当前位置:文档之家› 随钻震击器及减震器失效分析与解决方案

随钻震击器及减震器失效分析与解决方案

随钻震击器及减震器失效分析与解决方案
随钻震击器及减震器失效分析与解决方案

钻井震击器技术浅谈

钻井震击器技术浅谈集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

钻井震击器技术浅谈钻井作业中,由于地质构造复杂(如井壁坍塌、裸眼中地层的塑性流动和挤压)、技术措施不当(如停泵时间过长、钻头泥包等),常常发生钻具遇阻卡钻,震击器是解除卡钻事故的有效工具之一。目前国内应用的震击器,主要来自Weatherford、Baker、Bowen、NationalOilwell、Rocan、Cougar、贵州高峰机械厂、北京石油机械厂等厂家的产品。 当需要震击器上击作业时,在地面施加足够的预拉力,工具内锁紧机构解锁,释放钻柱储能,震击器冲锤撞击砧座,储存在钻柱内的拉伸应变能迅速转变成动能,并以应力波的形式传递到卡点,使卡点处产生一个远远超过预拉力的张力,使受卡钻柱向上滑移。经过多次震击,受卡钻柱脱离卡点区域。震击器下击作业与此类似,不再赘述。 震击器的使用类型主要有随钻震击器、打捞震击器和地面震击器。随钻震击器,要设计在钻柱组合中,如果钻进或者起下钻过程中遇卡,可以随时震击解卡。打捞震击器,只是在需要解卡时才上井作业,不可

以长时间随钻工作。地面震击器,只是在井口使用,其对卡点的震动效果是向下震击,现场使用比较方便。 震击器的结构类型主要有机械式、液压式、机液式3种。1.机械式震击器,利用机械摩擦原理,锁紧机构采用了一组棱带式的卡瓦,卡瓦副的释放由弹性套在压力作用下的变形来控制,震击力不受井内温度影响。机械式震击器可设计成震击力可调与不可调两种。可调震击器其震击力在井口调节,不可调震击器其震击力在产品组装时设定,现场不能调节,但整机长度短,工作安全可靠。机械式震击器对金属材料及其热处理、机械加工精度等要求较高。2.液压式震击器,利用液压油在细小流道内流动时的阻尼作用作为锁紧机构,利用流道突然变化所引起的释放,在震击器内产生打击,从而在钻柱内形成震动。液压式震击器由于其锁紧机构工作原理的限制,只能在单一方向上产生震击,一般为向上震击。由于具有优越于机械式震击器的长延时功能,其震击力大小可以靠司钻的操作任意调节。但由于液压介质、密封材料和密封结构等容易受磨损、井温等因素影响,产品的寿命、适应性和可靠性均不稳定。显然,这种震击器对密封结构的设计和密封材料的选用以及对零件加工精度的要求都十分严格。3.机械液压组合的震击器,集中了上述两种震击器原理的优点,即使液压延时震击作用失效,机械震击仍可继续使用,技术性能得到很大提高,符合未来震击器产品发展方向。

超级震击器

二、CSJ 型超级震击器 一、概述 CSJ Ⅱ型超级震击器是一种上击震击解卡工具,该工具应用了液压和机械原理,结构紧凑,性能稳定便于调节,使用方便。 二、型号表示方法 1、现有型号 规格系列与性能参数 三、结构及工作原理 1、结构:见图l 。 2、工作原理 CSJ Ⅱ型超级震击器是通过锥体活塞在液缸内的运动压缩液体和钻具被提拉贮能来实现上击动作。安装在超级震击器上方的钻具被提拉时,超级震击器的锥体活塞压缩液体,由

于锥体活塞与密封体之间的阻尼作用,为钻具贮能提供了时间。当锥体活塞运动到释放腔时,随着高压液压油瞬时卸荷,钻具突然收缩,产生向上的动载荷。为被卡的钻具提供巨大的打击力。 四、使用、操作 1、CSJⅡ型超级震击器除用于打捞作业外还用于取芯作业。 (1)打捞作业 当用于打捞操作时,CSJⅡ型超级震击器应直接地安装在接近卡点的钻铤柱的下方。为了获得更大的动载荷,在CSJⅡ型超级震击器的下井作业时,可与加速器配套使用。 注意:加速器安装在超级震击器上方第四根钻铤的范围之内。 (2)取芯作业 CSJⅡ型超级震击器通常应安装在取芯工具的上方。这时只要给钻柱一个中等的拉力,就能够提供一次足够切断岩芯的比较轻的冲击力,比直接拉断岩芯,有利于取芯作业。 井下使用时钻具结构建议如下: 打捞作业钻具结构: 打捞工具+安全接头+超级震击器+钻铤+加速器+钻柱上 取芯作业钻具结构: 取芯筒+安全接头+超级震击器+钻铤+钻柱上 2、下井前的准备 (1)震击器下井前应按跟踪卡检查核对,准确无误后,方可下井。 (2)检查油堵及调节销钉是否上紧。 (3)在安装有CSJⅡ型超级震击器的钻具组合中,超级震击器的上方应装有100米左右的钻铤,尤其在浅井中作业更为重要。 3、使用方法 (1)当确认井下卡钻事故的性质需要向上震击时,才能使用震击器。这时应从卡点倒开并提起钻具。然后按上述的钻具组合,连接好打捞钻具,进行打捞作业。当打捞工具抓紧井下落鱼之后,就可以进行震击作业。 (2)下放钻柱使压在超级震击器心轴上的力约3~4吨,使超级震击器关闭。 (3)提钻震击,操作者以一定的速度和拉力上提钻具,使钻具产生足够的弹性伸长,然后刹住刹把,等待震击。由于井下情况各异,产生震击的时间也从几秒至几分钟不等。产生震击之后,若需进行第二次震击,应下放钻具关闭震击器,再向上提拉进行第二次震击并可以进行反复多次的震击。 4、操作中注意事项 (1)井下震击应从较低吨位开始,逐渐加大,直到解卡,但不允许大于附表1所规定的井下最大提拉力。 (2)若第二次震击不成,应继续下放钻柱,使超级震击器完全关闭,再进行上提,等待震击。 (3)提高震击力的方法 震击力不仅仅与上提拉力有关,而且与上提钻具的速度、井下钻具的重量、井身质量等因素有关,因此上提速度越快,井下钻具重量足够,井身质量越好,所产生的震击力也就越大。 (4)超级震击器提出井眼时通常是处于打开位置,完成钻台维修之后,应当关闭震击器。一但关闭就应当从吊卡上取下,不能再在它下方悬挂重物,因此时超级震击器可以被拉开而酿成损坏钻台设备,甚至砸伤工作人员事故。 五、现场维护保养

液压减震器结构分析(图)

液压减震器主要有弹簧和阻尼器两个部分组成,弹簧的作用主要是支撑车身重量,而阻尼器则是起到减少震动的作用。 “阻尼”在汉语词典中的解释为:“物体在运动过程中受各种阻力的影响,能量逐渐衰减而运动减弱的现象”。阻尼器就是人造的物体运动衰减工具。 为了防止物体突然受到的冲击,阻尼在我们现实生活中有着广泛的应用,比如汽车的减震系统,还有弹簧门被打开后能缓缓地关闭等等。 阻尼器的种类很多,有空气阻尼器、电磁阻尼器、液压阻尼器等等。我们凯越车上使用的是液压阻尼器。 大家知道,弹簧在受到外力冲击后会立即缩短,在外力消失后又会立即恢复原状,这样就会使车身发生跳动,如果没有阻尼,车轮压到一块小石头或者一个小坑时,车身会跳起来,令人感觉很不舒服。有了阻尼器,弹簧的压缩和伸展就会变得缓慢,瞬间的多次弹跳合并为一次比较平缓的弹跳,一次大的弹跳减弱为一次小的弹跳,从而起到减震的作用。

为了了解减震器的工作原理,我们把防尘罩和弹簧去掉,直接看到阻尼器(见图一)。 液压阻尼器利用液体在小孔中流过时所产生的阻力来达到减缓冲击的效果。 红圈中是活塞,它把油缸分为了上下两个部分。当弹簧被压缩,活塞向下运行,活塞下部的空间变小,油液被挤压后向上部流动;反之,油液向下部流动。 不管油液向上还是向下流动,都要通过活塞上的阀孔。油液通过阀孔时遇到阻力,使活塞运行变缓,冲击的力量有一部分被油液吸收减缓了。

。 下面是压缩行程示意图,表示减震器受力缩短的过程。 图二为活塞向下运行,流通阀开启,油缸下部的油液受到压力通过流通阀向油缸上部流动。 图三为活塞向下运行,压力达到一定程度时,压缩阀开启,油缸下部的油液通过压缩阀流向油缸外部储存空间。 图中红色大箭头表示活塞运动方向,红色小箭头表示油液流动方向。

汽车发动机振动噪声测试系统方案

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10 C ~50C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

随钻震击器使用说明书

文字说明 1 概述 2 结构与工作原理 3 使用与操作 4 维修 5 地面实验 附图 图一 BZ随钻震击器外形图及主要尺寸图二运行位置示意图 图三新装间隔衬套修理尺寸 图四调节震击力方向示意图 产品总图 随钻震击器

使用说明书 1.概述 机械式随钻震击器是全机械式随钻震击、解卡工具。它集上、下震击作用于一体,可接触钻进作业中遇阻、遇卡等钻井事故。它在不需要震击时,是钻柱的一部分,需震击时,随时可作业,因而提高了工作效率。 2.结构与工作原理。 结构 外形及主要尺寸如图一。 内部结构如本说明书后附产品总图(图中未画出曲屈接头)。 本震击器是同类产品中结构最新式、最简化、操作最方便的。上击工作原理 图一所示为装配调试合格的位置,即准备出发(解锁)状态。图二为局部放大图。上图为准备击发位置。运行轴与运行套的内齿对应啮合,运行套外部齿与摩擦衬套内部齿是齿顶对齿顶的摩擦状态。当钻柱上提,通过上接头1,上控制套3,中部套筒28,下控制套37,下调节套29,压缩弹簧管25,26,27使运行套21相对摩擦衬套下移。当运行套的外齿齿顶与摩擦衬套的齿间相对应时,运行衬套在运行轴的作用下涨开,运行轴的齿从运行套内齿滑出,如图二中图。此时钻柱储备的能量释放,向上震击。下放钻柱,整个工具又恢复图二上部的状态,即准备击发状态。重复上述操作,就可使钻具解卡。下击工作原理

在运行套的上部,还有一组三件与26,27,28完全相同的弹簧管。当下压钻柱时,通过上接头1,上控制套3,上调节套18,压缩上面一组弹簧管。运行套相对于摩擦衬套上行,钻柱储能。当达到预定的吨位,运行套的齿顶与摩擦衬套的顶间相对应,运行衬套涨开,运行轴齿从运行套内的齿中滑出,产生下击,与上击方向相反如图二下图所示。 3.使用与操作 下井前的准备 震击器下井前应该经台架试验合格,见本说明书第5节。 下井前震击器处于准备击发位置。 钻具配置应使震击器处于钻柱系列中平衡点以上的张力部分,并承受最少5吨的张力。BZ型震击器最好是在张力状态下工作,但也可在压力状态下工作,可把震击器接入张力压力平衡点以下,承受5吨的压力。 为增加钻具的挠性,减少工具的弯曲应力,震击器下部必须连接屈曲接头,屈曲接头的位置如图一所示。 操作方法 下钻时应先开泵循环,再缓慢下放,切忌直通井底造成“人为下击”。若在下钻过程中遇卡,可启动震击器实施上击解卡。 在正常钻井过程中,震击器应处于锁紧状态,在受拉力状态下工作,但当下部钻柱重量不大于震击器上击力的一半时可在准备击发位置下工作。

5-“哈里伯顿”随钻震击器现场操作指导卡

“哈里伯顿”随钻震击器现场操作指导卡(2014)1前期检查 使用人员对随钻震击器的合格证、标识、外观、二端连接螺纹进行检查,全部合格后方可入井使用。2钻柱中连接位置 2.1随钻震击器在钻柱组合中的位置执行钻井设计的规定,推荐如下:钻头+扶正器+钻铤若干(外径不小于随钻震击器外径)+哈里伯顿随钻震击器(芯轴端向上)+挠性接头+钻铤2~3根+加重钻杆+钻杆。图示 为连接示意图。 2.2根据需要可考虑安放在钻柱中和点附近;防压差卡钻可安放在相对靠上的位置;防机械卡钻可安放在相对靠下的位置。 3操作中注意事项 3.1 3.2 上下钻台,严防碰撞,按相应的钻铤上扣扭矩将随钻震击器及挠性接头上紧。 3.3下钻时,推荐先开泵循环,缓慢下放,防止下放遇阻或直通井底造成“人为下击”。 3.4 禁止:夹持芯轴镀光部分,造成震击器报废;拆卸外筒连接螺纹,造成漏油及损坏。 4随钻震击器现场保养及维护 本体胀大、超标磨损、坑槽,密封部位和密封件有无损坏失效,油堵、 两端配戴护丝。 5工作原理 随钻震击器的工作机构:蝶簧—卡瓦—卡瓦芯轴、液缸—节流阀。 上击工作过程:回位(锁紧状态)—上拉—解锁—延时—上击。 下击工作过程:回位(锁紧状态)—下压—解锁—下击。 重复上述过程,可使随钻震击器循环工作。 6上下击操作 6.1 随钻震击器回位 6.1.1 向下回位,下放钻柱至指重表读数小于随钻震击器以上钻柱悬重3~5吨,使随钻震击器回位。6.1.2 向上回位,提升钻柱至指重表读数大于随钻震击器上部钻柱重量3~5吨,使随钻震击器回位。 6.2 上击作业 6.2.1 校准指重表,使随钻震击器回位,操作参照6.1条。 6.2.2上拉钻柱,当随钻震击器受到的拉力大于设定的上击解锁吨位时(简称上击吨位),震击器解锁,液压延时,一般经过30~60秒产生上击,延时时间长短与震击器受的拉力成反比。 上击时,指重表读数简单的计算方法是钻柱卡点上部的钻柱悬重加上随钻震击器设定的上击解锁吨位(简称上击吨位),但实际上应考虑到井壁摩擦阻力、钻井液阻力、开泵效应、指重表误差等的影响。 开泵力(等于泵压×随钻震击器开泵面积),泵压越高开泵力越大,相对于停泵打捞,随钻震击器上击所需的上拉力减少,下击所需的下压力增大。 6.3 下击作业 6.3.1 校准指重表,使随钻震击器回位,操作参照6.1条。 6.3.2 下放钻柱,当随钻震击器受到的压力大于设定的震击器下击解锁吨位时(简称下击吨位),震击器将产生下击。挠性接头

随钻震击器使用说明书

目录 文字说明 1 概述 2 结构与工作原理 3 使用与操作 4 维修 5 地面实验 附图 图一BZ随钻震击器外形图及主要尺寸图二运行位置示意图 图三新装间隔衬套修理尺寸 图四调节震击力方向示意图 产品总图

随钻震击器 使用说明书 1.概述 机械式随钻震击器是全机械式随钻震击、解卡工具。它集上、下震击作用于一体,可接触钻进作业中遇阻、遇卡等钻井事故。它在不需要震击时,是钻柱的一部分,需震击时,随时可作业,因而提高了工作效率。 2.结构与工作原理。 2.1 结构 外形及主要尺寸如图一。 部结构如本说明书后附产品总图(图中未画出曲屈接头)。 本震击器是同类产品中结构最新式、最简化、操作最方便的。 2.2 上击工作原理 图一所示为装配调试合格的位置,即准备出发(解锁)状态。图二为局部放大图。上图为准备击发位置。运行轴与运行套的齿对应啮合,运行套外部齿与摩擦衬套部齿是齿顶对齿顶的摩擦状态。当钻柱上提,通过上接头1,上控制套3,中部套筒28,下控制套37,下调节套29,压缩弹簧管25,26,27使运行套21相对摩擦衬套下移。当运行套的外齿齿顶与摩擦衬套的齿间相对应时,运行衬套在运行轴的作用下涨开,运行轴的齿从运行套齿滑出,如图二中图。此时钻柱储备的能量释放,向上震击。下放钻柱,整个工具又恢复图二上部的状态,即准备击发状态。重复上述操作,就可使钻具解卡。

2.3 下击工作原理 在运行套的上部,还有一组三件与26,27,28完全相同的弹簧管。当下压钻柱时,通过上接头1,上控制套3,上调节套18,压缩上面一组弹簧管。运行套相对于摩擦衬套上行,钻柱储能。当达到预定的吨位,运行套的齿顶与摩擦衬套的顶间相对应,运行衬套涨开,运行轴齿从运行套的齿中滑出,产生下击,与上击方向相反如图二下图所示。 3.使用与操作 3.1 下井前的准备 3.1.1震击器下井前应该经台架试验合格,见本说明书第5节。 3.1.2下井前震击器处于准备击发位置。 3.1.3钻具配置应使震击器处于钻柱系列中平衡点以上的力部分,并承受最少5吨的力。BZ型震击器最好是在力状态下工作,但也可在压力状态下工作,可把震击器接入力压力平衡点以下,承受5吨的压力。 3.1.4为增加钻具的挠性,减少工具的弯曲应力,震击器下部必须连接屈曲接头,屈曲接头的位置如图一所示。 3.2 操作方法 3.2.1 下钻时应先开泵循环,再缓慢下放,切忌直通井底造成“人为下击”。若在下钻过程中遇卡,可启动震击器实施上击解卡。 3.2.2 在正常钻井过程中,震击器应处于锁紧状态,在受拉力状态下工作,但当下部钻柱重量不大于震击器上击力的一半时可在准备击发

汽车悬架减震器活塞阀系分析

汽车悬架减振器活塞阀系分析 一、概述 汽车悬架减振器是非常重要的悬架部件。随着客户对汽车性能要求的提高,特别是乘坐舒适性的要求,而减振器对舒适性的影响是比较大的方面。对舒适性要求的提高也是对减振器性能要求的提高。所以,减振器除需要提供稳定准确的阻尼力值,还要有足够的寿命做保证,同时也要避免异常噪音的产生。只有这几个主要方面达到要求,才能实现与悬架的合理匹配与满足舒适性的要求。当前以充气式液压减振器作为市场的主流,本文所述也是充气式液压减振器的最常用的结构。 影响减振器性能的因素是多方面的,这里主要分析常用的三种活塞阀系结构的一些特点,并提出制造过程中的一些问题和解决办法。 活塞阀系是在悬架弹簧复原时的减振器产生阻尼力的最主要部件。根据不同的簧载质量,弹簧复原时必须给予不同的、但必须合适的阻尼匹配,才能达到乘坐舒适性和操作稳定性。减振器的拉伸(复原)阻力与弹簧的复原力是反向的。而减振器压缩阻力与弹簧压力是同向的,有抵抗压缩变形的作用。实际计算阻力值首先是确定活塞的拉伸(复原)阻力。 减振器是大批量生产的产品,装配一次性合格率是生产效率和阻力值稳定的重要指标,特别是大批量生产方式的制造工艺。活塞阀系结构的设计是否合理也是保证高装配合格率的重要保证。所以对结构的分析研究,并明确每种结构的特点和组成零部件的作用,对减振器与汽车悬架的良好匹配性能和制造装配工艺是非常有意义的。只有保证减振器准确的内特性,才能实现减振器所需要的理想的外特性。 减振器活塞阀系的种类较多,每种结构都有其优缺点,随着使用和制造中发现的优缺点,有些结构经过改进,已成为市场选择的主流,得到大批量的使用,有些结构已逐步淘汰。 二、三种常用的活塞阀系结构分析 (一)纯阀片式 图一是常用的一种纯阀片结构活塞装配图。a为活塞部件装配图,b图为拉伸阀局部放大图。 流通阀垫圈节流片 流通阀片 活塞 活塞环

随钻震击器 扶正器

JSZ型机械式随钻震击器 JSZ型是目前长度较短的上、下震击作用为一体的机械式随钻震击器。它减小了井下挠曲交变应力的危害,在使用中更为安全可靠,在海洋钻井和定向钻井中更显优势。 Model JSZ Mechanical Drilling Jar Model JSZ Mechanical Drilling Jar integrates the up jarring with the down jarring, with a shorter length at present. It can reduce the harmfulness from the flexural stress in downhole operation. So it is more safe and reliable, and is superior in sea drilling and directional drilling. 我厂可按用户要求设计制造其它系列规格产品。 According to customer requirements We can design and manufacture other serial specification products.

YSZ型液压随钻震击器(高峰机械) YSZ型液压随钻震击器属整体式随钻震击器,上击采用液压阻尼贮能释放机构,可由提拉速度的变化获得不同的上击吨位。下击为自由落体,其震击力的大小由震击器以上钻具的重量决定。 ?连接于正常钻井的钻具组合中,钻进过程中钻具遇卡时,可以立即启动进行上击或下击。 ?可用于中途测试和打捞作业,代替打捞震击器。 Model YSZ Hydromechanical Drilling Jar It belongs to the integral drilling jar. Up jar is designed on hydromechanical principle—“hydraulic pressure → obstruct → energy s torage → elease” —and has different tonnages by changing the lifting speed. The action of down jarring is just as a free falling body and the jarring impact is based on the drilling tool’s weight above the drilling jar. ?Connecting with the drilling tool unite, it can start immediately to carry out up jar or down jar when drilling tool stuck during drilling. ?Can be used to drill stem test (DST) and fishing operation, replace fishing jar. 我厂可按用户要求设计制造其它系列规格产品。 According to customer requirements We can design and manufacture other serial specification products.

液压减震器发展及工作原理之欧阳歌谷创作

一、减震器的发展历史 欧阳歌谷(2021.02.01) 减震器从出现到今天已经有了100多年的历史,最早车辆的减震系统由弹簧构成,虽然弹簧可以减轻路面冲击,性能较可靠,但它容易产生共振现象。在 1908年,世界第一台液压减震器研制成功,它用隔板将橡胶制成节流通道分为两部分,通过油液与节流通道摩擦,达到减震目的。之后,在20世纪30年代,摇臂式减震器得到普遍应用,工作压力在l0MPa 20MPa之间,但结构复杂、易损坏、体积大,最终被淘汰。二战之后,简式液压减震器取代了摇臂式减震器,其成本低,寿命长,但容易出现充油不及时的问题,若充油不及时,会影响减震效果,产生噪音与冲击。直到20世纪50年代,充气式减震器的出现解决了以上的问题,在双筒内充入低压0.4MPa~0.6MPa的氮气可以解决充油不及时的问题。同时单筒式充气减震器也开始发展,其采用浮动活塞的结构,使充入的氮气形成2.0MPa2.5MPa的高压气体,性能优于双筒式减震器,而且质量轻、性能好,但其成本较高。 油压减振器是铁道机车车辆上的一个重要部件。由于机车车辆的车轮与钢轨面之间是钢对钢的接触,因此,车轮表面的不规则和轨道的不平顺都直接经车轮传到悬挂部件上去,使机车车辆各部分高频和低频振动。如果这种振动不经过减振器来衰减,就会降低机械部件的结构强度和使用寿命,恶化运行品质。油压减

振器其性能优劣直接影响到行车的安全性和舒适性。尤其近年来我国铁路进入一个飞速发展时期,特别是在铁路跨越式发展政策的指引下,我国铁路将会进入一个全新的发展阶段。 二、减振器的基本结构大体相同,主要区别是: ( 1 )活塞的行程以及接头的安装尺寸不同; ( 2 )GS H、GYAW、G OH 3 种水平布置的减振器多了橡胶囊; ( 3 )GY AW、GOH的节流阀与另外3种不同。 基本结构见图 41、图 42 ,G S V、GS H、GYAW 图略。 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆6——防尘圈7——压盖;8——密封圈;9——油封圈;10——螺盖;11——0型密封圈 12——密封圈 13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一)17——压缩阀(二)18——回油阀片19——回油阀座20——底阀座21——弹簧螺盖22——底阀座弹簧23——底阀压缩阀24——油缸25——储油罐26——液压油27——拉伸阀(一)28——拉伸阀(二) 29——导承 图41 一系垂向简振器 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆 6——防尘圈 7——压盖 8——密封圈9——油封圈 10——螺盖11——0型密封圈 12——密封圈13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一) 17——压缩阀(二)18——回油阀片 19——回油阀座20——底阀座 21——弹

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

QJ178A随钻震击器使用说明书

QJ178A随钻震击器使用说明书 北京石油机械厂 2002年10月

目 录    1概述...........................................................................................................1 2型号说明.................................................................................................1 3技术参数.................................................................................................1 4工作原理.................................................................................................3 5随钻震击器在钻具组合中的配置...............................................4 6摩擦力和开泵力的计算方法.........................................................4 6.1钻柱摩擦力............................................................................................4 6.2开泵力......................................................................................................4 7操作方法.................................................................................................5 7.1向上震击.................................................................................................5 7.2向下震击.................................................................................................5 7.3释放力调节方法..................................................................................5 8维修...........................................................................................................5 8.1准备...........................................................................................................5 8.2拆卸步骤.................................................................................................6 8.3装配步骤.................................................................................................6 9试验与充油............................................................................................7 9.1释放力试验............................................................................................79.2充油...........................................................................................................8 9.3密封试验.................................................................................................8 10故障及排除............................................................................................8 11订货须知.................................................................................................9

减震器类型、优缺点、应用范围

减震器类型、优缺点、应用范围

目前国内减震器材主要可分为: A.弹簧减震器 减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。减震器太软,减震物体就会上下跳跃,减震器太硬就会带来太大的阻力,妨碍弹簧正常工作。在关于减震系统的改装过程中,硬的减震器要与硬的弹簧相搭配,而弹簧的硬度又与物体重量息息相关,因此较重的物体一般采用较硬的减震器。 弹簧减震器优点: 1.可以达到较低的固有频率,一般5HZ以下. 2.可以得到较大的静太压缩量,通常20MM的压缩量. 3.可以承受较大的载荷. 4.通过处理后,抗腐蚀能力强,性通稳定,使用寿命长. 缺点: 1.由于存在自振现像,空易传递中频振动 2.阻尼太小临界阻尼比一般只有0.005,因此对于共振频率附近的振动隔离能力较差.

弹簧减震器适用于:风机、风柜、空调箱、空气压缩机、空调机组、发电机、冷却水塔等设备的减震隔振,如能附加采用阻尼器设设,则能适用于冲床、压力、锻锤机等冲击型设备的振动隔离。 B.橡胶减震器 橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象爱你过的变化产生的,橡胶分子间互相作用会妨碍分子链的运动,有表现出黏性特点,以致应力与应变往往处于不平衡状态。橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力,使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。除此外,橡胶还具有滞后和内摩擦特性,他们通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热就越明显,减震效果越明显。综上所述,用橡胶制成的橡胶减震器也具有良好的减震效果。橡胶减震器的优点: (1)可以自由确定形状,通过调整橡胶配方组分来控制硬度,可满足对各个方向刚度和强度的要求;(2)内部摩擦大,减震效果好,有利于越过共振区,衰减高频振动和噪声; (3)弹性模量比金属小得多,可产生较大弹性形变; (4)没有滑动部分,易于保养; (5)质量小,安装和拆卸方便。 (6)冲击刚度高于静刚度和动刚度,有利于冲击变形。 缺点: 自然频率相对较高,压宿量较小,容易受外界环境影响,性能不温定,使用寿命较短。

QJ159K说明书

您的位置:首页>> 产品信息 QJ159K随钻震击器使用说明书 1 概述 机械式随钻震击器是一种新型随钻震击解卡工具,其设计和制造考虑了高温、大扭矩和腐蚀性介质等恶劣工况,能满足陆上和海洋钻井所需要的各种高性能标准。 与目前已广泛使用的各种随钻震击器相比,该型震击器有两个显著特点:特点之一是上、下击为一体,长度比较短,方便井下钻具组合的设计;特点之二是释放力的的调整通过组装时适当增减调整垫片来实现,钻井现场不需要调节,因而整体结构十分简单,提高了该型震击器的可靠性。由于该型随钻震击器具有上述两大特点,所以适合常规的随钻工作,具有良好的发展前景。 2 型号说明 QJ:产品代号(整体式机械随钻震击器) 159:规格(外径159mm) K:特征代号(释放力井口不可调机械式随钻震击器) 3 技术参数 震击器技术参数见表1。 表1 机械式随钻震击器技术参数 型号QJ159K 外径尺寸mm 159 水眼直径mm 57 最大释放力(±20%)上击kN 600 下击kN 350

出厂标定释放力上击kN 400~600 下击kN 220~280 最大抗拉载荷kN 1500 最大工作扭矩kN ·m 14 整机长度mm 4360 连接螺纹API 4 1/2 IF QJ159K机械式随钻震击器结构示意图 4 工作原理 QJ159K机械式随钻震击器主要由锁紧机构、传递扭矩机构、震击机构等组成(见结构示意图)。其中传递扭矩机构、震击机构等比较简单。现仅就锁紧机构加以说明。 锁紧机构由锁紧卡瓦、锁紧心轴、蝶簧组等零件组成(见结构示意图)。在蝶簧组预紧力的作用下,锁紧卡瓦的内棱带嵌入与之相配的锁紧心轴的四条沟槽内。同时,通过锁紧销把碟簧的预紧力转换为锁紧机构的锁紧力。当震击器受到钻柱的拉力和压力时,震击器的心轴逐渐向锁紧机构施加相应的拉力(压力)。由于心轴沟槽上的斜面的推力作用,卡瓦向外张开。当作用力达到标定的释放力时,心轴从卡瓦中滑脱(释放),震击机构的打击面受到撞击,产生所需要的震击力。 5 随钻震击器在钻具组合中的位置 机械式随钻震击器上、下击一体,在钻柱组合中的位置可以略受拉力或压力。为避免自由震动影响使用寿命,应尽量避免放在中和点,理想的位置是在钻柱中和点以下,使震击器受到的钻柱压力与其开泵力相当。 a.配置在钻具组合的下部(受压)。 这时震击器应装在顶部扶正器以上至少一根钻铤的位置。扶正器和震击器之间的钻铤可增加震击器的安全。例如岩屑沉积就不致卡着震击器。如果钻柱中装有减震器,则震击器应位于减震器之上。 b.配置在钻具组合的上部(受拉)。

震击器原理介绍

震击器介绍 一、使用震击器的目的 震击器是将处于拉伸状态的钻具内部的潜在能量转化成动能。在震击发生后,这种动能将一股动力波传递给被卡的钻具,从而使钻具解卡。 动力波的能量与钻具震击的加速度有关系,动力波的持续时间与钻具的长度有关。它们的关系如下: 其中:M等于震击器上部钻具的重量, V为震击器震击时的速度。 震击器有三种:机械震击器 液压震击器 液压机械一体式震击器 二、机械震击器 机械震击器工作时使用一系列的弹簧、销子及释放机构来实现震击。 液压震击器控制液体通过的形程来实现震击。 液压机械一体式震击器综合上述两种设计来进行震击。 机械震击器在拉力达到事先选定的值的情况下向上震击,在压缩力达到事先选定的值的情况下向下震击。震击器只在设置的限制值内工作,这个值正常来说应离钻进时震击器受到的力。在正常钻进期间,机械震击器所处的位置要么时中性状态(不受力),要么时拉伸状态,但是不论怎样都不能处于向下激发的状态,因为这样有可能无谓的损坏下面的钻具和钻头。 机械震击器的释放机构可以在地面设置,也可在井下设置,主要取决于机械震击器的设计。机械震击器共有两种主要的设计。一是弹簧的扭转原理。这种机械震

击器送到井场前都设置好了向上激发和向下激发的负荷。它们的激发力通过对井下钻具施加10-15%的扭矩变量来实现,左转扭矩下降,右转扭矩增加。Daily L.I 就是使用的这种原理。另一种设计采用带槽的延伸套、接线片及辅助弹簧组成。激发井下震击器所需要的负荷可以通过增加泥浆排量来降低。ANADRILL 的EQ机械震击器就是采用这样的原理,将在后面的内容介绍。 三、液压震击器 液压震击器由两个活塞组成,由一个阀将这两个活塞隔开。当拉伸或压缩的力施加导处于激发状态的液压震击器上时,一个活塞中的液体就被压缩,并在受到很大的流动阻力的情况下流向另一个活塞。液体流动的速度可控制工具激发所需的时间,拉伸或压缩力大,激发所需时间就短,否则激发所需时间时间就长。移动的距离称为冲程。当冲程达到一定的位置时,压缩的液体就会通过旁通阀忽然之间全部释放,法门随流动的液体冲向第二个活塞,使两个活塞之间的压力立即达到平衡。震击器受到的力越大,活塞中的液体受到的压缩力就越大,激发时间就越短,激发产生的力就越大。这是Anadrill Hydraquaker 震击器的工作原理。 液压震击器激发条件不需要预先设置激发门限值。何时激发,激发产生的力有多大等,都取决于拉伸或压缩的幅度。当向上激发时,激发的力与拉力成正比。拉力越大,激发产生的打击力就越大。 因此,液压震击器的一个优点就是在其限制范围内有一个连续可变的震击力,另一个优点就是对6-1/2”工具而言,它们的内径比机械震击器大。 当液压震击器再次处于激发位置后,如果有足够的时间使它来完成冲程,它会再次激发。这使液压震击器在高角度的斜井或水平井中施工有其独特的优点,那就是由于钻具可能受到很大的摩阻,司钻不可能施加足够的拉力或压缩力到机械震击器上。而液压震击器即使在只受到最小的拉伸或压缩力的情况下,最后都会激发。当然,这也是它的一个缺点,它会意外激发从而导致落鱼事故,特别使在直井中。

贵州高峰工具使用说明书

贵州高峰石油机械有限责任公司 贵州高峰石油机械有限责任公司是中国兵器装备集团公司直属大型企业。在石油钻井工具和设备行业,是我国最早吸收国外先进技术的企业,是中石油和中石化总公司石油钻采机具的定点专业生产公司。 贵州高峰石油机械有限责任公司是一座拥有技术中心和现代化大型锻压、热处理、表面处理、精密机械加工、电解加工等生产设备,以及先进的材料计量分析和检测手段的综合性大型企业,形成了完整的石油钻采工具生产线,集科研、设计、制造、安装测试、售后服务、技术培训于一体。工公司具有全面、系统、科学的管理体系、质量保证体系和严格的监控制度,始终坚持“质量第一、用户至上、优质服务、讲求信誉”的生产经营宗旨,将军工的生产技术、质量保证体系和严格的监控制度引入民品生产领域,不断研制和开发新产品,改进和提高产品质量,实行优质高效的技术服务,获得了用户的信赖和好评。一九九六年通过了由DNV(挪威船级社)按照ISO9002标准对工公司质量体系进行的国际认证,二000年获得了美国石油学会颁发的ISO9001质量体系和API会标使用权证书。二00五年再次通过复审获得了美国石油学会颁发的ISO9001质量体系和API会标使用权证书。 贵州高峰石油机械有限责任公司主要产品是:钻井工具、震击工具、打捞工具、套铣工具、固井工具、修井工具、采油工具和地面钻具维修设备,以及其它石油勘探开发的必备工具。由于不断致力于消化吸收国内外先进技术和自主创新相结合,产品创国内一流水平,在石油地质部门享有盛誉,已有二十多种产品获得国家、部、省的科技进步奖和优质产品奖。随钻震击器获得了“全国用户满意产品”和“贵州省名牌产品”称号。 贵州高峰石油机械有限责任公司竭诚为用户提供优质系列产品和服务,愿与各界联合设计、制造先进的钻井工具和设备,为振兴和繁荣中国民族经济做出贡献。 目录 第一章概述 一、打捞的意义 二、打捞的经济因素 第二章防止事故复杂化 第三章管柱卡钻 一、常见原因 二、压差卡钻的处理方法 三、确定卡点 四、起出卡点以上钻具 五、打捞作业 第四章井下动力钻具 一、LZ型螺杆钻具 二、WLZ型涡轮钻具 第五章抓卡打捞工具 一、安全接头 (一)、AJ型安全接头 (二)、H型和J型安全接头 二、打捞筒 (一)、LT—T型可退式打捞筒 (二)、KJ型可弯肘节 (三)、DLT—T型可退式倒扣捞筒 (四)、KLT型卡瓦打捞筒 (五)、WLY型弯鱼头打捞筒 (六)、CLT-TA可退式抽油杆打捞筒 (七)、CJL型抽油杆接箍打捞筒 三、打捞矛 (一)、LM型可退式打捞矛 (二)、LM-T(DS)型滑牙块打捞矛 (三)、SLM型双级卡瓦打捞矛 (四)、ZDM型钻具倒扣捞矛

相关主题
文本预览
相关文档 最新文档