油田的开发方案,结合储层的渗透性的差异,采取不同的注水开发的模式,对低渗透油藏实施强化注水,才能达到水驱的开发效率。而高渗透储层实施控制注水,避免注入水发生窜流的现象,而影响到注水油田开发的效果。 重新部署注采井网,改善油田注水开发的状态,钻探出更多的水平井筒,实施水平井开发的技术措施,将更多的剩余油流开采到地面上来。降低了钻探井筒的成本,一口水平井的钻探,能够将水平井段的油流全部开采出来,减少了打井的数量,相应地节约钻井的资金投入。 为了解决单井含水高,层间矛盾突出的问题,油田开发后期,实施稳油控水的技术措施,以堵水、调剖为基础的采油工程技术措施,被广泛应用于油田生产中。采取最佳的堵水技术措施,利用封隔器等机械设备进行堵水操作,降低了油井的含水率。应用选择性的化学堵水剂,对出水层位进行堵水,相应地提高了油井的产油量。及时调整注水井的注水剖面,对油井的产液剖面进行调节,提高油井的生产能力,使其满足油田开发对产量的要求。 2 采油工程中新技术的应用 2.1 信息技术在采油工程中的应用 信息技术对于采油工程的发现油层和勘测周围环境起到了很大的作用,使用信息技术可以更为准确的勘测出油层,可以精确地确定合理的油井位置,并且勘测出油藏的深度,这比传统的人工测试要精确的多,信息化技术的使用大大提高了油田开采的速度,同时提高了钻井成功率,提高了经济效益。同时信息化技术可以勘测油井周围地势样貌,对采用哪种钻井方式起到了很大的帮助,通过模拟地形和油藏,为油田开采提供了很大的便利。 2.2 生物技术在采油工程中的应用 生物技术主要分为两个方面,一是微生物勘测技术,二是微生物采油技术,其中微生物采油技术发展更加迅速,应用也比较广泛。微生物采油技术又称为细菌采油,是三次采油技术的一种。微生物采油技术通过繁衍微生物,微生物的活动来改变油的位置以及分布状态,它在含其他杂质或者快干涸油田也有着很强的生命力,且微生物采油成本低,而且过程简易,故被广泛应用。而微生物勘测技术同样是成本低,而且科学技术含量高,准确率高,勘测速度快,因此应用微生物勘测技术的公司也很多。 2.3 新材料在采油工程中的应用 在现实生活与工业生产中,新型材料应用于管道运输中,增加管道的韧性,防止管道开裂,尤其是在石油、天然气的管道运输过程中,对相应的管道进行防开裂处理。还有很多其他类似的应用,比如在金属和金刚石的连接处使用新型材料,可以提高其采集效率等。新型材料是很好的耐磨材料,它包含着高耐性的磨土层,金刚石复合片,还有很多韧性高的有关硬性质的合金等。新型材料还可以应用在材料的防腐上,比如把新型材料作为涂层,可以有效防止腐蚀,还有就是监测材料的腐蚀率等。 3 采油工程新技术的发展趋势 明确目前采油工程新技术措施的应用现状,采取最佳的科技投入,不断提升采油工程技术的发展态势,增加更多的技术含量,促进油田生产的健康发展,满足数字化油田发展的需要。采油工程新技术中的纳米材料和新型合成材料的应用,降低了油田开发的成本,提高了油田采油生产的效益。利用纳米材料进行管道的涂层技术,提高管道的耐腐蚀性能,延长油气输送管道的使用寿命,相应地降低油田生产的成本。也可以利用纳米膜技术,实施油气水三相的彻底分离,提高分离处理的效果,达到油田生产的产能指标。对纳米技术的研究有待于进一步提高,充分发挥纳米材料的优势,解决油田生产中的技术难点问题。 开发和研究新型的材料,如防腐蚀的材质的研究和应用,解决油田生产中的严重腐蚀的问题。耐磨蚀材料的试验和应用,提高运动部件的使用寿命,保证动力的快速传递,提高油田生产的效率。结合新型的阴极保护措施,延长管道的使用寿命,将油气输送管道作为阴极保护起来,才能降低管道的腐蚀穿孔的几率,提高管道的承压能力。 加大科研力度,研究采油工程新技术措施的发展趋势,对微生物采油技术措施进行进一步的研究,通过室内试验的方式,对微生物菌群进行优化,使其适应不同油藏区块的驱替作用的要求,对微生物驱油的效果进行试验研究,评价微生物采油的效果。避免由于微生物菌群选择不当,而影响到地层流体的配伍性,给油田储层带来二次的污染,增加挖潜增产的工作量,而导致油田生产成本的增加。 研究更多的驱替能量,借助于二氧化碳泡沫驱油技术措施的应用,将井下油层中的更多的剩余油驱替出井,扩大剩余油的开发效果。利用螺杆泵采油的技术措施,解决抽油机采油过程中的抽油泵泵效下降的技术难点问题。对采油工程新技术进行研究,对振动采油技术进行优选,选择最佳的振动源,对井下的震击器进行革新改造,减少电能的消耗,进而降低油田生产的成本,对水力冲击波的产生过程进行优化,应用先进的震击器,降低井下油层的油流阻力,最大限度地提高油井的产量,满足油田开发后期的需要。 优选最佳的堵水技术措施,对高含水的油井的生产状态进行实时监测管理,结合自动化的控制技术措施,优化稳油控水的采油工程新技术措施,控制油井的含水率,提高单井的产油量,才能满足油田开发对产量的基本要求。对油田实施挖潜增产的技术措施,并选择水力

石油工程采油工程

石油工程采油工程

采油工程课程设计 姓名:李健星 班级: 1班 学号: 915463 中国石油大学(北京) 二O一二年四月

目录 1、设计基础数据: (1) 2、具体设计及计算步骤 (2) (1)油井流入动态计算 (2) (2)流体物性参数计算方法 (4) (3)井筒温度场的计算 (6) (4)井筒多相流的计算 (7) (5)悬点载荷和抽油杆柱设计计算 (16) (6)抽油机校核 (21) (7) 泵效计算 (21) (8) 举升效率计算 (24) 3、设计计算总结果 (26)

有杆抽油系统包括油层,井筒流体、油管、抽油杆、泵、抽油机、电动机、地面出油管线直到油气分离器。有杆抽油系统设计就是选择合理的机,杆,泵,管以及相应的抽汲参数,目的是挖掘油井潜力,使生产压力差合理,抽油设备工作安全、高效及达到较好的经济效益。 本次采油工程课程设计的主要内容是进行有杆抽油生产系统设计,通过设计计算,让学生了解有杆抽油生产系统的组成、设计原理及设计思路。 1、设计基础数据: 井深:2000+学号末两位63×10m=2630m 套管内径:0.124m 油层静压:给定地层压力系数为 1.2MPa/100m,即油层静压为井深2630m/100m×1.2MPa=31.56MPa 油层温度:90℃ 恒温层温度:16℃ 地面脱气油粘度:30mPa.s 油相对密度:0.84 气相对密度:0.76 水相对密度:1.0 油饱和压力:10MPa 含水率:0.4 套压:0.5MPa

油压:1 MPa 生产气油比:50m3/m3 原产液量(测试点):30t/d 原井底流压(测试点):12MPa(根据测试液面计算得到) 抽油机型号:CYJ10353HB 配产量:50t/d 泵径:44mm(如果产量低泵径可改为56mm,70mm) 冲程:3m 冲次:6rpm 沉没压力:3MPa 电机额定功率:37kw 2、具体设计及计算步骤 (1)油井流入动态计算 油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力,从单井来讲,IPR曲线表示了油层工作特性。因而,他既是确定油井合理工作方式的依据,也是分析油井动态的基础。本次设计油井流入动态计算采用Petrobras方法。Petrobras方法计算综合IPR曲线的实质是按含水率取纯油IPR曲线和水IPR曲线的加权平均值。当已知测试点计算采液指数时,是按产量加权平均;当预测产量或流压加权求平均值。

各种机械采油方式比较

各种机械采油方式的比较 一、有杆泵 1、有杆泵抽油系统的主要优点: (1)多数油田和操作人员都熟悉,有杆泵的安装和操作较熟练; (2)排量范围较好,各种配件齐全,服务及维修方便。 2、有杆泵抽油系统的缺点: (1)各种杆式泵的排量都受油管尺寸和泵挂深度的限制,若油井油气比高、出砂、结蜡或流体中含硫化物或其他腐蚀性物质,深井泵容积效率要降低; (2)抽油杆柱在油管中的磨损将损坏油管,增加了维修作业费用。 二、电潜泵 电潜泵是将电动机和泵一起下入油井内液面以下进行抽油的井下采油设备。地面电源通过变压器、控制屏和潜油电缆将电能输送给井下潜油电机,使电机带动多级离心泵旋转,将电能转换为机械能,把油井中的井液举升到地面。 1、电潜泵举升方式的主要优点: (1) 排量大;(2) 操作简单,管理方便;(3) 能够较好地运用于斜井、水平井以及海上采油;(4) 在防蜡方面有一定的作用。 2、电潜泵举升方式的主要缺点: (1) 下入深度受电机功率、油套管直径、井筒高温等的限制;(2) 比较昂贵,初期投资高;(3) 作业费用高和停产时间过长;(4) 电机、电缆易出现故障; (5) 日常维护要求高。 3、影响电泵工作特性的因素分析 (1)含气液体对电泵工作特性的影响 扬程、排量及效率下降;游离气体过多时,叶轮流道的大部分空间被气体占据,将会使离心泵停止排液。 (2)液体粘度对电泵工作特性的影响 液体粘度大使得泵的举升功率增加;同时泵的扬程、排量和效率也有所下降;油水乳状液含水率(粘度)对电泵的影响。

(3)温度对电泵工作特性的影响 流体温度对电机和电缆的绝缘程度有较大的影响;流体温度高需要选择耐温等级高的电机和电缆,增加采油成本。 (4)砂、蜡等对电泵工作特性的影响 电泵生产要求含砂小于0.05%;含砂后,泵叶轮磨损,排量下降;蜡沉积堵塞叶导轮流道,井液阻力增加。泵排量下降;电机负荷增加,严重时过载停机。 (5)其它如沉没度、井下压力等与气体影响有关。 三、螺杆泵 1、螺杆泵采油系统的优越性: (1)节省一次投资,螺杆泵与电动潜油泵、水里活塞泵和油梁式(链条式)抽油机相比,由于其结构简单,所以价格低; (2)地面装置结构简单,安装方便; (3)泵效高、节能、管理费用低; (4)适应粘度范围广,可以举升稠油; (5)使用高含砂井; (6)适应高含气井; (7)适用于海上油田丛式井组和水平井,螺杆泵可下在斜直井段,而且设备占地面积小,因此适合海上油田丛式井组甚至水平井的采油井使用; (8)允许井口油较高回压; (9)当发动机或电动机停转时,在某些情况下,砂沉积在泵的上部。与有杆泵比较,螺杆泵更有可能恢复工作。 2、螺杆泵采油的缺点 (1)定子有橡胶制造,最容易损坏,若定子寿命短,则检泵次数多,每次检泵,必须起下管柱,增加了检泵费用; (2)泵需要流体润滑,如果供液不足造成抽空,泵过热将会引起定子弹性体老化,甚至烧毁; (3)定子的橡胶不耐高温,不适合在注蒸汽井中应用; (4)虽然它操作简单,若操作人员不经适当操作训练,操作不正确,也会造成泵损坏;

调节、保安、油系统概述

调节、保安、油系统概述 (仅供参考) 一、供油系统 机组的供油系统由四台油泵组成,它们是: 由汽机主轴直接驱动的离心式主油泵; 由交流电动机驱动的高压交流油泵; 由交流电动机驱动的交流润滑油泵; 由直流电动机驱动的直流润滑油泵。 机组正常运行时,仅由汽机主轴直接带动的离心式主油泵提供油源(额定转速3000r/min 时,油泵压增1.57,流量为3.0m3/min),供润滑系统和调节保安系统各部套用油。供油分配情况汇总如下: 1. 向两级并联的注油器提供压力油,注油器Ⅰ出口油压为0.10-0.15MPa,向主油泵进口供油,而注油器Ⅱ的出口油压为0.22MPa,经冷油器,滤油器后供给润滑油系统。在Ⅱ注油器出口装一逆止阀,以防止润滑油泵启动后油返回Ⅱ注油器入口。 2为了机组在盘车时减少转子的转动力矩和避免轴瓦磨损,使盘车时转子稳定转动,在润滑油系统上分出一支路作为顶轴油系统,顶轴油泵两台(一备一用)。 3 进入危急遮断及复位装置,产生安全油以及就地手动复位时产生复位油,控制保安部套复位。 4 向复位电磁阀提供压力油,电磁阀动作时,产生复位油,控制保安部套复位。 5 向喷油试验装置提供压力油,喷油试验时先产生试验注油使危急遮断器动作,再产生复位油使危急遮断油门复位。 6 作为三个调门油动机的动力油,控制油缸活塞移动。 7 作为油源,向主汽门提供压力油,产生控制主汽门油动机的控制油压。 8 作为油源,向DDV伺服控制阀块提供压力油,产生控制高压油动机和抽汽油动机的控制油压。 9 作为油源,向AST电磁阀和OPC电磁阀提供压力油。 机组启动时应先开低压润滑交流油泵,以便在低压的情况下驱除油管道及各部件中的空气。然后再开启高压交流油泵,进行调节保安系统的试验调整和机组的启动。在汽轮机起动过程中,由高压交流电动油泵供给调节保安系统和通过注油器供给各轴承润滑用油。为了防止压力油经主油泵泄走,在主油泵出口装有逆止阀。同时还装有主油泵启动排油阀,以使主

石油采油工程质量技术的问题与对策分析

石油采油工程质量技术的问题与对策分析 发表时间:2020-03-11T16:41:18.907Z 来源:《建设者》2019年21期作者:贾龙江[导读] 石油被誉为能源中的工业血液,随着国家日益蓬勃发展,对石油的需求量也在不断增大,因此,石油开采工作进入了瓶颈状态。 胜利油田安全环保质量管理部山东省东营市 257000摘要:石油被誉为能源中的工业血液,随着国家日益蓬勃发展,对石油的需求量也在不断增大,因此,石油开采工作进入了瓶颈状态。在石油开采过程中技术是开采工作的核心,面对逐渐走向枯竭的石油资源,如何进行有计划,高产量的开采已成为石油行业首要问题,本文针对在石油采油工程中质量技术存在的各种问题进行分析,以及对其对策,从不同层面进行探讨与研究,以便提高石油 产量与开采效率,促进国民经济增长。 关键词:石油采油工程;质量技术;问题;对策 在采油工程中,越来越注重效益的最大化、资源的节约化以及开采的环保性。为此,需要积极应用一些先进的采油工程质量技术。石油采油工程质量技术在应用中仍存在着一些问题,只有先解决了现存问题,才能够充分发挥出其效用。以下就结合实际来谈谈石油采油工程质量技术的问题与对策,仅作抛砖引玉之用。 1 石油工程采油技术的分类 最近几年,很多国家在物理、化学和生物等领域都通过各种方法应用了采油技术。石油的采收效率因此而增加。国际上把采油技术根据应用时间和技术上的原理分为三种采油技术,主要包括有二次采油、一次采油以及三次采油。一次开采是指运用天然气能量对油田进行开采,这样的采油方式主要包括溶解气驱、气顶驱和弹性水驱三种方式。二次采油指的是在一次采油的影响下,会对地层压力产生一定的影响,运用平衡油井注水来减弱地下能量。二次采油在注水的时候,通过化学和物理手段使流体的性质和状态发生了一定程度的转变,进而提升注水的影响范围,使采油效率逐渐提升。 2 石油采油工程质量技术存在的问题 2.1 石油开采中水驱开发问题 水驱开发是石油开采过程中最为重要的环节之一,在水驱发发进行作业时,由于难度和出现问题的机率过高,因此,在石油开采前,一定做好水驱开发工作,为石油开采奠定良好油井开采基础。在采油作业中,应用的限流完井技术有限并且水平线测量精准度较低,注水效率无效情况经常出现,这些问题都会影响采油作业中的水驱开发。这对石油采油工程良好发展造成影响,降低了采油作业效率,也对采油环境造成约束和限制。如果在开采过程中,水驱开发效率降低,就无法完成油井水循环工作,整体工作运行效率就会发生骤减,同时会加大开发作业成本和作业时间,加大石油开采难度。 2.2 三次采油问题 三次采油问题也是在石油采油工程中常见的一类问题,其一般主要表现在两点:①油井中的油层集合物质具有一些特殊性质,这些性质导致其时间一长容易形成沉淀效应,从而引起原油分层现象,而随着时间的推移,原油分层现象也会变得愈发严重,直到油层集合物由原本的附着二类油层变为附着三类油层,同时伴随油层间衍生物数量不断增多,油层逐渐变薄,甚至改变原油原有性质,综合来看大大降低了采油效率及油井的可采油总量;②通常情况下,三次采油需要运用到强碱三元复合方法,目的是为了降低采油难度,但强碱三元复合方法本身的缺陷也较明显,其会使油井内部逐渐形成不易清除的结垢,而这些结垢时日一久会影响到采油工作的有效实施,同时还会对采油设备造成一定的损坏。 2.3 外围油田高效经济开采问题 外围油田的高效经济开采,是石油采油工程中的重要环节之一,但现阶段,还存在诸多问题。如:有的油田产量逐渐降低,且降低幅度日益增大;采油技术从一定程度上来看规范性不够,存在小油层压开率、单井采油率普遍较低;此外,目前尚未探明油田储存量、动用量,低渗透油田的开采难度较大。 3 针对石油采油工程质量技术存在问题的对策 3.1 石油采油工程中水驱开发问题的对策 通过细致的分析,对石油采油工程中水驱开发存在的问题,可以利用新技术手段来处理其中的缺点与不足。在测调工艺水平低的问题上,要不断更新高新技术,并且要避免为了保证测试的准确性,也要避免因人为因素导致的偏差。积极开发新的厚油层采油技术来解决无效注水效率低的问题,为方便油水井分层注采配合使用技术,应将采油工艺环节详细划分,进行单项采油技术优化整合,也确保了水井中 获取流量值与单层压力值得准确性。除此之外,在水驱开发问题上,采油成本问题上可通过研发低成本的调配剂,来控制成本。最后在限流完井对采油环境存在限制方面,可以使用细分控制压裂采油技术,确保进行新油井地质环境的细致分析,控制采油技术,进而达到提高油层的压开率与单井产液效率的目的。 3.2 三次采油问题的对策 结合上述中的三次采油问题,笔者建议石油采油工程单位可采取以下措施,从根本上解决问题:一是适当选用“分层注入”法,利用集合物驱单管分层分质分压注入技术,优化工作流程,有效缓解聚驱二类与三类油层之间的矛盾;二是现阶段,聚合物驱单管多层分质分压注入技术在我国各大石油采油工程施工中均应用较为广泛,且“三元复合驱分层注入技术”也愈加完善,此时采油单位可有效结合“电动测调工艺技术”,以提高聚驱与三元驱注技术的调配效率。同时,对于石油采油工程中存在的化学防垢问题和物理防垢问题,在化学防垢方面,相关人员需先了解和明确油井出现结垢的原因,通过对其的科学分析研究,选用具有针对性的防垢剂,使其产生相应的化学反应以除垢;而在物理防垢方面,采油单位可有目的性地开发并使用新型的螺杆泵防垢举升技术,降低对高检泵的损害,以延长检泵周期,从而提升设备的利用率,进一步确保石油采油工程的顺利开展。 3.3 外围油田经济采油问题的解决对策

相关主题
文本预览
相关文档 最新文档