当前位置:文档之家› 屏幕分辨率检测方法

屏幕分辨率检测方法

屏幕分辨率检测方法
屏幕分辨率检测方法

屏幕分辨率检测方法

分辨率是地图升级最为重要的一个参数,尤其是安装凯立德地图,不知道分辨就无法升级地图。

分辨率一般有320×240、480×272、400×234、480×234和800×480 五大常用分辨率

我们必须确定自己的机器是什么分辨率的,检测方法很简单:

第一步:下载检测工具:https://www.doczj.com/doc/1f8450609.html,/201105/kld/2011/SJ/J08/J08Arm4.rar

第二步:下载后解压缩,将产生的如下文件复制到一个存储卡上或者机器的内存里面。

注意:如果原来的存储卡有同名文件,必须想把原来的文件随便重命名一个别的名字,然后再复制这些文件。

第三步:打开导航,设置路径或者直接点击“导航”,系统应该出现如下检测界面:

检测界面,第一行就是分辨率

如果检测成功,会给予如下提示:

系统检测完成,请继续安装(说明这个机器是100%可以升级的)

如果出现“系统检测完成,请继续安装!”提示框,就说明您的机器是完全可以安装最新的凯立德地图的!

如果出现以下提示,就不要安装了,无法顺利安装,即时安装,也非常困难:

特别注意:

复制时的时候,一定要将多个文件和文件夹同时复制到存储卡里面或者机器内存里面,最好用空卡。

如果您的机器是比较老的车载DVD,是mips架构的,请下载mips架构专用的检测工具,方法一样,下载地址:https://www.doczj.com/doc/1f8450609.html,/201105/kld/2011/SJ/J08/J08Mipsii.rar

如果确定了你的机器可以安装凯立德最新版地图,那就请登录https://www.doczj.com/doc/1f8450609.html,放心团购吧!

如何正确设置扫描分辨率

如何正确设置扫描分辨率 分辨率单位不管是用dpi 、ppi 还是lpi ,都是强调单位长度(英寸)内的点线数而不是单位面积内的点线数。因此,要想根据输出尺寸和分辨率及原图尺寸来计算扫描分辨率,缩放系数应当=长边(或短边)之比。 如例一:已知输出尺寸为A4(29.7×21cm),分辨率300dpi ,那么扫描5英寸(12.7×8.8cm )照片的分辨率应设为多少dpi ?答案是(29.7/12.7)×300≈702dpi,或(21/8.8)×300≈716dpi 即可,而不是原文计算的(21×29.7)/(12.7×8.8)×300≈1680dpi。如果需要将135底片(3.5×2.4cm)扫描放大成分辨率为170dpi 的5英寸(12.7×8.8cm)照片,需设置的分辨率应该是(12.7/3.5)×170≈617dpi ,或(8.8/2.4)×170≈623dpi ,而不是(12.7×8.8)/(3.5×2.4)×170≈2210dpi。 如果嫌计算麻烦,可在Photoshop 中按输出尺寸和分辨率重新建立一个文件,进入图像大小设置面板,将宽度、高度和分辨率三者的比率锁定,然后将高度(或宽度)修改为原图长边(或短边)尺寸,则分辨率中的数据自然就变成你需要的扫描分辨率了。我们就以原文例一进行具体操作。先打开Photoshop 图像处理软件,点选“文件(File)/新建(New)”,建立一个文件。然后选择“图像(Image)/图像大小(Image size)”,将“重定图像大小(Resample image)”前的对勾去掉,高度(Height)修改为 12.7厘米或将宽度(Width)修改为8.8厘米,此时分辨率框中的数据701.6 (或715.818)就是我们需要的数据了。 由于原图长宽比例与最后输出时的长宽比例不尽相同,所以在实际使用时应根据图片内容(即如何裁剪)来决定到底是需要用长边还是用短边来求得分辨率。从这个角度来看,用面积之比来计算缩放系数也是不妥的。 按照需要修改高度和宽度后,就得到了需要的分辨率 扫 描 原 件 规 格

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

关于同位素测定

同位素测定报告#12732.05 “PMU”型铜粉批号#3/05-07 由TAG GIREDMET抽样。 原子分率的测定使用了火花源质谱分析法。应用了日本电子公司(日本)制造的JMS-01-BM2双聚焦质谱分析仪。高分辨率质谱是在Ilford-Q板上摄取的。Joyce Loebl(英国)的MDM6测微密度计和NOVA 4(美国)在线微型计算机被用于识别质谱线。产生量估算由原版的MS&GC实验室软件计算得出。同位素丰度测量的相对标准偏差为0.01-0.05。稀有气体和超铀元素没有制进表格中,因为它们的浓度低于百万分之0.001的检测极限。 结果用原子百分比表示

“PMU”型铜粉的化学成分证书 批号#3/05-07 净重 199,785kg 装于14个箱子中的1392个玻璃安瓿 实验室MS&GC Lab 任何对于此样本的参考均要引用以上的名称和号码。 铜粉中杂质(镁、铝、钛、铁、镍、钼、钶、锑)的总含量不超过重量的0.002%。铜粉的纯度级别为99.998%。此数据由100%铜粉和杂质总量的差额计算得出。杂质列表与TU 1793-001-56993504-2004相一致。 铜粉在放射性方面是安全的。铜粉的总放射性不超过1.10-11 Ci/g。 样品由TAG Giredmet抽样。抽样程序报告始于2005年5月16日。箱子由TAG Giredmet “GAC-68”铅垂探测。 铜粉中杂质含量与检测技术列于报告#12732.05中(请翻页)。

杂质检测报告#12732.05 球状铜粉批号#3/05-07 样品由TAG GIREDMET抽样。 总杂质分析采用火花源质谱分析法。应用了日本电子公司(日本)制造的JMS-01-BM2双聚焦质谱分析仪。高分辨率质谱是在Ilford-Q板上摄取的。Joyce Loebl(英国)的MDM6测微密度计和NOVA 4(美国)在线微型计算机被用于识别质谱线。产生量估算由原版的MS&GC 实验室软件计算得出。相对标准偏差为0.15-0.30。稀有气体和超铀元素没有制进表格中,因为它们的浓度低于百万分之0.01的检测极限。 结果用百万分率表示(1 ppm=0.0001%)

时域有限差分法发展综述

时域有限差分法发展综述 潘忠 摘要:时域有限差分法(FDTD)是解决复杂电磁问题的有效方法之一,目前FDTD 法的许多重要问题得到了很好的解决,已经发展成为一种成熟的数值计算方法。随着计算机数据处理性能的快速提高和计算机价格的下降,使得FDTD法的应用范围越来越广,而FDTD法本身在应用中又有新的发展.本文介绍并分析了时域有限差分法,对各种条件的应用进行了比较和分析,给出了具有一定参考价值的结论。 关键词:时域有限差分法;研究与发展;比较;分析 A Summary of FDTD and Development at Home and Abroad Zhong Pan Abstract: The finite difference time-domain (FDTD) method is one of the most effective methods to solve electromagnetic problems. Many important questions of FDTD method have been solved well through many scientists’ effort. Now, FDTD method is a mature numerical method. Especially in few years, the range of using FDTD method is becoming wider and wider because of the faster data processing and processing and cheaper price of computer. FDTD method has also been developed during using. FDTD method is introduced and discussed in this paper. The applications of various conditions are compared and analyzed. Finally, some valuable conclusions are drawn. Key words: FDTD; Research and Development; Comparison; Analysis 1966年,K.S.Yee首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain,简称FDTD)。经历了二十年的发展FDTD法才逐渐走向成熟。上世纪80年代后期以来FDTD法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域。

如何正确的为液晶显示器设置分辨率

如何正确的为液晶显示器设置分辨率 对于生活中已经离不开电脑的我们,显示器是几乎每天都会要面对的东西,而随着显示器的不断发展,LCD(液晶)显示器也渐成主流,逐渐代替了我们电脑桌上的CRT(显像管)显示器。 与CRT显示器不同,LCD显示器没有良好的分辨率适应性,所以每一台LCD 显示器都会有一个属于它的固定分辨率,只有在使用这个分辨率的情况下,LCD 显示器才能最清晰的显示出电脑输出的文字和画面,否则,所有的东西都会显示的很模糊。 很多朋友也正是因为不了解LCD显示器的这种特性,或者不清楚自己的显示器应该使用什么样的分辨率,而错误的使用不正确的分辨率,长期看着这样模糊的画面,特别是文字,对于眼睛的健康是十分有害的! 其实,现在大多数的LCD显示器都遵守着一定的分辨率标准,我们可以很轻松的根据显示器的尺寸判断出显示器应该使用什么样的分辨率。 早期的15寸和17寸4:3比例的LCD显示器,都是使用和我们以前使用的CRT显示器相同的标准XGA分辨率,也就是1024x768。 现在较新的17寸和19寸的LCD都是5:4比例的了,它们所使用的都是SXGA 分辨率,尺寸是1280x1024。 至于宽屏的电脑显示器,屏幕比例也与我们家中的宽屏电视不同,并不是16:9的比例,而是16:10。 宽屏的LCD显示器基本都是19寸以上的尺寸,19寸的显示器通常使用的是WXGA+的分辨率,尺寸为1440x900,而20和22寸的分辨率是WSXGA+,尺寸为1680x1050。 只要按照这些参数对自己的显示器进行设置,就可以让你的显示器发挥出它应有的性能,显示出绚丽的画面来。 上面介绍的这些分辨率,都是针对台式机显示器的,笔记本由于其特殊性,很多显示器的分辨率都超出了通常的定义,大家最好还是参照电脑的使用手册来对分辨率进行设置。 液晶显示器都有自己的最佳分辨率 17寸和19寸的是1280×1024 19宽屏的是1440×900 20寸的是1920×1050 15宽屏的是1280×800 15普屏的是1024×768

FDTD(时域有限差分法)算法

% Program author: Susan C. Hagness % Department of Electrical and Computer Engineering % University of Wisconsin-Madison % 1415 Engineering Drive % Madison, WI 53706-1691 % 608-265-5739 % hagness@https://www.doczj.com/doc/1f8450609.html, % % Date of this version: February 2000 % % This MATLAB M-file implements the finite-difference time-domain % solution of Maxwell's curl equations over a three-dimensional % Cartesian space lattice comprised of uniform cubic grid cells. % % To illustrate the algorithm, an air-filled rectangular cavity % resonator is modeled. The length, width, and height of the % cavity are 10.0 cm (x-direction), 4.8 cm (y-direction), and % 2.0 cm (z-direction), respectively. % conditions: % ex(i,j,k)=0 on the j=1, j=jb, k=1, and k=kb planes % ey(i,j,k)=0 on the i=1, i=ib, k=1, and k=kb planes % ez(i,j,k)=0 on the i=1, i=ib, j=1, and j=jb planes % These PEC boundaries form the outer lossless walls of the cavity. % % The cavity is excited by an additive current source oriented % along the z-direction. The source waveform is a differentiated % Gaussian pulse given by % J(t)=-J0*(t-t0)*exp(-(t-t0)^2/tau^2), % where tau=50 ps. The FWHM spectral bandwidth of this zero-dc- % content pulse is approximately 7 GHz. The grid resolution % (dx = 2 mm) was chosen to provide at least 10 samples per % wavelength up through 15 GHz. % % To execute this M-file, type "fdtd3D" at the MATLAB prompt. % This M-file displays the FDTD-computed Ez fields at every other % time step, and records those frames in a movie matrix, M, which % is played at the end of the simulation using the "movie" command. % %*********************************************************************** clear %*********************************************************************** % Fundamental constants

放射性同位素的检测方法和仪器

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计 不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,

则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能粒子物理研究领域。二是“信号型”检测器,包括电离计数器,正比计数器,盖革计数管,闪烁计数器,半导体计数器和契伦科夫计数器等,这些信号型检测器在低能核物理、辐射化学、生物学、生物化学和分子生物学以及地质学等领域越来越得到广泛地应用。放射性运输从业人员所使用的检测器基本上属于“信号型”检测器。 “信号型”检测器包括电离型检测器、闪烁检测器和闪

放射性同位素的检测方法和仪器

放射性同位素的检测方 法和仪器 Revised as of 23 November 2020

放射性同位素的检测方法和仪器 核辐射与物质间的相互作用是核辐射检测方法的物理基础。放射性同位素发出的射线与物质相互作用,会直接或间接地产生电离和激发等效应,利用这些效应,可以探测放射性的存在、放射性同位素的性质和强度。用来记录各种射线的数目,测量射线强度,分析射线能量的仪器统称为检测器。 一.核辐射的检测方法 使用相关核辐射检测仪器是检测核辐射的重要方法,利用物质衰变辐射后的电离、吸收和反射作用并结合α、β和γ射线的特点可以完成多种检测工作。对人体进行核辐射检查,主要先做物理性检测,如果发现检测指标异常,再进行生理性检测。主要采取以下方法: (一)使用核辐射在线测厚仪 核辐射在线测厚仪是利用物质对射线的吸收程度或核辐射散射与物质厚度有关的原理进行工作的。 (二)使用核辐射物位计

不同介质对γ射线的吸收能力是不同的,固体吸收能力最强,液体次之,气体最弱。若核辐射源和被测介质一定,则被测介质高度与穿过被测介质后的射线强度将被探测器将穿过被测介质的I值检测出来,并通过仪表显示H值。 (三)使用核辐射流量计 测量气体流量时,通常需将敏感元件插在被测气流中,这样会引起压差损失,若气体具有腐蚀性又会损坏敏感元件,应用核辐射测量流量即可避免上述问题。 (四)使用核辐射探伤 放射源放在被测管道内,沿着平行管道焊缝与探测器同步移动。当管道焊缝质量存在问题时,穿过管道的γ射线会产生突变,探测器将接到的信号经过放大,然后送入记录仪记录下来。 二.核辐射的检测仪器 检测核辐射有各种不同的仪器,一般将检测器分为两大类:一是“径迹型”检测器,如照像乳胶、云室、气泡室、火花室、电介质粒子探测器和光色探测器等,它们主要用于高能

同位素地质年龄测定技术及应用

同位素地质年龄测定技术及应用 同位素地质年龄测定技术是判断岩体年龄或地质事件发生时代的常用方法,主要包括U-Pb法、Ar-Ar法、Rb-Sr法、Sm-Nd法等,各类方法均有其自身的特点,因此其适用范围和注意事项也存一定的区别。本文以Rb-Sr法为例,对其原理、使用范围、注意事项及其局限性进行了分析讨论,希望能为读者提供参考。 标签:同位素;地质年龄;Rb-Sr法;应用 1 概述 随着科学技术的不断发展,地质学在帮助人类认识地球方面的作用日渐明显。同位素地质年龄测定技术是以放射性同位素为基础的测量技术,该技术在地质研究方面的应用,可提高测量结果的有效性,便于人们更好地发现地球演变规律。本文将对同位素地质年龄测定技术及其相关应用进行探讨。 2 同位素地质年龄测定技术 2.1 原理分析 测定原理为元素放射性衰变,放射性是指原子核可自发地放射各种粒子,具有自发放射各种射线的同位素称为放射性同位素;而放射出α或β射线后,原子核发生变化的过程可成为放射性衰变;衰变前的放射性同位素称为母体,衰变过程中产生的新同位素则称为子体;若经过一次衰变就可获得稳定子体的为单衰变;若经历若干次连续衰变获得稳定子体的则称为衰变系列。在衰变过程中,放射性同位素母体同位素原子有一半完成衰变所耗费的时间成为半衰期,较为稳定,不受元素状态、外界环境、元素质量变化的影响;放射性同位素在单位时间内每个原子核的衰变概率成为衰变常数。利用放射性衰变规律计算地质年代的主要依据就是半衰期和衰变常数。 2.2 放射性同位素测定地质年龄的前提 放射性同位素测定岩体年龄的常用技术有U-Pb法、Ar-Ar法、Rb-Sr法、Sm-Nd法、Re-Os法、(U-Th)/He法等,各种方法的使用前提基本相同:①用于测定地质年龄的放射性同位素半衰期与测定对象相匹配,且半衰期和衰变常数能被准确测定;②能准确测定母体同位素组成及各项同位素的相对丰度;③母体衰变产物具有一定的稳定性,便于使用仪器设备对其进行检测;④岩石或矿物处于封闭状态,减少误差;⑤岩石或矿物形成过程中,同位素处于开放状态时间较短,可忽略不计。 3 同位素测定地质年龄的应用 同位素测定地球年龄技术较多,本文以较为常用的Rb-Sr法为例,对其应用

电脑无法调整屏幕分辨率怎么办

电脑无法调整屏幕分辨率怎么办 分辨率怎么调?也许有朋友说,如此简单的问题还用说吗,今天讨论是分辨率的多种调整方法,以及无法调整分辨率以及调整分辨率出现的问题,希望对新手朋友有 所帮助。 说在前面:分辨率又称解析度,一般理解为屏幕显示像素的多少,以1024*768为例,这个分辨率表达的意思是,屏幕将有横向1024行竖向768行点阵组成,我们看到的各种文字、图片、窗口等都是有这些一个个的点阵组成。一般认为,屏幕分辨率越高图像的精细度越高,但是,并不是每一个显示屏都能支持无限的高,相反,过高的分辨率设置会使文字和图像变小影响观察效果,更有甚,过高的分辨率还会使屏幕无法显示,变成黑屏。 分辨率怎么调-介绍3种方法 方法1、这是最常规的方法:右键桌面空白处,选择“属性”—“设置”,在设置标签的窗口左下方有一个“屏幕分辨率”,向左右拖动控制块就可以改变屏幕的分辨率(每次拖动注意下面的数字),确认某一个分辨率数值之后就可以点击“确定”。 方法2、(以Intel显卡为例)右键桌面空白处,选择“显示器模式”—“真彩色”—“1024*768”(此处根据需要选择,但不建议太高)等; 方法3、(以Intel显卡为例)右键桌面空白处,选择“属性”—“设置”,在设置标签的窗口右下方有一个“高级”—“适配器”—“所有模式”,选择一种合适的模式组合即可(特别注意不要选择太高的刷新率赫兹数)。 无法调整分辨率怎么办 一般的显示分辨率是可以调整的,最少会有2-3个调整的空间,如果不让调整多数是显卡驱动的问题,或者处于安全模式。 如果是处于安全模式,你可以选择重新启动,按F8选择“最近一次的正确配置”,进入正常的桌面;如果是正常启动可以考虑显卡驱动是否有故障,这一点,你可以通过右键“我的电脑”—“属性”—“硬件”—“设备管理器”查看显卡项目前是否有感叹号和问号来判断是否是显卡驱动的问题,如果有,重新安装一遍显卡驱动。 调整分辨率黑屏电脑开机黑屏怎么办? 调整分辨率黑屏往往是由于分辨率过高与刷新率过高的组合影响,比如,1024*76875HZ的显示模式正常,但1280*96075HZ有可能导致黑屏,也许你会说我并没有调整刷新率(75HZ),但这个组合可能会使显示器无法承受(特别是15寸的显示器以及17寸以下的)所以降低分辨率或者降低刷新率都是解决因为调整而造成黑屏的途径。 解决的办法像像上面提到的,选择重新启动,按F8选择“最近一次的正确配置”,或者启动一次安全模式(按F8进入安全模式)自动修复一下,然后重新启动即可。 以上为大家介绍的就是比较常遇到的关于电脑分辨率的问题,一般每台电脑都有一个最佳分辨率,大家可以尝试修改到自己觉得最满意的即可。

怎么设置屏幕分辨率

怎么设置屏幕分辨率 对于电脑初学者来说,要学的电脑知识确实很多,如果有基础,那么学电脑要容易很多,因为很多电脑知识都可以举一反三,对于菜鸟级别朋友需要从最基本的开始入门,今天有菜鸟朋友问编辑电脑屏幕分辨率怎么调?对于这个问题,对于初学者老说还是属于比较经典的问题吧,节下来电脑百事网编辑将为菜鸟朋友详细介绍电脑分辨率怎么调,适合新手阅读,高手飘过。 针对目前主流的操作系统均以windows 7与windows xp系统为主,虽然这两系统设置电脑分辨率的方法很类似,但鉴于新手不好理解,编辑这里同时介绍下windows 7与windows xp系统下电脑屏幕分辨率的设置方法,如下。 windows xp系统分辨率怎么调? windows xp系统分辨率调节方法其实很简单,首先进入电脑桌面,在桌面空白位置处单击鼠标右键---在弹出的选择菜单中选择“属性”即可进入如下图界面: 电脑桌面显示属性 进入到如上桌面属性显示窗口之后我们点顶部的“设置”选项,之后即可切换到显示设置界面,在显示设置界面里面即可选择调整分辨率的大小了,之后选择确定即可完成调整https://www.doczj.com/doc/1f8450609.html,,按照以下所示设置即可,如下图:

分辨率怎么调-图文设置图解 windows 7系统分辨率怎么调 windows 7操作系统是目前最新最主流的操作系统,很多新手朋友也问到过编辑分辨率怎么调,其实设置方法与windows xp系统设置是一样的,具体设置步骤如下。 首先依然是进入电脑桌面,在桌面空白位置单击鼠标由键,然后点击“屏幕分辨率”如下图: windows 7屏幕分辨率设置步骤一 点击进入“屏幕分辨率”之后即可进入屏幕分辨率调节窗口,我们可以根据自己的需求来调整到合理的大小,一般根据自己喜欢与桌面美观去调整了。如下图,我们可以可以使用鼠

FDTD(时域有限差分法)算法的Matlab源程序

% 3-D FDTD code with PEC boundaries %*********************************************************************** % % Program author: Susan C. Hagness % Department of Electrical and Computer Engineering % University of Wisconsin-Madison % 1415 Engineering Drive % Madison, WI 53706-1691 % 608-265-5739 % hagness@https://www.doczj.com/doc/1f8450609.html, % % Date of this version: February 2000 % % This MATLAB M-file implements the finite-difference time-domain % solution of Maxwell's curl equations over a three-dimensional % Cartesian space lattice comprised of uniform cubic grid cells. % % To illustrate the algorithm, an air-filled rectangular cavity % resonator is modeled. The length, width, and height of the % cavity are 10.0 cm (x-direction), 4.8 cm (y-direction), and % 2.0 cm (z-direction), respectively. % % The computational domain is truncated using PEC boundary % conditions: % ex(i,j,k)=0 on the j=1, j=jb, k=1, and k=kb planes % ey(i,j,k)=0 on the i=1, i=ib, k=1, and k=kb planes % ez(i,j,k)=0 on the i=1, i=ib, j=1, and j=jb planes % These PEC boundaries form the outer lossless walls of the cavity. % % The cavity is excited by an additive current source oriented % along the z-direction. The source waveform is a differentiated % Gaussian pulse given by % J(t)=-J0*(t-t0)*exp(-(t-t0)^2/tau^2), % where tau=50 ps. The FWHM spectral bandwidth of this zero-dc- % content pulse is approximately 7 GHz. The grid resolution % (dx = 2 mm) was chosen to provide at least 10 samples per % wavelength up through 15 GHz. % % To execute this M-file, type "fdtd3D" at the MATLAB prompt. % This M-file displays the FDTD-computed Ez fields at every other % time step, and records those frames in a movie matrix, M, which % is played at the end of the simulation using the "movie" command. %

电脑屏幕分辨率的设置标准

如何设置电脑屏幕的分辨率? 懂点电脑方面的知识,对于你以后的生活可是有很多的帮助的哦。想要学习这方面的知识,对于电脑初学者来说,可能真的需要很长的一段时间,不过对于有基础的同学来说,相对要来的容易很多,因为很多电脑知识都可以举一反三,对于菜鸟级别朋友需要从最基本的开始入门,今天有菜鸟朋友问编辑电脑屏幕分辨率怎么调?对于这个问题,对于初学者老说还是属于比较经典的问题吧,接下来小编将为菜鸟朋友详细介绍电脑分辨率怎么调,适合新手阅读,高手飘过。 针对目前主流的操作系统均以windows 7与windows xp系统为主,虽然这两系统设置电脑分辨率的方法很类似,但鉴于新手不好理解,编辑这里同时介绍下windows 7与windows xp系统下电脑屏幕分辨率的设置方法,如下。 windows xp系统分辨率怎么调? windows xp系统分辨率调节方法其实很简单,首先进入电脑桌面,在桌面空白位置处单击鼠标右键---在弹出的选择菜单中选择“属性”即可进入如下图界面: 电脑桌面显示属性 进入到如上桌面属性显示窗口之后我们点顶部的“设置”选项,之后即可切换到显示设置界面,在显示设置界面里面即可选择调整分辨率的大小了,之后选择确定即可完成调整,按照以下所示设置即可,如下图:

分辨率怎么调-图文设置图解 windows 7系统分辨率怎么调 windows 7操作系统是目前最新最主流的操作系统,很多新手朋友也问到过编辑分辨率怎么调,其实设置方法与windows xp系统设置是一样的,具体设置步骤如下。 首先依然是进入电脑桌面,在桌面空白位置单击鼠标由键,然后点击“屏幕分辨率”如下图: windows 7屏幕分辨率设置步骤一 点击进入“屏幕分辨率”之后即可进入屏幕分辨率调节窗口,我们可以根据自己的需求来调整到合理的大小,一般根据自己喜欢与桌面美观去调整了。如下

辛算法在电磁计算中的应用

辛算法在电磁计算中的应用 摘要 近几年,随着计算机性能的飞速发展和计算物理中各种新型算法的出现,各种电磁场数值方法层出不穷,但很多算法面临着计算时间长、储存空间不足及计算精度低等方面的困难。Hamilton系统理论是当代数学物理中的一个重要的工具。一切守恒的物理过程,总能表示成适当的Hamilton系统。辛算法正是保持Hamilton系统内在性质的一种新型数值方法,该算法在长时间的数值计算中,具有一般数值方法无可比拟的计算优势。 本文首先介绍了电磁学的基本背景和电磁计算的研究,然后介绍了辛算法。接着,介绍了辛算法在Maxwell方程中的应用,然后在无耗煤质和散射存在时的情况下分析了辛时域有限差分法的计算式。最后,以真空中一维的高斯脉冲电磁波为例用辛算法进行了数值运算。 关键词:电磁计算;辛算法;Hamilton系统;Maxwell方程 一.引言 电磁场理论的应用遍及地理学、生命科学、医学、材料科学和信息科学等几乎所有技术学科领域。计算电磁学是以电磁场理论为基础,以高性能的计算技术为手段,运用计算数学提供的各种方法,解决复杂电磁场理论和工程问题的应用科学。因此,开展计算电磁学的研究不仅可以产生国际水平的基础研究成果,更重要的是可以促进我国民用和军用电磁学相关领域的发展。 早在1864年,Maxwell在前人理论和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是Maxwell方程组,它包括微分形式和积分形式。简单地说,所有的宏观电磁问题都可以归结为Maxwell方程组在各种边界条件下的求解问题。计算电磁学自20世纪60年代兴起,至今40余年。纵观整个电磁理论发展的过程,电磁学的发展可以分为两个阶段。以20世纪60年代为分界点,之前可以称为经典电磁学阶段,在这个时期,电磁场理论和工程中的许多问题大多采用解析或渐进的

如何正确设定扫描仪的分辨率

如何正确设定扫描仪的分辨率 如何设定正确的扫描分辨率呢?经常有用户这样认为,依照打印机的最大打印分辨率来设定扫描仪的分辨率。例如,要使用600dpi的打印机,就以600dpi做为扫描的分辨率。这样的观念,实际上只有在两种情形下能够成行,用户使用纯黑白模式扫描黑白线条或文字稿件;或用真正的连续色调输出设备进行输出。若用户只是使用一般常见的彩色喷墨打印机输出,这样的做法则非常不适当。目前即使用做一般用途的平台式扫描仪,市场上也已出现了分辨率高达2400dpi的机型,而彩色喷墨打印机的打印分辨率也竞相攀上2400dpi及2880dpi的新高度,若用户真的使用2400dpi分辨率进行扫描,不知可否想过最后会得到多大的影像文档?我们可由表一中获知,使用2400dpi扫描一张4”*6”的彩色相片,大约需要400MB 的记忆容量,实际上,这并非一般电脑所能处理,何况对打印品质的提高也并无实质性的帮助。 原稿尺寸扫描模式100dpi300dpi600dpi1200dpi2400dpi 4”*6”彩色0.72MB6.84MB25.92MB103.68MB414.74MB 8.5”*11”黑白0.117MM1.05MB4.20MB16.83MB67.32MB 8.5”*11”灰阶0.935MB8.42MB33.66MB134.64MB538.56MB 8.5”*11”彩色2.805MB245.25MB100.98MB403.92MB1616MB 表一,扫描仪的分辨率与文档大小的关系 黑白模式扫描图像分辨率的设置 纯黑白模式扫描多用于扫描文字或黑白线条的稿件。扫描分辨率设置会受到稿件内容的影响,如文字的大小、线条的细密程度等。使用黑白扫描模式时,用户需要依靠经验积累来做出正确的判断。此外,也要充分考虑扫描图像的使用用途。以下法则可为用户提供一些参考意见。 若扫描图像只是用做光学文字识别(OCR),通常情况下,300dpi已经足够。若是遇到字号较小、字迹模糊的文稿,用户可视具体情况将分辨率提高。 若使用电脑传真,200dpi即可完全满足用户需求,普通传真机的分辨率也只有200dpi。 若扫描稿件用来做电子邮件的附件,只要能让对方看清楚即可,分辨率可以进一步降低,先尝试100dpi,再视情况进行增减,但收件人若将图像打印或做其他用途,请参考下一项。 需要打印的扫描图像,应视输出设备的分辨率及对图像品质的具体要求而定。对不做特别要求的图像,300dpi已经足够。如果用户希望得到最佳品质则可设定为与输出设备相同的分辨率。例如,用户如果使用600*1200dpi的打印机,扫描图像时分辨率应设定为600dpi。 彩色或灰阶模式扫描图像的分辨率设置 彩色或灰阶模式的扫描图像,如按用途进行分类,可分为屏幕显示与打印输出两大类,不同的用途类别,扫描图像的分辨率设置自然不同。屏幕显示主要用于网页制作、桌面墙纸

时域有限差分法论文

时域有限差分法 1 选题背景 在多种可用的数值方法中,时域有限差分法(FDTD)是一种新近发展起来的可选方法。1966年,K.S.Yee 首次提出电磁场数值计算的新方法—时域有限差分法(Finite Difference- Time Domain ,简称FDTD)。经历了二十年的发展FDTD 法才逐渐走向成熟。上世纪80年代后期以来FDTD 法进入了一个新的发展阶段,即由成熟转为被广泛接受和应用的阶段。FDTD 法是解决复杂问题的有效方法之一,是一种直接基于时域电磁场微分方程的数值算法,它直接在时域将Maxwell 旋度方程用二阶精度的中心差分近似,从而将时域微分方程的求解转换为差分方程的迭代求解。是电磁场和电磁波运动规律和运动过程的计算机模拟。原则上可以求解任意形式的电磁场和电磁波的技术和工程问题,并且对计算机内存容量要求较低、计算速度较快、尤其适用于并行算法。现在FDTD 法己被广泛应用于天线的分析与设计、目标电磁散射、电磁兼容、微波电路和光路时域分析、生物电磁剂量学、瞬态电磁场研究等多个领域[1]。 2 原理分析 2.1 FDTD 的Yee 元胞 E,H 场分量取样节点在空间和时间上采取交替排布,利用电生磁,磁生电的原理 t t ??=??=??E D H ε t t ??-=??-=??H B E μ 图1 Yee 模型 如图1所示,Yee 单元有以下特点[2]: 1)E 与H 分量在空间交叉放置,相互垂直;每一坐标平面上的E 分量四周由H 分量环绕,H 分量的四周由E 分量环绕;场分量均与坐标轴方向一致。 2)每一个Yee 元胞有8个节点,12条棱边,6个面。棱边上电场分量近似相等,用棱边的中心节点表示,平面上的磁场分量近似相等,用面的中心节点表示。 3)每一场分量自身相距一个空间步长,E 和H 相距半个空间步长 4)每一场分量自身相距一个时间步长,E 和H 相距半个时间步长,电场取n 时刻的值,磁场取n+0.5时刻的值;即:电场n 时刻的值由n-1时刻的值得到,磁场n+0.5时刻的值由n-0.5时刻的值得到;电场n 时刻的旋度对应n+0.5时刻的磁场值,磁场n+0.5时刻的旋度对应(n+0.5)+0.5时刻的电场值,逐步外推。 5)3个空间方向上的时间步长相等,

时域有限差分法

Problem 5.1 In this illustrative solution, the electric-field hard source condition of (5.1) is implemented at the far-left grid boundary. The source time function has an amplitude of 1.0 V/m and a frequency of 10 GHz. The reflecting barrier (PEC) is implemented at the far-right grid boundary. The computational domain represents a physical length of 15 cm. Matlab code: %*********************************************************************** % 1D FINITE-DIFFERENCE TIME-DOMAIN SOLUTION: PLANE WAVE PROPAGATION %*********************************************************************** % % Program author: % Prof. Susan C. Hagness % Department of Electrical and Computer Engineering % University of Wisconsin-Madison % 1415 Engineering Drive % Madison, WI 53706-1691 % hagness@https://www.doczj.com/doc/1f8450609.html, % %*********************************************************************** clear; %..........Material Parameters............ cc=2.99792458e8; %speed of light in free space muz=4.0*pi*1.0e-7; %permeability of free space epsz=1.0/(cc*cc*muz); %permittivity of free space eps=[1.0]; %relative permittivity sig=[0.0]; %electric conductivity mur=[1.0]; %relative permeability sim=[0.0]; %magnetic loss media=length(eps); %..........Space, Time, and Source Parameters... S=1.0; freq=10e9; %frequency of sinusoidal excitation = 10 GHz E0=1.0; %amplitude of sinusoidal excitation = 1.0 V/m lambda=cc/freq; length=0.15; %physical length of grid (in units of m) dx=lambda/20; %grid resolution of 20 cells per wavelength dt=S*dx/cc; ie=round(length/dx)+1; %number of Ez samples in grid ih=ie-1; %number of Hy samples in grid nmax=3*round(ie*S); source(1:nmax)=E0*sin(2*pi*freq*(1:nmax)*dt); %..........Initial Conditions........... ez(1:ie)=0.0; hy(1:ih)=0.0;

相关主题
文本预览
相关文档 最新文档