当前位置:文档之家› 信道编码仿真开题报告

信道编码仿真开题报告

信道编码仿真开题报告
信道编码仿真开题报告

2010届本科生毕业设计(论文)

开题报告

课题名称基于matlab的几种信道编码仿真专业电子信息工程

专业方向电子工程

班级

学号

学生姓名

指导教师

教研室

基于matlab的几种信道编码仿真

1开题依据

移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素, 3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。

2文献综述

1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样去寻找这种性能优良的码。近50年来,在信

息技术发展和实际需要的不断推动下,人们一直在寻求实现复杂度合理的更优秀的编译码方法,去逼近Shannon理论的理想界限。令人鼓舞的是,在这个过程中,已经取得了许多伟大的进展,从早期的分组码、代数码,到RS码,到后来的卷积码,以及今天的Turbo ,LDPC码,所能达到的性能和Shannon限间的距离被不断缩小。这些方法也已经投入到多个领域的商用中,如卫星通信和深空通信,数据存储,数据传输,移动通信,数字音频和视频传输等。下面,我们将着重关注移动通信系统,特别是数字移动通信系统中,纠错编码技术的应用情况。

2.1信道编码技术

2.1.1信道编码的意义

信道编码的实质是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样,由信息码元和监督码元共同组成一个由信道传输的码字。一旦传输过程中发生错误,则信息码元和监督码元间的约束关系被破坏。在接收端按照既定的规则校验这种约束关系,从而达到发现和纠正错误的目的。

为什么要进行信道编码?信息通过信道传输,由于物理介质的干扰和无法避免噪声,信道的输入和输出之间仅具有统计意义上的关系,在做出唯一判决的情况下将无法避免差错,其差错概率完全取决于信道特性。因此,一个完整、实用的通信系统通常包括信道编译码模块。视频信号在传输前都会经过高度压缩以降低码率,传输错误会对最后的图像恢复产生极大的影响,因此信道编码尤为重要。

信道编码的作用一是使码流的频谱特性适应通道的频谱特性,从而使传输过程中能量损失最小,提高信号能量与噪声能量的比例,减小发生差错的可能性;二是增加纠错能力,使得即便出现差错也能得到纠正。

2.1.2信道编码的产生与发展

1.模拟蜂窝系统中,业务信道主要是传输模拟FM电话以及少量模拟信令,因此未应用数字处理技术。而控制信道均传输数字信令,并进行了数字调制和纠错编码。以英国系统为例,采用FSK调制,传输速率为8kb/s。基站采用的是BCH (40,28)编码,汉明距离d =5, 具有纠正2位随机错码的能力。之后重发5次,以提高抗衰落、抗干扰能力;移动台采用了BCH(48,36)进行纠错编码,

汉明距离d =5,可纠正2个随机差错或纠正1个及检测2个差错,然后也是重复5次发送。上述纠错编码是提高数字信令传输可靠性必需的,也是行之有效的。

2.GSM的FEC编码GSM系统仍是目前使用最广泛的移动通信系统,也是纠错编码最重要的应用之一。GSM标准的语音和数据业务使用多种FEC编码,包括BCH 编码,FIRE码,CRC码(错误检测,码同步和接入,数据信道)。这些码都作为级联码的外码,我们这里主要侧重于级联码的内码方案,最初用于全速率语音业务信道。语音编码后的13kb/s信息,一个时隙20ms包括260bit,分成三个敏感类:78bit对错误不敏感类不加编码保护;50bit特别敏感类加3bit奇偶校验,4bit格图终结尾比特,与其余的132bit,一共189bit用(2,1,5)的非系统卷积码进行编码。所以一共有378bit,加上未编码78bit,一共456bit,每20ms,总的速率为22.8。再加上相邻另外1个语音编码块的456bit一起,每组各占57bit*2进行(8*114)交织,分布到TDMA的8个突发中,在移动信道中使用GMSK 调制。这些突发里还包括2bit业务/控制标识比特 , 6bit尾比特,8.25bit保护比特,还有26bit训练序列,提供给接收端的使用Viterbi算法的MMSE均衡器输出每块456软或硬判决值。如果按GSM标准规定使用了跳频,那么我们可合理将信道视为统计独立的Rayleigh信道。这种情况下,如果使用CSI和软值,r=1/2的编码可得到

3.1dB的增益。

3.窄带CDMA系统(IS-95)中的FEC编码CDMA系统是个自干扰的系统,因此FEC编码在对抗多用户干扰(MUI)和多径衰落非常重要。CDMA(IS-95)系统的纠错编码是分别按反向链路和前向链路来进行设计的,主要包括卷积编码、交织、CRC校验等。现分述如下:前向链路中除导频信道外,同步信道、寻呼信道和前向业务信道中的信息在传输前都要先进行(2,1,9)的卷积编码,卷积码的生成函数为go=(111101011)和g1=(101110001);接着,同步信道的符号流要经过1次重发,然后进行16*8的块交织;业务和寻呼信道的速率为4.8kbps/2.4kbps/1.2kbps符号流,分别进行1/3/7次重发(9.6kbps数据流不必重发),然后再进行24*16的块交织。反向链路包括业务信道和接入信道,考虑到移动台的信号传播环境,增加编码长度,对信息进行(3,1,9)的卷积码。其生成函数为:g0=(101101111),g1=(110110011)和g2=(111001001)。然后,接入信道经过一次重发后,进行32*18交织;反向业务信道以同前向一样的

方式进行重发,再进行32*18的交织。如果整体考虑纠错编码和扩频调制,则可把扩频看作内码,而信道编码视作外码。以后向链路为例,编码交织后是64阶正交Walsh函数扩频,然后是被周期为2 -1的长码直接序列扩频。接收端经相干或不相干Rake接受机进行分集接收后,系统码字(信息比特)就可以用相关的最大值或相关矢量的最大值表示。接着送到解交织器和外部SOVA Viterbi译码器。

4.3G中的Turbo码3G与2G最重要的不同是要提供更高速率、更多形式的数据业务,所以对其中的纠错编码体制提出了更高的要求(数据业务的差错率要小于10 )。语音和短消息等业务仍然采用与GSM 和CDMA相似的卷积码,而对数据业务3GPP协议中已经确定Turbo码为其纠错编码方案。Turbo码又叫并行级联卷积码,由Berrou,Glavieux 和Thtimajshima 1993年首次提出。Turbo码编码器通过交织器把两个递归系统卷积码并行级联,译码器在两个分量码译码器之间进行迭代译码,译码之间传递去掉正反馈的外信息,整个译码过程类似涡轮(turbo)工作,所以又形象的称为Turbo码。编码器的输出端包括信息位和两个校验位,这样代表编码速率1/3。轮流删除两个校验位就可以得到码率是1/2的码。用不同的校验位生成器或者不同的删除方式就可以得到各种不同速率的Turbo码。伪随机交织器对信息系列进入第二个校验位生成器之前进行了重排列。迭代译码是Turbo码性能优异的一个关键因素,如上图所示,DEC1和DEC2分量译码器分别采用MAP或者SOVA算法。MAP(最大后验概率)算法比Viterbi 算法在复杂度上多3倍,对于传统卷积码只有0.5dB的增益,但是在Turbo码译码器中,它对每一比特给出了最大的MAP估计,这一点在低SNR情况下的迭代译码是至关重要的因素。一般在应用中,都采用对数化的MAP算法,即LOG-MAP 算法,将大部分的乘法运算转化为加法运算,既减小了运算复杂度,又便于硬件实现。无论效率是多少,在短约束长度,非常长的编码块长(帧长),10到20次迭代的情况时,Turbo码的性能离容量界都不到1.0dB。Turbo码的主要缺点是:1、由于长编码块和迭代译码导致的译码时延长,不适应对实时性要求较高的业务(如视频点播,IP电话),对硬件设备的处理速度要求高,;2、由较低的自由距导致的高信噪比时较弱的性能即“地板效应”。对Turbo码的后续研究可以从几个方面入手:理论探索其性能优异的原因,对采用一致交织器的Turbo

码分析一致界,从距离谱角度进行探讨;交织器优化设计,寻求降低地板效应的好码;硬件实现的工程优化设计,比如采用简化的软入软出算法,对于LOG-MAP 算法的简化等;与其他技术的结合,比如Turbo均衡,Turbo多用户检测联合迭代解调译码等。

5.后3G中的纠错编码第三代移动系统移动时最高384kb/s的传输速率,静止时2Mb/s的传输速率对于实现传输速度无限制的移动多媒体业务只是一个初步,它与有线网的信息传输速率还有相当大的距离,其中空中接口的传输率是主要瓶颈。如果要进一步实现高速无线通信,除了开发新频段,加大带宽,采用带宽受限的高效的编码、调制和分集技术是非常必要的。近年来,BELL实验室对MIMO(多入多出)信道容量的研究,使我们对时域和频域资源以外的一个很重要的资源-空域引起了足够的重视,从理论上指出了一个很好的扩容的手段,充分利用无线信道的具有空、时和频三维的特点。可以预见,对于未来一代更高速的移动通信,要解决空中接口传输的瓶颈,必须对现有的编码调制分集方式进一步改进,联合优化。多天线的发射分集已经写进了第三代标准中,空时编码技术对于未来下一代移动通信极具魅力,是当今全世界通信领域研究的最大热点之一。

2.2差错控制方式的分类和应付方法

通常应付传输差错的办法如下:

1、肯定应答。接收器对收到的帧校验无误后送回肯定应答信号ACK,发送器收到肯定应答信号后可继续发送后续帧。

2、否定应答重发。接收器收到一个帧后经较验发现错误,则送回一个否定应答信号NAK。发送器必须重新发送出错帧。

3、超时重发。发送器发送一个帧时就开始计时。在一定时间间隔内没有收到关于该帧的应答信号,则认为该帧丢失并重新发送。

自动请示重发ARQ和前向纠错FEC是进行差错控制的两种方法为:

1、在ARQ方式中,接收端检测出有差错时,就设法通知发送端重发,直到正确的码字收到为止。ARQ方式使用检错码,但必须有双向信道才可能将差错信息反馈到发送端。同时,发送方要设置数据缓冲区,用以存放已发出的数据以务重发出错的数据。

2、在FEC方式中,接收端不但能发现差错,而且能确定二进制码元发生错误的位置,从而加以纠正。FEC方式使用纠错码,不需要反向信道来传递请示重

发的信息,发送端也不需要存放以务重发的数据缓冲区。但编码效率低,纠错设备也比较复杂。

差错控制编码又可分为检错码和纠错码。

检错码只能检查出传输中出现的差错,发送方只有重传数据才能纠正差错;而纠错码不仅能检查出差错而且能自动纠正差错,避免了重传。

2.3 几种纠错码的编译码原理

2.3.1分组码

分组码就其构成方式可分为线性分组码与非线性分组码。

线性分组码是指[n,M]分组码中的M个码字之间具有一定的线性约束关系,即这些码字总体构成了n维线性空间的一个κ维子空间。称此κ维子空间为(n,κ)线性分组码,n为码长,κ为信息位。此处M=2。

非线性分组码[n,M]是指M个码字之间不存在线性约束关系的分组码。d为M个码字之间的最小距离。非线性分组码常记为[n,M,d]。非线性分组码的优点是:对于给定的最小距离d,可以获得最大可能的码字数目。非线性分组码的编码和译码因码类不同而异。虽然预料非线性分组码会比线性分组码具有更好的特性,但在理论上和实用上尚缺乏深入研究(见非线性码)。

线性分组码的编码和译码用V n表示GF(2)域的n维线性空间,Vκ是V n的κ维子空间,表示一个(n,κ)线性分组码。E i=(vi1,vi2…,vin)是代表Vκ的一组基底(i=1,2,…,κ)。以这组基底构成的矩阵称为该(n,κ)线性码的生成矩阵。对于给定的消息组m=(m1,m2,…,mκ),按生成矩阵G,m被编为mG=m1E1+m2E2+…+mκEκ

这就是线性分组码的编码规则。若

之秩为n-κ并且满足GH=0,仅当=(v1,v2,…,vn)∈n满足H =0时,才为κ中的码字。称H为(n,κ)线性分组码κ的均等校验矩阵,称H为矢量的伴随式。假设v是发送的码矢量,在接收端获得一个失真的矢量r=v +E,式中E=(e1,e2,…,en)称为错误型。由此rH=(v+e)H=eH 线性码的译码原则便以此为基础。

2.3.2 循环码

循环码:无权码,每位代码无固定权值,任何相邻的两个码组中,仅有一位代码不同。

两种4位二进制编码

十进制数自然二进制码循环二进制码

十六进制数自然二进制码循环二进制码

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 A 1010 1111

3 0011 0010 B 1011 1110

4 0100 0110 C 1100 1010

5 0101 0111 D 1101 1011

6 0110 0101 E 1110 1001

7 0111 0100 F 1111 1000

循环码的译码:

纠错码的译码是该编码能否得到实际应用的关键所在。译码器往往比编码较难实现,对于纠错能力强的纠错码更复杂。根据不同的纠错或检错目的,循环码译码器可分为用于纠错目的和用于检错目的的循环码译码器。

通常,将接收到的循环码组进行除法运算,如果除尽,则说明正确传输;如果未除尽,则在寄存器中的内容就是错误图样,根据错误图样可以确定一种逻辑,来确定差错的位置,从而达到纠错的目的。用于纠错目的的循环码的译码算法比较复杂,感兴趣的话可以参考一些参考书。而用于检错目的循环码,一般使用ARQ通信方式。检测过程也是将接受到的码组进行除法运算,如果除尽,则说明传输无误;如果未除尽,则表明传输出现差错,要求发送端重发。用于这种目的的循环码经常被成为循环冗余校验码,即CRC校验码。CRC校验码由于编码电路、检错电路简单且易于实现,因此得到广泛的应用。在通过MODEM传输文件的协议如ZMODEM、XMODEM协议中均用到了CRC校验技术。在磁盘、光盘介质存储技术中也使用该方法。

在SystemView中没有提供专用的CRC循环冗余校验码编码器,读者可根据有关参考书设计一个相应的仿真电路。如果不想亲自动手设计,可以在CDMA库(IS95)中找到一个现成的专用的CRC编码器和译码器。该图符(FrameQ)是的接入信道的数据帧品质指示编码器,其中使用了多种不同比特率的数据模型,通过CRC校验来判断接入信道的质量好坏。其中规定每一帧的长度为20ms的数据。一个典型IS-95-A标准规定的9600信道的CRC测试码的长度为192比特,其中信息位172位、校验位12比特、尾部

全零8比特。感兴趣的读者可以加入一个速率为860bps(192bit/0.2ms=860)的PN数据,然后观察经过CRC编码后的波形。并可用对应的译码器译码观察输出波形是否与输入的PN码一致。

2.3.3循环类子码--BCH码

它是一类重要的循环码,能纠正多个错误。假设m是满足2呏1(mod n)的最小正整数,β是域GF(2)的n次单位原根,作循环码的生成多项式g(x),以d0-1个接续的元素为根,其中m0,d0均为正整数,且d0≥2。于是其中mj(x)代表的最小多项式。由这个g(x)所生成的,分组长为n的循环码称为BCH码。它由R.C.Bose,D.K.Ray-Chaudhuri及A.Hocquenghem 三人研究而得名。BCH码的主要数量指标是:码长n,首元指数m0,设计距离d0,信息位数(表示多项式g(x)的次数)。BCH码的重要特性在于:设计距离为d0的BCH码,其最小距离至少为d0,从而可至少纠正个独立错误。BCH码译码的第一步是计算伴随式。假设为发送码矢量,为接收矢量,而E =(E0,E1,…,En-1)为错误矢量,或记为称为错误多项式。于是伴随矢量之诸S=(S1,S2,…,S2t)分量Sκ由

决定(κ=1,2,…2t;为简便计,设m0=1,d0=2t+1)。假设有e个错误出现(1≤e≤t),则对应于e个错误的Ei厵0。如果E的第j个(从左至右)非零分量是Ei,则称Xj=β为这个错误Ei的错位,而称Yj=Ei为这个错误的错值。称为错位多项式。BCH码译码的关键是由诸sκ(κ=1,2,…,2t)求出(z)。这可用著名的伯利坎普-梅西迭代算法来完成。这种算法相当于线性移位寄存器的综合问题。最后一步是求出(z)的全部根,可用搜索算法完成,从而可以定出接收矢量r的全部错位。

2.3.4RS码

RS码是由Reed和Solomon两人于1960年首先构造出来的,因此简称为RS 码。这是一类具有很强纠错能力的多进制BCH码,既能纠正随机错误也能纠正突发错误,特别适合于纠正突发错误。突发错误是指集中发生的错误,随机错误足指已经发送的信息单独产生的错误。在无线数据传输系统中,由于各种干扰的存在,以及无线信道自身的不理想特性,很容易发生突发错误,因此采用RS码作为纠错码是很不错的选择。

定义:在GF(q)上,码长n=q-1的本原BCH码称为Rs码。

纠正t个错误的RS码有如下的参数:

码长:n=2m-1个符号或m(2m-1)比特

信息段:k个符号或km比特

监督段:n-k=2t个符号或m(n-k)比特

最小码距:d=2t+1个符号或m(2t+1)比特

=2t+l,因此它是最大距离可分码(MDS码),也就是RS码的最小汉明距离d

min

说:在所有的线性分组码中,RS码具有最大的最小汉明距离,所以具有强大的纠错能力。当q=2m时,码元符号取自有限域GF(2m)上,此时码元符号用相应的二元数组来表示,与通常的二进制序列相对应。由于RS码的编解码是基于一组码元而不是单个的比特,所以它特别适合于纠正突发错误。因此,GF(2m)上的RS 码是一类应用相当广泛的RS码。在GF(2m)上纠正t个错误的RS码的生成多项式为:

g(x)=(x-a)(x-a2)?(x-a2t),a

∈GF(2m),i=1,2,?,2t

i

RS码由于具有优良的纠错能力而得到广泛的应用。在深空通信、军事通信、数字电视、数字光盘等领域,RS码已经得到了深入的研究和广泛的使用。

2.3.5卷积码

在一个二进制分组码(n,k)当中,包含k个信息位,码组长度为n,每个码组的(n-k)个校验位仅与本码组的k个信息位有关,而与其它码组无关。为了达到一定的纠错能力和编码效率(=k/n),分组码的码组长度n通常都比较大。编译码时必须把整个信息码组存储起来,由此产生的延时随着n的增加而线性增加。

为了减少这个延迟,人们提出了各种解决方案,其中卷积码就是一种较好的信道编码方式。这种编码方式同样是把k个信息比特编成n个比特,但k和n通常很小,特别适宜于以串行形式传输信息,减小了编码延时。

与分组码不同,卷积码中编码后的n个码元不仅与当前段的k个信息有关,而且也与前面(N-1)段的信息有关,编码过程中相互关联的码元为nN个。因此,这N时间内的码元数目nN通常被称为这种码的约束长度。卷积码的纠错能力随着N的增加而增大,在编码器复杂程度相同的情况下,卷段积码的性能优于分组码。另一点不同的是:分组码有严格的代数结构,但卷积码至今尚未找到如此严密的数学手段,把纠错性能与码的结构十分有规律地联系起来,目前大都采用计算机来搜索好码。

下面通过一个例子来简要说明卷积码的编码工作原理。正如前面已经

指出的那样,卷积码编码器在一段时间内输出的n位码,不仅与本段时间内的k位信息位有关,而且还与前面m段规定时间内的信息位有关,这里的m=N-1通常用(n,k,m)表示卷积码(注意:有些文献中也用(n,k,N)来表示卷积码)。图8-8就是一个卷积码的编码器,该卷积码的n = 2,k = 1,m = 2,因此,它的约束长度nN = n×(m+1) = 2×3 = 6。

2.3.6 Turbo码

Shannon编码定理指出:如果采用足够长的随机编码,就能逼近Shannon信道容量。而Turbo码以其接近Shannon理论极限的译码性能,已被采纳为3G移动通信系统的信道编码标准之一。Turbo码巧妙地将两个简单分量码通过伪随机交织器并行级联来构造具有伪随机特性的长码,并通过在两个软输入/软输出(SISO)译码器之间进行多次迭代实现了伪随机译码。采用迭代译码的方法来提高通信系统的译码性能是Turbo码的最大特点。

Turbo码的编码器、译码器结构繁琐,是一种非常复杂的信道编码方案,这使得对Turho码的理论分析十分困难,且只能对运算复杂度作宏观分析,对Turbo 码的具体实现并没有一个清楚的度量。因此,使用计算机对Turbo码进行仿真分析是十分必要的。

本文分析了Turbo码编码译码的原理,考虑到Turbo码系统编译码的数据处理量很大,利用生成矩阵对信息序列进行编码、译码时的迭代计算等等,都涉及了矩阵运算,故采用Matlab/Sireulink来进行建模仿真,同时分析了迭代次数、交织长度及不同译码算法对Turbo码性能的影响。

Turbo码的编码器和译码器原理

Turbo码编码器组成

Turbo码的编码器的基本结构如图1所示。

Turbo码编码器主要由两个递归系统卷积编码器(RSC)、一个交织器与一个删余和复用单元组成。递归系统卷积编码器是指带有反馈的系统卷积编码器,其码率可设为R=k/n;交织器用来改变信息序列的排列顺序,获得与原始信息序列内容相同,但排列不同的信息序列;删余和复用单元的作用是从总体上改善Turbo码码率,因此通过删余和复用单元,Turbo码可以获得不同码率的码字。编码器的码字通过信道输出到译码器内。

Turbo码译码器原理

Turbo码译码器基本结构如图2所示。

Turbo码译码器由两个软输入/软输出(SISO)译码器DECl和DEC2串行级联组成,交织器与编码器中所使用的交织器相同。译码器DECl对分量码RSCl进行最佳译码,产生关于信息序列中每一比特的似然信息,并将其中的“新信息”经

过交织送给DEC2,译码器DEC2将此信息作为先验信息,对分量码RSC2进行最佳泽码,产生蓉于交织后的信息序列中每一比特的似然比信息,然后将其中的“外信息”经过解交织送给DECl,进行下一次译码。这样,经过多次迭代,DECl或DEC2的外输出信息趋于稳定,似然比渐近值逼近于对整个码的最大似然译码,然后对此似然比进行硬判决,即可得到信息序列的最佳估计值。

3 方案论证

3.1基于Matlab软件的计算机仿真

分布式的仿真模型库系统要求模型的开发与管理必须适应仿真应用的需求。多数传统的模型库系统仍然采取简单集中的开发管理方式,不适应当今系统仿真的发展。大部分仿真模型库依赖于Matlab--Simulink仿真平台,是为了利用其优秀的仿真运算和建模功能。在Matlab--Simulink平台下,开发仿真模型确实简单、高效。而且在Matlab--Simulink平台下也具有一定的模型管理功能。但这一类模型库多数只针对某一项专门的仿真应用,不同的仿真项目需要建立不同的模型库。模型库与模型库之间没有统一的操作界面和管理窗口。模型库与模型库之间也相对比较独立,不能在两个模型库之间交互操作。所以这一类的传统模型库不能实现对不同领域和部门的模型集中统一的管理。即使能够汇总不同仿真项目中的模型,模型之间的参数类型、代码描述与结构信息都不一致,集中管理存在很大困难。Web数据库技术和网络传输技术等的飞速发展,也为仿真模型库系统的体系结构设计提供了有力的技术支持。传统仿真模型库系统遵循单一的计算机操作平台模式,使模型的流通受到很大的限制,不能达到节约时间,提高效率的要求。也有一些仿真模型库开发单位认识到了构造模型库系统的重要性。利用各种编程软件开发模型库管理系统口,例如利用ASP开发了支持Web操作的模型库管理系统;利用VC抖开发了模型库管理系统。在这些模型库的开发论述过程中,虽然提出了模型库系统的概念,但并没有对其功能给出详细的描述。在文献2中虽然也对模型库系统的功能进行了详细的分类,但却没有给出主要功能的实现方法。模型库系统只具备简单的模型添加、修改等操作,其它主要功能并没有进行设计。

传统模型库在模型管理功能方面,或者仍然依赖于Matlab--Simulink平台12圳,或者能独立的开发模型库管理系统框架。但前者在Matlab--Simulink平

台下,仍然不能算独立的模型库系统,模型管理起来比较繁琐。需要操作人员具有较高的Matlab应用水平。而且在Matlab--Simulink平台下操作模型,不能对用户进行权限设置,不能根据用户的操作级别对模型管理的功能进行限制,缺乏安全性考虑。而独立开发的模型库管理系统虽然具有简捷的操作界面,但在功能实现上只限于基本的模型添加、删除、修改与查询。

3.2 利用matlab软件对纠错编码的仿真实现

3.2.1 应用mablab对循环冗余码(CRC)的编译

循环冗余码(CRC)是一种使用相当频繁的检错码。与分组码和卷积码不同,循环冗余码不具有纠错能力。当接收端检测到传输错误时,它并不去纠错这个传输错误,而是要求发送端重新发送这个信号序列。

(1)循环冗余码(CRC)的基本编译原理

循环码的编码过程中,发送端对每一个特定长度的信息序列计算得到一个循环冗余码,并且把这个循环冗余码附加到原始的信息序列的末尾一起发送出去。接收端收到带有循环冗余码的信号后,从中分离出信息位序列和循环冗余码,然后根据接受到的信息位序列重新计算循环冗余码。如果这个重新计算得到的循环冗余码与分离出来的循环冗余码不同,则接收信号序列存在传输错误。这时接受端会要求发送端重新发送这个信号序列,通过这个过程实现对信号的纠错。(2)CRC编码器

CRC编码的一般过程:把输入的数据左移r位,然后除以生成多项式P,得到一个余式,这个余式就是CRC编码产生的循环冗余码。把这个余式附加到原始的信息序列的末尾,就得到了经过CRC编码的输出信号序列。

在Matlab中CRC编码器分两种:通用CRC编码器和CRC-N编码器。它们的模块及其参数对话框分别如图3-1,3-2所示。这两种编码器的功能相当接近,区别只在于CRC-N编码器提供了6位常用的CRC生成多项式,使用起来比较方便。这里仅讨论通用CRC编码器。

如果通用CRC编码器的输入数据的帧长度等于n,生成多项式的最高次数为r,对每帧输入数据产生k个校验和,则通用CRC编码器的工作流程可分为:

w的长度是n/k;

1)把输入的一帧数据等分为k个部分,每个部分

i

w后面添加r个二进制位,并且这r个二进制位的数值等2)在每个部分的数据

i

于通用CRC 编码器的初始状态,得到二进制序列i s ;

3)计算i s 的循环冗余码i c ;

4)把循环冗余码i c 添加到i w 后面,得到二进制序列i u ;

5)把所有的i u 连接起来形成输出数据帧。

图3-1通用CRC 编码器模块及其参数对话框

图3-2CRC-N 编码器模块及其参数对话框

主要参数:

1)Generator polynomial:生成多项式

2)Initial states:初始状态,用于确定编码器中移位寄存器的初始状态。

3)Checksums per frame:用于指定每帧的校验和个数。

(3)CRC 译码器

与编码器对应的,CRC 解码器也分为两种:通用CRC 解码器和CRC-N 解码器。其模块及参数对话框分别如图3-4,3-5所示

CRC解码器的一般工作原理是:

1)首先从接受到的二进制序列中分离出信息序列和CRC,

2)根据接收端的信息序列重新计算CRC。

3)如果重新计算得到的CRC与接收到的CRC相等,则认为接收序列是正确的;否则,接收序列存在着传输错误。

图3-3 通用CRC译码器模块及其参数对话框

图3-4 CRC-N译码器模块及其参数对话框

主要参数:

1)Generator polynormial:与CRC译码器对应的CRC编码器的生成多项式

2)Initial states:用于确定与CRC译码器对应的CRC编码器中移位寄存器的初始状态。

3)Checksums per frame:用于指定每帧数据产生的校验和个数。

3.2.2 应用MATLAB对BCH码的编译

BCH码是循环码的一个重要子类。它具有纠错多个错误的能力,它的生成多项式与最小码之间有密切的关系,可以根据所要求的纠错能力t构造出BCH

码,BCH 码只能对特定长度为k 的信息序列进行编码。

(1)BCH 码编码器

把k 位信息序列转换成n 位编码序列,它的输入信号包含k 个元素,输出信号是一个长度为n 的向量,其中21,3m n m =- 。其编码器模块及参数对话框如图3-5所示。

对BCH 码来说,当确定了码字长度n(只能取21p =,P<10是正整数)之后,只有对应特定的信息序列k 才能产生BCH 码。MATLAB 中提供了一个函数bchpoly(),用于验证当n 等于7、15、31、63、127、255或511时哪些参数k 是有效的。图3-6程序分别列出了当n 等于31和63时所有k 的数值。

图3-5 BCH 码编码器模块及其参数对话框

图3-5

BCH 编码器的主要参数:

1)Codeword length N:BCH 码的码字长度,等于BCH 码编码器模块的输出向量长度。

2)Message length K:BCH 码的信息位长度,等于BCH 编码器模块的输入向量的长度。

(2)BCH 码译码器

如果BCH 编码的信息位长度为k ,编码后的码字长度为n,则BCH 码译码器的输入信号是一个长度为n 的向量,并且第一个输出端口的输出向量的长度为k,其中21,3m n m =- ,k 是符合函数bchpoly()的一个输出数值。其模块及参数对话框如图3-6所示。

图3-6 BCH 码译码器模块及其参数对话框

主要参数:

1)Codeword length N:BCH 码的码字长度

2)Message length k:BCH 码的信息位长度

3)Error-correction capability T:表示BCH 码译码器的纠错能力。当本参数为0时,MATLAB 自动计算BCH 码的纠错能力。当用户知道输入的BCH 码信号的纠错能力,可以手动设置此项。

3.2.3应用MATLAB 对RS 码的编译

RS 码是一种重要的线性编码方式,有较强的纠错能力,被DVB 标准采用。在(n,k)RS 码中,输入信号分为k*m 比特为一组,每组包括k 个符号,每个符号由m 个比特组成。

(1)整型RS 码编码器

假设RS 码的码字长度为21m n =-。信息位的长度等于k,则监督位的长度r=n-k.。为了纠正t 个符号的错误,需要2t 个符号的监督码,这样RS 码的监督位长度r 和t 之间应该满足关系:r=n-k=2t,因此RS 码的码字长度与信息位的差值应该是一个偶数,同时,RS 码的最小码元距离0121d r t =+=+。其编码器模块及参数对话框如图3-7所示。

图3-7 整型RS编码器模块及其参数对话框

主要参数:

1)Codeword length N:RS码的码字长度n.

2)Message length K:RS码的信息位长度k

3)Specify primitive polynomial:指定本原多项式

4)Primitive polynomial:本原多项式

5)Specify generator polynormial:指定生成多项式

6)Generator polynormial:生成多项式

(2)整型RS码译码器

图3-8整型RS译码器及其参数对话框

整型RS码译码器用来实现对M进制(n,k)RS码的解码。其模块及参数对话

运用信息技术开题报告

《运用信息技术创设情景,提高学生英语口语交际能力》课题开题报告 邵阳市北塔区状元中学英语课题主持人谢兆敏 该课题经邵阳市教育科学规划领导小组审定批准,被列为2009年邵阳市教育科学“十一五”规划立项课题。现根据《邵阳市教育科学规划课题管理办法》的规定,召开开题论证会,并由我代表课题组作开题报告,提出本课题的研究方案,请各位专家和老师进行评议指导,也请课题组成员加以审议。 一、课题的提出与研究的意义 (一)课题的提出 当前,世界各国都在摸索全球化时代的教育的理想模式,其中教学内容与教学方法的多样化是21世纪必须继续解决的课题。二十一世纪是信息化的时代,以信息技术为主要标志的科技进步日新月异,社会生活的信息化和经济活动的全球化,使英语日益成为对外开放和国际交流的工具,随着中国加入WTO,2008年第29届奥运会在北京的召开,国际交往更是日益频繁,社会对英语语言的需求日趋紧迫,学习英语、学好英语已经成为现代人的共识。然而,综观英语教学的现状却不容乐观,“填鸭式”教学依然存在,“哑巴英语”仍到处可见,“应试英语”大有市场,为培养适应时代的人才, 激发和培养学生学习英语的兴趣,引导学生用英语进行口语交际,这就要求我们英语教学无论从教学内容,还是从教学方法及教学要求上,要有不断创

新和发展,而传统的英语教学忽视听说交际能力的培养,因此,改革英语教学是时代的需要,势在必行。 (二)课题研究的意义 我国外语教育学者张正东强调环境是制约外语教学的主要因素,而信息技术为学生创设了良好的语言环境,提供了更多的语言实践和交际的机会,真正体现了英语是一种交际工具的价值。多媒体的组合教学和交互动用,使真实的教学素材丰富多彩、生动形象,现代教育媒体灵活多变的交互功能将改变学生被动的学习过程,而代之以更适合自己的学习方法,更接近自我的兴趣指向,更适宜个人生长与发展的方式途径。本课题的研究,对于深化英语口语交际的课堂教学,对于提高教师个人素质,对于充分调动学生学习积极性和主动性,培养学生的口语交际能力和实践精神,提高英语教学水平和学习效率,对于改革英语教学模式具有十分重要的意义。 二、课题的概念界定 信息技术是指能够支持信息的获取、传递、加工、存储和呈现的一类技术。其中,应用在教育领域中的信息技术主要包括电子音像技术、卫星电视广播技术、多媒体计算机技术、人工智能技术、网络通信技术、仿真技术和虚拟现实技术等。 英语口语交际能力指口头上完成英语语言任务时表现除开的具 体的运动和心智活动方式,它是言语活动中口语的实际“操作”表现。 三、课题研究目标和研究内容 (一)研究目标 英语口语交际能力的培养的目的主要在于引导学生在英语学习

2020北邮移动通信作业01

一、判断题(共10道小题,共100.0分) 1. (错误) 2. 信道编码(差错控制)的目的是增加信息在信道传输中的冗余度,使其具有检错或纠错能力,提高信道传输质量;信道解码是检错、纠错的过程。 3. 1.正确 2.错误 4. 扰码SC本身的功能是完成“多址”的功能,在上行方向(反向)区分不同用户,在下行方向(前向)区分不同小区。 5. 1.正确 2.错误 6. (错误) 7. 扩频码是信道化码和扰码的结合,扩频调制可能是由信道化码、扰码单独或联合完成的。

8. 1.正确 2.错误 9. 在无线接入网(RAN)结构层面,为了降低用户面延迟,LTE取消了重要的网元—无线网络控制器(RNC)。 10. 1.正确 2.错误 11. 为了实现LTE所需的大系统带宽,从采用的无线接入技术来看,3GPP不得不选择放弃长期采用的CDMA技术作为核心技术,选用了新的核心传输技术,即OFDM/MIMO技术。 12. 1.正确 2.错误 13. 电磁波的频率、波长与速度的关系如下: f= λ/ c

1.正确 2.错误 15. 电磁波是人类用于远距离实时接收和发送信息的主要载体之一。 16. 1.正确 2.错误 17. 扩频码序列起扩展信号频谱的作用,它与所传的原始信息数据是有关的,会影响信息传输的透明性。 18. 1.正确 2.错误 19. 小区地址用来区分不同基站或扇区;数量上有一定要求,但没有用户地址数量要求大,在质量上要求各小区之间正交(准正交),以减少小区间的干扰。

1.正确 2.错误 21. 5G技术创新主要来源于无线技术和网络技术两方面。 22. 1.正确 2.错误

科技写作结课作业(时域有限差分法的Matlab仿真开题报告)

开题报告 论文题目:基于matlab的时域有限差分法的电磁仿真研究(10分) 学院:电气工程及其自动化学院学号:1103000105姓名:__杨志刚___ 一、论文选题的目的和意义(300字以内;15分) 时域有限差分法,因具有多种优点被运用到电磁场理论研究的各个方面,而且其使用成效和应用领域还在迅速扩大和提高,在现代电磁场理论研究中具有很大的重要性和很强的可操作性。但是同时这种方法也存在一定的缺陷,主要表现在对无边界问题需要吸收边界条件处理,有色散误差,消耗内存大等方面。本课题在利用时域有限差分法对一些实际的算例进行实验仿真和验证,同时对这种方法在解决实际问题的缺陷进行一定程度的研究和分析。 Matlab作为一种工程仿真工具得到了广泛应用。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 二、国内外关于该论题的研究现状和发展趋势(500字以内;15分) 时域有限差分方法作为一种典型的全波时域分析方法,因其原理直观、编程简便、实用性强在目前的计算电磁学领域内被人们广泛深入地研究,并取得巨大应用成功的方法。时域数值技术的一个突出优点是可以给出关于问题空间的丰富的时域信息,而且经过简单的时频变换,即可得到宽带范围的频域信息,相对频域方法显著地节约了计算量。最近几十年,是电磁场数值计算时域技术蓬勃发展的时期,各具优势和特色的新颖时域算法层出不穷。 但是到目前为止国内关于时域有限差分法中的PML 算法文献较少,其中绝大多数文献集中在综述和应用方面。而在国际的学报和杂志上对于这方面的文献非常多。时域有限差分法经过了三十年多年的高速发展之后,仍然还是计算电磁学制高点的研究热潮,而且其应用的范围和成效还在迅速的扩大和提高。本课题正是利用时域有限差分法的基础理论,利用matlab对一些实际的电磁场问题进行仿真研究。 三、论文的主攻方向、主要内容、研究方法及技术路线(1000字左右;40分) 通过对时域有限差分法理解基础之上,利用matlab仿真软件按照这种方法编程,实现对三种情况下的电磁场情况的仿真研究。

毕设开题报告范文

副教授 所在院(系) 部: 武魂学院 专业名称: 工业工程 2013年03月20日 学生姓名 唐山 学号 1 专业 控制系魂师 称: 名: 师: 数控机床的人机工程学设计 唐山 周漪 学号:1 副教授 帆羽

数控机床的人因工程学设计 指导教师 副教授 所在院 (系) 斯莱克学院 课题来源 自拟课题 课题类型 工程技术研究 毕业设计的 内容和意义 课题背景: 数控机床是现代高科技机电产品的一种重要设备 ,正在被广泛地 应用于加工制造业的各个领域,而随着微电子技术和计算机技术的发 展,现代数控机床的应用领域也日益扩大,相应地对提高数控机床效率 的研究也越来越被人们所重视。 数控机床的工作质量不但取决于机器本身的性能和质量 ,还取决 于操作者,也就是取决于该系统中人机系统的功能质量,只有当操作者 与机器的节奏相协调时才能发挥出最高的效率。然而目前在设计数控 机床的时候由于很少从人机工程方面进行考虑 ,对人机系统缺乏必要 的实验和研究,造成机器生产出来投入使用时,才发现由于人机系统不 合理,操作人员不能舒适得使用机床,使得机器的效率不能很好发挥出 来,甚至危及操作者人身安全。最后不得不付出很高的代价 ,拖延大量 【1】 时间对机器进行改造,这种修补又难以使人机关系得到彻底改善 针对这种情况我们从人机工程的角度对机床外观造型进行设计改善。 课题内容: 1.提出:在整个人机系统中机床要由人操作使用来实现其功能, 机床功能的实现很大程度上取决于人使用的好坏,而人机交互的过程 影响着操作者使用机床的状态,因此使用人机工程系统分析对机床造 型进行改善,让机床以易懂、安全、舒适、亲切的方式呈现给使用者, 为使用者创造良好的人机交互环境。在对机床造型进行改善设计时, 根据数控机床的工作功能与操作特点,对其进行人机工程学的系统研 究,分别从数控机床外观造型人机分析、数控机床控制面板人机界面 研究、机床色彩人性化设计研究、机床标牌人性化研究等方面进行研 究,使机床设计在其功能性、操作性的基础上加入人的因素,将人作 为设计的主题,做到以人为本。 课题名称

CDMA语音编码和信道编码

CDMA的语音编码与信道编码 摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步入移动信息时代。CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。本文主要介绍CDMA中常用的语音编码技术与信道技术。 关键词:语音编码信道编码受激励线性编码码激励线性预测编码矢量和激励线性预测编码编码器解码器卷积码 1 CDMA中的语音编码技术 语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质量。 1.1 语音编码技术的分类 语音编码技术有三种类型:波形编码、参量编码和混合编码。 ●波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将 幅度量化,对每个量化点用代码表示。解码是相反过程,将接收的数字 序列经解码和滤波后恢复成模拟信号。波形编码能提供很好的话音质 量,但编码信号的速率较高,一般应用在信号带宽要求不高的通信中。 脉冲编码调制(PCM)和增量调制(ΔM)常见的波形编码,其编码速率 在16~64kbps。 ●参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个 特征参量并进行量化编码,可实现低速率语音编码,达到2~4.8kbps。 但话音质量只能达到中等。 ●混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量 优点又有参量编码的低速率优点。其压缩比达到4~16kbps。泛欧GSM 系统的规则脉冲激励-长期预测编码(RPE-LTP)就是混合编码方案。1.2 CDMA的语音编码

信道编码实验

实验五信道编码实验 实验目的:1、学习并理解信道编码的根本目的、技术要求与基本目标等基本概念; 2、学习并理解信道编码的根本目的、技术要求与基本目标等基本概念;掌握线性分组码的物理涵义、数学基础及检纠错原理;掌握循环码的码型特点、检纠错能力、编译码方法及基本技术; 3、学会使用MATLAB工具检纠错模拟与分析。 实验仪器:MATLAB软件,PC机 实验原理(概括性文字叙述、主要公式、电路图等) 如果说信源编码的目的是为了提高信号传输的有效性的话,那么信道编码则是为了提高通信的可靠性而采取的一种编码策略。信道编码的核心基础是纠错编码理论,是在信息码后面附加上一些监督码,以便在接收端发现和纠正误码。 数字通信系统简化模型 编码信道:包括信道编码器、实际信道、信道译码器。 该模型是研究信道纠错编码和译码的模型,集中研究通信可靠性。 通信可靠性问题:消息通过信道传输的时候,如何选择编码方案来减少差错。首先与信道统计特性有关,其次与编码方法、译码方法也有关系。 信道是信号从信源传送到信宿的通路。 由于信道有干扰,使得传送的数据流(码流)中产生误码。 误码的处理技术有纠错、交织、线性内插等。 信道编码的目的是提高信息传输或通信的可靠性。

信道编码的任务是降低误码率,使系统具有一定的纠错能力和抗干扰能力,提高数据传输效率。 信道编码的过程是在源数据码流中加插一些码元,达到在接收端进行检错和纠错的目的。 在带宽固定的信道中,总的传送码率是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。 降低误码率:在传输的信息码之中按一定规律产生一些附加数字,经信道传输,在传输中若码字出现错误,收端能利用编码规律发现码的内在相关性受到破坏,从而按一定的译码规则自动纠正或发现错误,降低误码率。 实验内容及数据处理: 利用MATLAB仿真二进制码在离散信道无记忆信道中传输产生的误码率,设传送二进制码“0”的概率P0=0.6,"1"的概率p1=1-p0。利用单极性基带信号传输,从判决输入端观测,用电平s0=0传输“0”,用电平s1=A传输“1”,信道中的噪声是加性的零均值高斯噪声,方差为柯西的平方,求在最佳门限电平判决下传输误码率Pe与A2/柯西平方下的曲线,每一个给定噪声方差下仿真传输序列长度为105bit,仿真程序代码如下: clear; s0=0;s1=5; p0=0.6;%信源概率 p1=1-p0; A2_over_sigma2_dB=-5:0.5:20;%仿真信噪比范围 A2_over_sigma2=10.^(A2_over_sigma2_dB./10); sigma2=s1^2./A2_over_sigma2; N=1e5; for k=1:length(sigma2) X=(randn(1,N)>p0); n=sqrt(sigma2(k)).*randn(1,N); xi=s1.*X+n; C_opt=(s0+s1)/2+sigma2(k)/(s1-s0)*log(p0./p1); y=(xi>C_opt); err(k)=(sum(X-y~=0))./N; end semilogy(A2_over_sigma2_dB,err,'o');hold on; for k=1:length(sigma2) C_opt=(s0+s1)./2+sigma2(k)./(s1-s0).*log(p0./p1); pe0=0.5-0.5*erf((C_opt-s0)/(sqrt(2*sigma2(k)))); pe1=0.5+0.5*erf((C_opt-s1)/(sqrt(2*sigma2(k))));

信道编码仿真开题报告

2010届本科生毕业设计(论文) 开题报告 课题名称基于matlab的几种信道编码仿真专业电子信息工程 专业方向电子工程 班级 学号 学生姓名 指导教师 教研室

基于matlab的几种信道编码仿真 1开题依据 移动通信的发展日新月异,从1978年第一代模拟蜂窝通信系统诞生至今,不过20多年的时间,就已经过三代的演变,成为拥有10亿多用户的全球电信业最活跃、最具发展潜力的业务。尤其是进几年来,随着第三代移动通信系统(3G)的渐行渐近,以及各国政府、运营商和制造商等各方面为之而投入的大量人力物力,移动通信又一次地在电信业乃至全社会掀起了滚滚热潮。虽然目前由于全球电信业的低迷以及3G系统自身存在的一些问题尚未完全解决等因素, 3G业务的全面推行并不象计划中的顺利,但新一代移动通信网的到来必是大势所趋。因此,人们对新的移动通信技术的研究的热情始终未减。移动通信的强大魅力之所在就是它能为人们提供了固话所不及的灵活、机动、高效的通信方式,非常适合信息社会发展的需要。但同时,这也使移动通信系统的研究、开发和实现比有线通信系统更复杂、更困难。实际上,移动无线信道是通信中最恶劣、最难预测的通信信道之一。由于无线电波传输不仅会随着传播距离的增加而造成能量损耗,并且会因为多径效应、多普勒频移和阴影效应等的影响而使信号快速衰落,码间干扰和信号失真严重,从而极大地影响了通信质量。为了解决这些问题,人们不断地研究和寻找多种先进的通信技术以提高移动通信的性能。特别是数字移动通信系统出现后,促进了各种数字信号处理技术如多址技术、调制技术、纠错编码、分集技术、智能天线、软件无线电等的发展。本文将主要关注在几代移动通信系统中所使用的不同的纠错编码技术,以展示纠错编码在现代数字通信中的重要作用。 2文献综述 1948年,香农(Shannon)在他那篇著名的论文《通信的数学理论》中提出并证明了:对于一个信道容量为C的有扰信道,消息源产生信息的速率为R,只要R≤C,则总可以找到一种信道编码和译码方式使编码错误概率P随着码长n的增加,按指数下降到任意小的值,表示为,这里E( R )称为误差指数;若R>C,则不存在编译码方式来实现无误传输。这一结论为信道编码指出了方向,但它仅是一个存在性定理,并未给出怎样去寻找这种性能优良的码。近50年来,在信

计算机专业研究生论文开题报告范文

Internet环境下遥操作机器人系统传输时延研究 一、选题背景及其意义 遥操作就是远距离操作,是在远方人的行为动作远距离作用下,使事物产生运动变化。遥操作是一种基础技术,应用领域相当广泛,如机器人领域、航空航天领域、基础科学试验、核工程、海底与远洋作业等。遥操作技术使移动机器人到达艰险的环境,通过机器人完成特定的任务,从而可以使人远离艰险的工作环境。 基于Internet的遥操作机器人是指将机器人与Internet连接,使人们可以在任何地方通过浏览器访问机器人,实现对机器人的远程监视和控制。它以Internet 为构架,不仅降低了遥操作系统的成本,也使机器人为Internet上越来越多的人们所熟悉和共享。 其中,数据传输是遥操作机器人系统的一个非常重要的组成部分。从通信领域来说,分为无线和有线数据传输。随着Internet的出现及广泛应用,通过Internet进行数据传输,实现远距离遥控机器人越来越成为一个重要研究方向。 基于Internet的遥操作机器人系统,一方面得益于网络传输的显著优势,网络资源廉价、普及范围广、所需硬件少;另一方面,Internet上数据流具有多样性,遥操作机器人系统必需的实时性特点所需要的高优先级必然不能达到。同时,Internet本身固有的特点,由于网络延时和负荷变化所具有的随机性、可变性和不可预测性引起了遥操作控制过程中的随机时延及延迟抖动,遥操作机器人系统的可控性、稳定性及透明度都受到负面影响。在力觉临场感遥操作系统网络传输中的不确定时延往往导致机器人控制信息反馈回遥操作端有一段时间滞后。该滞后与网络当时的性能紧密相关,如拥挤程度、途经路径的长短等等。如果遥操作人员不把网络延时考虑进去,对机器人的当前运动状态无法做出正确的判断,就无法发送正确的遥控命令,控制也将出现偏差,严重的甚至有危险。因此不确定时延是远程遥控机器人研究的技术难点之一。具有临场感效果的遥操作机器人系统应用于太空活动和深海探测等距离遥远的地方,但远地从机器人与本地操作者之间长达几秒到几十秒不等的通信时延却成为影响系统正常工作的突出问题。这不仅降低了系统的临场感效果,使操作者难以实时地、真实地感知远地环境的情况,而且造成了系统的不稳定,尤其是在从机器人与环境发生力的交互作用过程中。具体说来,问题的根源主要集中在网络时延和数据可靠性两大问题上。其中,数据可靠性又与网络时延有着密不可分的关系。 目前,对于遥操作机器人系统网络时延问题应对策略的研究主要集中在控制理论领域,如基于电路网络理论的无源控制法则、基于现代控制理论的控制算法和虚拟现实技术的模型修正法等。其共同的特点是把网络看作一个不可知(黑盒子)和不可控的对象,在控制领域寻找应对方法,以期消除网络时延对遥操作系统中信息、数据传输带来的负面影响。但是,科学地讲,网络时延虽然具有相当显著的不确定性,但它是一个可控、可预测的对象。因而,从网络体系及网络时延本身出发,从遥操作机器人系统与网络的互动需求出发,提出满足遥操作机器人系统需求的时延相关的网络优化和适应性方法,从而与控制领域的研究成果达成互补的效果。在保证系统稳定性的基础上,尽可能地提高系统透明度,满足期望的操作性,达到系统稳定性与透明度的动态平衡性, 即随着系统状态在稳定性和透明度之间找到一个合理的折中,使得系统在稳定的基础上尽可能提高操作性能。通过跨学科的努力,从根本上解决Internet环境下网络时延及时延抖动对遥操作机器人系统的影响和限制,缩短遥操作机器人系统理论与实用化的距离,为遥操作机器人技术提供更加广阔的应用空间。 二、国内外研究动态

第五章 信道编码 习题解答

第五章 信道编码 习题解答 1.写出与10011的汉明距离为3的所有码字。 解:共有10个:01111,00101,00000,01010,01001,00110,11101,10100,11000,11110。 2. 已知码字集合的最小码距为d ,问利用该组码字可以纠正几个错误可以发现几个错误请写出一般关系式。 解:根据公式: (1)1d e ≥+ 可发现e 个错。 (2)21d t ≥+ 可纠正t 个错。 得出规律: (1)1d = ,则不能发现错及纠错。 (2)d 为奇数:可纠 1 2 d -个码元错或发现1d -个码元错。 (3)d 为偶数:可纠 12 d -个码元错,或最多发现1d -个码元错。 (4)码距越大,纠、检错能力越强。 3.试计算(8,7)奇偶校验码漏检概率和编码效率。已知码元错误概率为4 10e p -=。 解:由于4 10e p -=较小,可只计算错两个码元(忽略错4或6个码元)的情况: 228788! 10 2.8106!2! e p C p --== ?=?? 7 87.5%8 η= = 4.已知信道的误码率4 10e p -=,若采用“五三”定比码,问这时系统的等效(实际)误码率为多少 解:由于4 10e p -=较小,可只计算错两个码元的情况 11252112 83232(1)610e e e p C C p p C C p --=-≈=?

5.求000000,110110,011101,101011四个汉明码字的汉明距离,并据此求出校正错误用的校验表。 解:先求出码字间距离: 000000 110110 011101 101011 000000 4 4 4 110110 4 4 4 011101 4 4 4 101011 4 4 4 汉明距离为4,可纠一位错。 由于一个码字共有6个码元,根据公式:21617r n ≥+=+= 得 3r = 即每个码字应有3位监督码元,6-3=3位信息码元。 直观地写出各码字:123456 000000110110011101101011 x x x x x x 令456x x x 为监督码元,观察规律则可写出监督方程:4135236 12x x x x x x x x x =⊕?? =⊕??=⊕? 从而写出校验子方程:113422353126s x x x s x x x s x x x *** *** ***?=⊕⊕?=⊕⊕??=⊕⊕? 列出校验表: 6.写出信息位6k =,且能纠正1个错的汉明码。 解:汉明码的信息码元为六个,即:6k =。监督码元数r 应符合下式:217r k r r ≥++=+

通信系统中的信道编码方法

通信系统中的信道编码方法 Xx (xx大学信息工程学院,湖北武汉430070) 摘要:目前,中国固定和移动两大网络的规模都已位居世界第2位,上网用户也在不断增加,中国的信息通信制造业也得到很大的发展。中国将加快建设新一代信息通信网络技术、生产体系。在信息通信网络的高速发展下,要有效地提高传输速率,然而在实际信道上传输数字信号时,由于信道特性的不理想以及加性噪声和人为干扰的影响,系统输出的数字信息不可避免地会出现差错。因此,为了保证通信内容的可靠性和准确性,每一个数字通信系统对输出信息码的差错概率即误码率都有一定的要求。 为了降低误码率,常用的方法有两种:一种是降低数字信道本身引起的误码,可采取的方法有:选择高质量的传输线路、改善信道的传输特性、增加信号的发送能量、选择有较强的抗干扰能力的调制解调方案等;另一种方法就是采用差错控制措施,使用信道编码。在许多情况下,信道的改善是不可能的或是不经济的,这时只能采用信道编码方法。因此实现信道编码方法具有重要的意义。 关键词:信道,误码率,信道编码 Abstract:At present, the scale of the fixed and mobile network are ranked 2 in the world, the Internet users are always growing, China’s information and communication industry has got a lot of development. China will speed up the construction of a new generation of information and communications network technology and production system. Under the fast development of information and communication network, we should improve the transmission rate effectively, however, when transmitting digital signals in actual channels, there are mistakes in the system outputs of digital signals inevitably due to not ideal characteristics of the channels and additive noise as well as man-made interference. Though, in order to ensure dependability and accuracy of communication contents, a digital communications system for each output code error probability of bit error rate that has certain requirements. To reduce the error rate, there are commonly two ways: one is to reduce the number of channel bit error caused by its own, the following methods: Select high-quality transmission lines, to improve the transmission characteristics of the channel ,to increase signal transmission power, Select a strong anti-interference ability of modulation and demodulation programs; the other method is to use error-control measures , to use channel coding. In many cases, the improvement of the channel is not possible or not economical, then we can only use channel coding. Therefore, implementing channel coding method is significant. Keywords:channel,code errorrate,channel coding,

实验七_信道编码仿真实现

实验七信道编码仿真实现 班级:08电子信息工程二班 实验人:马华臣 一、实验目的 理解信道编码的思想,掌握信道编码的编程实现原理及技术。 二、实验内容 1.随机产生二进制信源消息序列。 产生随机数的方法与前面类似,利用srand( (unsigned)time( NULL ) )和rand()函数模拟产生随机数。 2.利用信道编码方法进行编译码。 信道的编译码分三部分,即编码部分,信道模拟部分,译码部分。编码部分采用汉明编码。模拟信道,采用rand()函数随机确定产生差错的位置。译码部分,采用标准阵列表直接全表查找的方法译码。本程序实现的是对汉明(5,2)码的编码与译码(课本P362-363)。 生成矩阵为: G= 1 0 1 1 1 0 1 1 0 1 三、程序 //汉//汉明(5,2)码的编码与标准阵列译码/// ///////////////////////////// #include "stdio.h"

#include "math.h" #include"stdlib.h" #include "time.h" void main() { int aa[10000]; int i; int N; //////////////////////// int b[4][7]={{1,0,1,1,1},{0,1,1,0,1}};//定义生成矩阵 int y=0,s=0; int j,k,m,n; int a[4],q[7],rr[10000/2*5]; ////////////////////////// int p,u,D=0; int cc[2500],dd[2500],ee[2500]; int e[7][5]={{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}, {1,0,1,0,0},{1,0,0,0,1}};//定义错误图样 int w[10000/2*5]; int ww[10000/2]; printf("汉明(5,2)码的编码与标准阵列译码:\n"); printf("请输入你想产生的二进制个数(至少四个但不超过1万):"); scanf("%d",&N); //输入想产生的信源的个数 while(N<4) { printf("输入无效,请重新输入"); printf("请输入你想产生的二进制个数(至少四个):"); scanf("%d",&N); } printf("随机产生的二进制序列为:\n"); srand( (unsigned)time( NULL ) ); //产生一个随机序列,并把它放入a[]中for(i=0;i

信息技术小课题开题报告

信息技术小课题开题报告 高兰眉山外国语学校 一.课题的背景与意义 孔子曰:“知之者不如好之者,好之者不如乐之者。”现在的学生,既要求国外学生的自由,又要中国式的宠爱,可是他们中的大部分,既没有国外学生的独立,又缺乏中国传统的尊师重教,所以,教会他们如何尊重学习、学会学习迫在眉睫。 刚上初中的孩子,来到眉外,开始了他们人生中第一次远离家乡,对知识的朝圣。在仍对寄宿生活懵懵懂懂的摸索中,大面积的学科知识扑面而来,像深秋校园里金黄的银杏,风不知所起,遗世独立,他们表现得兴奋,感觉到刺激,但是随之而来的是深深的无助与迷茫。学科太多,符号太多,要掌握的知识更多,可是学习方法却逼近于无。在多重压力的抨击下,很多学生开始偏科,甚至厌学。这样的警钟无疑是给了老师当头一棒。在各种大背景下,信息技术教学举步维艰。学生对信息技术一知半解,对应用软件更是娱乐为主。于是塑造一个积极向上的课堂氛围,如何利用学生对信息技术的敏感度帮助他们快乐学习成了当务之急。 而且由于我校学生的信息技术操作技能和信息素养参差不齐,这给初中信息技术的教学工作带来了很多的教学难题。比如,教师要在每节课中穿插讲授一些学生本来应该在小学阶段学过的知识,无形中增大了课堂教学容量;同时,教师考虑到要照顾这部分学生的接受能力,需要放慢教学进度,这都与教学课时本来不够产生了严重的冲突。诸如此类的问题还有很多,这将给初中信息技术教学工作带来了很多的现实问题,甚至是教学难题。结合学生实际情况和学校教学条件,如何进行愉快的课堂教学,切实提高教学实效,是我们关注信息技术教学工作的重点问题。 二.课题的名称:关于信息技术课愉快教学法的探讨 三.课题的指导思想 “愉快教学法”是一种情景教学方法,它要求教师要为学生创设一个轻松、愉快的学习情景,让学生感受到知识的奇妙,产生强烈的求知欲,从而乐学、好学,并从中体味到知识的快乐与成就感。在素质教育的新形势下,借鉴和运用“愉快

《通信系统原理》作业题

《通信系统原理》作业题 第1章绪论 1.画出数字通信系统模型。 噪声源 数 字 解 调 信 道 译 码 解 密 信 源 译 码 信 宿 数 字 调 制 信 道 编 码 加 密 信 源 编 码 信 源 信道 2.衡量数字通信系统的有效性和可靠性的性能指标有哪些? 答:码元传输速率信息传输速率频带利用率误码率误信率 3.说明通信系统的分类。 4.一个由字母A,B,C,D组成的字,对于传输的每一个字母用二进制脉冲编码,00代替A,01代替B,10代替C,11代替D,每个脉冲宽度为5ms. (1)不同的字母是等概率出现时,试计算每个字母的传输速率和信息速率; (2)若每个字母出现的概率分别为 10 3 , 4 1 , 4 1 , 5 1 = = = = D C B A P P P P 试计算每个字母的传输速率和信息速率。

第2章确知信号 1. 画出单位冲击函数的时域波形及频谱密度,并说明各波形表示的含义。 2.求一个矩形脉冲的频谱密度及能量谱密度。 G a( f 1/τ 2/ -2/τ -1/

第5章 模拟调制系统 1. 比较AM 与DSB 两种调制方式的优缺点。 AM :优点是接收设备简单;缺点是功率利用率低,抗干扰能力差。主要用在中波和短波调幅广播。 DSB :优点是功率利用率高,带宽与AM 相同。主要用于调频立体声中的差信号调制,彩色TV 中的色差信号调制 2. 已知线性调制信号为 t t c ωcos )sin 0.51(Ω+,式中Ω=6c ω,画出波形与频谱。

3. 已知调制信号)4000cos()2000cos()( t t t m ππ+=载波为t π4 10cos ,进行单边带调制,试确定该单边带信号的表达式,并画出频谱图。

数字通信系统matlab仿真

课程设计报告 题目:基于MATLAB的通信系统仿真 ———信道编码对通信系统性能的影响 专业:通信工程 姓名:XXX 学号:0730xxxx

基于MATLAB 的通信系统仿真 ———信道编码对通信系统性能的影响 摘要:简述信道编码理论,详细说明分组码的编译原理、实现方法及检错纠错能力,用MATLAB 仿真有无信道编码条件下对通信系统性能的影响及信道编码在不同信道下对通信系统性能的影响,如AWGN 信道和深衰落信道。 关键词:信道编码、分组码、MATLAB 仿真、性能 一、引言 提高信息传输的有效性和可靠性始终是通信技术所追求的目标,而信道编码能够显著的提升信息传输的可靠性。1948年,信息论的奠基人C.E.Shannon 在他的开创性论文“通信的数学理论”中,提出了著名的有噪信道编码定理.他指出:对任何信道,只要信息传输速率R 不大于信道容量C, 就一定存在这样的编码方法:在采用最大似然译码时,其误码率可以任意小.该定理在理论上给出了对给定信道通过编码所能达到的编码增益的上限,并指出了为达到理论极限应采用的译码方法.在信道编码定理中,香农提出了实现最佳编码的三个基本条件 :(1 )采用随机编译码方式 ; (2 )编码长度L→∞ , 即分组的码组长度无限 ; (3)译码采用最佳的最大似然译码算法。【1】 二、信道编码理论 1、信道编码的目的 在数字通信系统中由于信道内存在加性噪声及信道传输特性不理想等容易造成码间串扰同时多用户干扰、多径传播和功率限制等也导致错误译码。为了确保系统的误比特率指标通常采用信道编码。信道编码是为了保证信息传输的可靠性、提高传输质量而设计的一种编码。它是在信息码中增加一定数量的多余码元,使码字具有一定的抗干扰能力。 2、信道编码的实质 信道编码的实质就是在信息码中增加一定数量的多余码元(称为监督码元),使它们满足一定的约束关系,这样由信息码元和监督码元共同组成一个由信道传输的码字。举例而言,欲传输k 位信息,经过编码得到长为n(n>k)的码字,则增加了 n - k = r 位多余码元,我们定义 R = k / n 为编码效率。【2】 3、 信道编码公式 令信息速率为f b ,经过编码以后的速率为f t ,定义:R =f b /f t 为编码率。则对于任何一个信道,总存在一个截止速率R 0,只要R

信道编码误码影响

卷积码对误码率影响探究 一、实验要求及目的 在通信中,由于各种实际中存在的各种干扰,严重影响通信质量。在前面实现的QBSK信号的模拟信道的加噪传输的基础上加上信道编码技术,观察信道编码技术对误码率的改善。本实验中采取(2,1,7)卷积码对基带序列进行编码,观察软、硬判决方法对传输误码率的改善作用。 二、实验原理 在实验中加高斯白噪声来模拟实际通信中的复杂的外界干扰条件,根据不同的归一化信噪比值计算加到每个信号上的能量,得到模拟的经过信道的加噪信号。 卷积码译码方法有两大类:大数逻辑译码,又称门限译码(硬判决);另一种是概率译码(软判决),概率译码又分为维特比译码和序列译码。硬判决是以分组码理论为基础的,其译码设备简单,速度快,但其误码性能要比概率译码差。 在硬判决译码中,我们将从模拟信道上得到的信号进行解调,得到信息比特流,在进行硬判决。取一个判决长度,在实际应用中,一般取其基本信码单元的六到八倍,因而,本实验中取6,则在译码前的比特流中以12位为一组,进行加比选运算,得到最佳路径,确定码序列。软判决主要是利用高斯白噪声的概率密度函数,对信道上下来的信号直接进行处理,进行判决。计算每个原信息比特对应现在新的信道比特对应的错误

该概率,然后计算器对数释然比,进行量化软判决。得到信息比特流,与原始信息比特进行比较并统计其错误码元数,从而得到误码率。 三、实验步骤及实验软件平台 本模拟实验程序在MATLAB2009A中运行良好,如果程序在传递过程中格式发生变化,改成M文件的格式即可运行。 下面对本程序设计思路流程进行介绍: (1)设计参数框,达到实验变量可调,试验参数包括基带码元个数、信噪比起始值、信噪比终止值、默认 的调制方式MPSK,M可以变化,但大于等于4且为 2的整数次幂。 (2)进行卷积码编码,主要运用库函数实现,卷积码为(2,1,7)卷积码,卷积码参数为[171,133]。 (3)调整基带码元序列,转化为PSKMOD函数所需的进制序列;由归一化信噪比的值计算加到每个调制后码 元上的噪声大小;进行QPSK调制,并在调制后的基 带序列上加噪。 (4)在这一步将分为两种方式进行解调,硬判决,按正常的解调方式解调QPSK信号,进行卷积码的硬判决, 得到传输得到的基带码元序列;软判决,计算QPSK 四个星座点对应的条件概率,计算Q值,利用库函 数进行卷积码的软判决,得到传输后的基带码元序

信道编码仿真实践

信道编码仿真实践 XX 温州大学物理与电子信息工程学院 摘要:本文通过阐述通信系统的基础理论,着重分析信道理论及信道编码方式,采用蒙特卡罗计算机仿真方法, 利用MATLAB 提供的可视化工具Simulink 建立了信道编码的仿真模型,详细讲述了各编码方式的设计。在给定仿 真条件下,运行了仿真程序,对几种基本信道编码进行了仿真性能测试和讨论,并从实际角度出发,对扩频通信中 的信道编码进行了初步仿真,得出了信道编码就是在发送端的信息码元序列中,以某种确定的编码规则,加入监督 码元,在接受端再利用该规则进行检查识别,从而发现错误、纠正错误。 关键词:通信系统;信道;信噪比;误码率;信道编码 The Simulation Practice of the Channel Coding XX College of physics and electronic information engineering of Wenzhou University Abstract: This article through the elaboration communications system basic theory, analyzes the channel theory and the channel coding way emphatically, uses the Monte Carlo computer simulation method, provided visualization tool Simulink using MATLAB to establish the channel coding simulation model, in detail narrated each encoding method design.In assigns under the simulation condition, moved the simulated program, has carried on the simulation performance test and the discussion to in the binary bipolarity communications system several kind of basic channel coding, and embarks from the actual angle, has carried on the preliminary simulation to in the wide frequency correspondence channel coding, obtained has used the cascade code in the binary bipolarity wide frequency communications system, could realize the channel multiplying and the error code performance win-win conclusion. Key words: Communications system; Channel; Signal-to-noise ratio; Error rate; Channel coding 1 背景知识 数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。信道编码的本质是增加通信的可靠性。但信道编码会使有用的信息数据传输减少,信道编码的过程是在源数据码流中加插一些码元,从而达到在接收端进行判错和纠错的目的。在带宽固定的信道中,总的传送码率也是固定的,由于信道编码增加了数据量,其结果只能是以降低传送有用信息码率为代价了。利用信道编译码,可以显著改善信息在传输过程中的错误概率指标,有效增强系统抗干扰能力,提高数字通信系统的可靠性。 信道编码一般分为两类:分组编码和卷积编码。 2、基本原理 2.1 分组编码 在分组编码中,二进制信源输入序列被划分为长度k的码字组。每个长度k的码字被映射为

相关主题
文本预览
相关文档 最新文档