当前位置:文档之家› 1987年诺贝尔物理奖——高温超导电性

1987年诺贝尔物理奖——高温超导电性

1987年诺贝尔物理奖——高温超导电性
1987年诺贝尔物理奖——高温超导电性

1987年诺贝尔物理奖——高温超导电性1987年诺贝尔物理奖授予瑞士IBM研究实验室的德国物理学家柏诺兹

(J.Georg Bednorz,1950—)与瑞士物理学家缪勒(K.Alexander Müller,1927—),以表彰他们在发现陶瓷材料中的超导电性所作的重大突破。

高临界温度超导电性的探索是凝聚态物理学的一个重要课题。自从发现超导电性以来,人们逐渐认识到超导技术有广泛应用的潜在价值,世界各国花了很大力气开展这方面的工作。但是超导转变温度太低,离不开昂贵的液氦设备。所以,从卡末林-昂内斯的时代起,人们就努力探索提高超导转变临界温度T

c

的途径。

在探索高T

c

超导体的漫长历程中,人们基本上是靠实验和经验摸索前进。理论起的作用往往不大。这也许是因为超导现象比较复杂,理论尚欠完善的缘故。

为了寻找更适于应用的超导材料,几十年来,物理学家广泛搜查各种元素的低温特性。除了汞、锡和铅以外,又发现铟、铊和镓也有超导特性,这些材料都是金属,而且具有柔软易熔的共同性质,后来迈斯纳把试验扩展到坚硬难熔的金属元素,又发现了钽、铌、钛和钍等金属具有超导特性。当磁冷却法应用于低温后,在极低温区(1K以下)又找到了许多金属元素和合金有超导迹象。如今甚至已经知道上千种物质的超导特性,可是,它们的转变温度都在液氦温度附近或在1K以下。

第一个被找到的超脱液氦区的超导材料是氮化铌(NbN),其临界温度可达15 K,是德国物理学家阿瑟曼(G.Ascherman)在1941年发现的。于是重新激起了人们的热情。NbN曾用于红外探测器件。

1953年,美国物理学家哈迪(G.F.Hardy)和休姆(J.Hulm)开辟了另一条

新路,他们找到了四种A-15结构或β钨结构的超导体,其中钒三硅(V

3

Si)的;临界温度最高,达17.1K。所谓A-15结构是一种结晶学符号,它代表的化学组

成一般为A

3

B的形式,其中铌(Nb)、钒(V)等过渡元素为A组元,第Ⅲ或第IV主族的元素或其它过渡元素为B组元。

贝尔实验室的马赛阿斯(B.T.Matthais)沿着这一线索坚持了长期的探索。他和他的同事围绕A-15结构进行了大量实验,总结出了一些经验规律,收集了

大量数据。并于1954年找到了铌三锡(Nb

3

S),T c为 18.3 K。 1967年备制了

组成非常复杂的铌铝锗合金,T

c 为20.5K;1973年进一步获得铌三锗薄膜,T

c

提高为23.2K。照这样的速度发展下去,人们大概可以指望到1990年将超导临界温度提高至30 K附近的液氖区。

令人遗憾的是,他们持续的努力没有取得进一步成果。1973年以后的13年,临界温度一直停滞不前。

世界上还有许多物理学家研究其他类型的超导体,诸如有机超导体,低电子密度超导体、超晶体超导体、非晶态超导体等等,其中金属氧化物超导体吸引了许多人的注意。

金属氧化物也是马赛阿斯研究的项目。1967年他和伦梅卡(J.P.Remeika)等人共同发现了Rb

x

WO3的超导特性。随即休姆等人在1968年发现 TiO的超导

特性,不过T

c

都在10 K以下。

1973年约翰斯通(D.C.Johnston)发现Li1+x Ti2-x O4的T c达13.7 K。

令人不解的是,金属氧化物一般都是非导体,可是某些组成却可以在低温下变成超导体,这个事实确是对现有的物理学理论的挑战。人们只有在经验的基础上摸索前进。

没有想到,正是这一条朦胧不清的道路引导了缪勒和柏诺兹对高T

c

超导体的研究作出了突破性的进展。

缪勒是国际商用机器公司(IBM)苏黎世研究实验室的研究员、物理部的负责人,他多年来一直在材料科学领域,特别是电介质方面进行卓有成效的研究。他对超导体也很熟悉,1978年就开始作过研究,课题是颗粒超导电性。纯铝的T c是1.1K,如果铝的颗粒被氧化物层包围,颗粒系统的T c可提高到2.8K。

柏诺兹是德国年轻的物理学家,1976年毕业于明斯特(Munster)大学,然后到瑞士联邦工业大学当研究生,在IBM苏黎世研究实验室做博士论文,指导教师之一就是缪勒。1982年柏诺兹获博士学位,留在IBM从事研究工作。

从1983年起,缪勒和柏诺兹合作,探索金属氧化物中高T

c

超导电性的可能性。从BCS理论可以作出这样的推测:在含有强的电-声耦合作用的系统中,有

可能找到高T

c

超导材料。他们认为,氧化物符合这一条件。于是就选择了含有镍和铜的氧化物作为研究对象。在这方面他们进行了三年的研究,取得了很多经验。

其实,这方面的工作早在70年代就已经有人在做。他们的突破在于从金属氧化物中找到钡镧铜氧的化合物,这是一种多成份混合的氧化物。

1985年,几位法国科学家发表了一篇关于钡镧铜氧(Ba-La-Cu-O)材料的论文,介绍这种材料在室温以上具有金属导电性。正好这时缪勒和柏诺兹因实验遇到挫折需要停下来研究文献资料。有一天柏诺兹看到了这篇论文,很受启发,立即和缪勒一起,对这种材料进行加工处理,终于在1986年1月27日取得了重要成果。他们在回忆这一过程的文章中写道:

“在我们实验室里,超导电性的研究始于1983年盛夏。我们的努力首先集中

在含Ni3+的钙钛矿结构物质,例如LaNiO

3和 LaAlO

3

等的混合晶体,这些工作没

有发表。我们测量了按不同比份组合的二价或三价氧化物的金属特性。在冷却后,它们显示低温下具有区域性(localization),……但没有任何超导迹象。到了1985

年深秋,力量转移到含铜化合物,例如LaCuO

。因为Cu3+在eg支壳层里有两个

3

电子,这些支壳层处于半填充状态,所以基态并没有简并。这表明了,有必要去试试混合的Cu2+/Cu3+或Cu3+/Cu4+的氧化物。”

“这时,我们得知米歇尔(Michel)、欧-拉柯(er-Rakho)和拉威(Raveau)

Cu5O13.4的论文。这种化合物正好符合所需化合价的的关于混合钙钛矿型BaLa

4

要求。论文的法国作者查明了这一混合氧化物在室温和更高的温度下是金属,含有Cu2+和Cu3+。于是我们就尝试进行重复备制这种化合物,并且同时通过改变Ba x La5-x Cu5O5(3-y)中的Ba浓度来不断改变Cu2+/Cu3+之比,以探讨其超导电性。在我们实验室,样品是用共沉淀法从硝酸Ba-La-Cu水溶液备制的。把草酸当作沉淀剂加入水溶液中即形成相应的氧化物混合体,沉淀物的分解和固化是在900℃下加热5小时进行的。生成物经研磨,在4×108 Pa下压成片状,然后在900℃下烧结。我们用四端法对电阻进行直流测量,电流密度约0.5 A/cm2。一般说来,我们观察到了高温电阻特性,在更低的温度下电阻有所增加。再进一步冷却,ρ(T)急骤下降,对大电流曲线略为偏低。我们研究了急骤下降部分跟退火条件及钡含量的函数关系。用这些方法起始转变温度可移至35 K。”

1986年4月.柏诺兹和缪勒向德国的《物理学杂志》投寄题为:“Ba-La-Cu-O 超导电性”。他们只是说可能有,一方面是因为尚未对抗磁性系统中可能的高T

c

进行观测,另一方面也是出于谨慎。在此之前曾有过多次教训,不止一次地有人宣布“发现”了高T

超导体,后来都证明是某种假象所误。

c

不久,日本东京大学的几位学者根据IBM配方备制了类似的样品,证实Ba-La-Cu-O化合物具有完全抗磁性。缪勒和柏诺兹随即也发表了他们的磁性实验结果,不过论文到1987年才问世。

一场国际性的角逐在1987年初展开了,柏诺兹和缪勒的发现引起了全球性的“超导热”。图87-1就是柏诺兹和缪勒在诺贝尔奖获奖演说词中的一张示意图。

缪勒1927年4月20日出生于瑞士的巴塞尔(Basle)。19岁曾在瑞士军队中接受军事训练,然后进入苏黎世瑞士联邦工业学院。在他入学之前正值第一颗原子弹爆炸,因此一年级时许多同学都对核物理发生了兴趣。舒勒(P.Scherrer)教授的生动讲课,大大提高了学生对核物理的兴趣,吸引他把终生投入了物理学。

其它课程,虽然分数很高,但都对他没有如此深的印象。他曾一度想读电机工程,但物理实验老师说服了他。后来又有一位杰出的教授,使他最后下决心从事物理学研究。这位教授就是量子物理大师泡利。他的大学毕业论文是在布什(G.Busch)指导下做的,内容是研究灰锡的霍耳效应。在取得学士学位之后,他曾到联邦工业学院的工业研究部工作过一年,然后回到布什名下做博士论文,内容是顺磁共

振(EPR)。在这项工作中他第一次注意到合成的SrTiO

3

1958年缪勒在瑞士联邦工业大学获得博士学位后,来到日内瓦巴特尔(Battelle)研究所工作,后来成了核磁共振组的主任,在这里进行了化合物分析,特别是研究了石墨和碱金属石墨的辐射破坏。该研究所所长西曼(H.Thiemann)博士有着强烈的个性,总是重复这样一句话:“应该寻找异常情况。”这一句话对缪勒有深刻印象。

1963年缪勒到国际商用机器公司(IBM)的苏黎世研究实验室,继续从事物理学研究。在这之前的1962年他被任命为苏黎世大学讲师,1970年升任教授。他到苏黎世大学是经布兰(E.Brun)教授的推荐,布兰教授正在组建一个强大的核磁共振研究组。正是由于有了讲师的资格,缪勒才有机会到IBM苏黎世研究实验室当研究组的成员,后来还到IBM在美国纽约州的纽约城高地(Yorktown Heights)的华生研究中心工作了两年,以后就一直在IBM苏黎世研究实验室工作。在十几年中,他的兴趣放在SrTiO

和有关的钙钛矿化合物,这项研究涉及

3

各种掺杂的过渡金属离子及其化合物的变色特性、铁电性和软模特性、后来还特别涉及机构性相变的临界现象和多重临界现象。与此同时,罗雷尔(H.Rohrer)也在研究GdAlO

反铁磁系统的这类性质。缪勒在美国期间,罗雷尔和宾尼希

3

(G.Binnig)发明了隧道扫描显微镜,而宾尼希的聘任工作,是缪勒还没有去美国之前和大家一起商定的,他当时是IBM苏黎世研究实验室物理部主任。他从美国回来后,也立即投入了扫描隧道显微镜的研制,宾尼希和罗雷尔于1986年获诺贝尔物理学奖,而缪勒和柏诺兹紧接着于第二年因高温超导电性的研究获诺贝尔物理奖。连续两年,有四人得诺贝尔物理学奖,这对于IBM研究实验室真是莫大的荣誉。

柏诺兹1950年5月16日出生于德国威斯特瓦的诺因基星。他曾在明斯特学化学,后又学矿物学和晶体学,这些基础知识在后来超导电性的研究中发挥了很好的作用,为柏诺兹研制陶瓷超导材料打下了扎实的基础。1972年柏诺兹向瑞士政府申请,到IBM公司设在瑞士里希利肯的苏黎世研究实验室实习两个月,从此他和这个实验室建立了长期的联系。1976年2月6日,柏诺兹从明斯特大学毕业,移居瑞士苏黎世。

1977年在明斯特大学又呆了一年之后,柏诺兹来到了瑞士联邦工业大学的固体物理实验室,并在格兰尼奇(Granicher)和缪勒的指导下作博士论文。柏诺

的。他在研究小组里惑觉到关系融洽、温暖如春。兹的博士论文是关于SrTiO

3

他完成了钙钛矿型固体溶液的晶体生成工作,研究其机构、介质性和铁电性。1982年加入IBM并在这里一共呆了10年。从1983年开始和缪勒合作。缪勒对这位年轻人的深邃洞察力、和蔼友善、工作能力和顽强毅力留下了深刻印象。他们两代人之间的合作默契而富有成效。

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

1989年诺贝尔生理及医学奖

1989年诺贝尔生理及医学奖 毕晓普与Levintow一起工作时,逆转录酶已被发现,这使毕晓普考虑复制逆转录病毒。在这方面的早期成果,包括描述逆转录酶将RNA拷贝进DNA中;受感染细胞中病毒RNA的鉴定;以及在正常细胞及感染细胞中病毒DNA的识别及描述。毕晓普等将他们对逆转录病毒转导的证据进行整理,将结果归纳为Src位于病毒基因组靠近3'端的一个单一基因以外的逆转录病毒基因;它可帮助弄清何种基因损伤使正常细胞基因转变成癌基因;探讨原癌基因对人类癌症起源的作用;通过数种实验策略增加原癌基因的种类;对正常生物体(有机体)内的原癌基因的生理功能进行研究,以及发现由Src 编码的蛋白激酶。1970年毕晓普同H.E瓦尔默斯合作,着手验证这样一个假说--正常体细胞里也有一些静止的病毒癌基因,一旦被激活,它们可以致癌。用已知可以在鸡中致癌的劳斯肉瘤病毒作为实验材料,他们发现,在健康细胞中也存在一个基因,其结构同病毒中的致癌基因相似.1976年他们发表了他们的发现,声称病毒是由正常细胞得到这个致癌基因.病毒感染细胞并开始复制时,它把这个基因整合到自身的遗传材料中去.以后的研究还表明,这样的基因可通过几种方式致癌.甚至没有病毒的参与,这种基因也可被某些化学致癌物转化,成为造成细胞不受限制地增生的形式.因为毕晓普和瓦慕斯发现的机制似乎为一切癌瘤的发生所共有,所以他们的工作对于癌瘤研究贡献极大.至1989年科学家已在动物中鉴定出40个以上的具有致癌潜能的基因. 从而他们也否定了以前的看法癌基因必然源自病毒。毕晓普因与H.E 瓦尔默斯一起,说明了位于细胞核内的原癌基因正常情况下是不活跃的,不会导致癌症;当受到物理、化学、病毒等因素的刺激后被激活,成为致癌基因,即原癌基因被激活后转化为致癌基因的复制过程,并发现动物的致癌基因不是来自病毒,而是来自动物体内正常细胞内所存在的一种基因──原癌基因,即逆转录病毒癌基因的起源,因而了荣获1989年诺贝尔生理或医学奖。 任何成功都不是随随便便的,成功的机会是赋予那些有准备的人的!逆转录病毒(Retroviruses)归类于逆转录病毒科,包括一大类含有逆转录酶的RNA病毒,分为肿瘤病毒亚科、泡沫病毒亚科和慢病毒亚科,每一亚科又有若干个属。肿瘤病毒亚科大多引起禽类、猫、鼠、猴等动物肿瘤,与人类疾病相关者有人类嗜T细胞病毒(humanT-celllymphotropicvirus,HTLV);泡沫病毒亚科(spumavirinae)的致病作用尚不清楚;慢病毒亚科(lentivirinae)中的人类免疫缺陷病毒(humanimmunodeficiencyvirus,HIV)则是艾滋病的病原体. 反转录病毒的最基本特征是在生命过程活动中,有一个从RNA到DNA的复制过程,即反转录过程——病毒在反转录酶的作用下,以病毒RNA为模板,合成互补的负链DNA后,形成RNA:DNA中间体。中间体的RNA酶H水解,在DNA聚合酶的作用下,

1930年诺贝尔物理学奖——拉曼效应

1930年诺贝尔物理学奖——拉曼效应 1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara V enkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。 在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格(https://www.doczj.com/doc/1818554879.html,ndsberg)和曼德尔斯坦(L.Mandelstam)也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。 1921年夏天,航行在地中海的客轮“纳昆达”号(S.S.Narkunda)上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装臵:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。 拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

诺贝尔物理学奖2005,2012

2005年诺贝尔物理学奖:精密频率测量技术 (2012-10-15 21:33:55) 转载▼ 标签: 分类:科学技术 教育 频率一直是电磁波最重要的参数之一,电磁波在根据频率由小到大分为了无线电波,微波,红外线,可见光,紫外线,X射线和г射线。每一个频段的电磁波的研究都对人类科技发展起着至关重要的作用,电磁波的频率所对应的时间也成为了人类计量的最新标准。 人类对电磁波频率的精密测量源自20世纪50年代的微波频率测量,那个时候随着原子能级结构的深入研究,以及不久后微波激射器(Maser)的出现,人们能够获得频率分布很窄的微波辐射。美国物理学家拉姆齐(N. F. Ramsey)在1950年提出分离了振荡场方法,解决了原子钟设计里的关键问题,创制了铯原子钟。1960年他又提出并建造了氢微波激射器,也就是氢原子钟,使计时的不确定度下降到10-12。拉姆齐因此获得了1989年诺贝尔物理学奖。 20世纪60年代激光器横空出世,人类又可以获得频率分布很窄的可见光辐射(单色光),随后美国的霍尔(John L. Hall)和德国的汉施(T. W. Hansch)各自发明了“光梳”技术,从而可以精确测量激光频率。二人也因此获得2005年诺贝尔物理学奖。 两次诺贝尔奖,三位伟大的实验物理学家,电磁波频率精密测量成了实验物理学一个重要的组成部分。它决定着人类能够测量的时间与空间精度,决定着人类科技的发展水平。 一、拉姆齐与微波频率精确测量 拉姆齐的导师拉比(I. I. Rabi,1944年诺贝尔物理学奖)用量子力学的含时薛定谔方程计算二能级与光场相互作用,得到了二能

级原子跃迁的动力学过程,在频谱上显示为拉比振荡。取拉比频率与相互作用时间乘积为π,拉比振荡谱线的峰值便和光场频率精密对应。 原子与微波谐振腔相互作用时,谐振腔的尺度和形状受微波的频率、场分布均匀性的要求限制,而且原子的速度又无法任意控制,这就决定了不可能通过提高微波与原子的作用时间降低谱线宽度。于是拉姆齐受到麦克尔逊干涉仪的启发,发明了了分离振荡场的方法,就是让原子与微波腔作用两次,作用的时间都是t,两次时间间隔为T,然后探测跃迁信号。 原子经过与微波腔两次作用,拉比振荡信号相互干涉,产生拍频信号,即拉姆齐谱线。当T>>t时,谱线中心峰值宽度由T确定,T 越大,峰值宽度越窄,测得的频率精度也就越高。 拉姆齐的分离振荡场测量方法无疑是人类测量技术的一个重要里程碑,这项技术直接导致了原子钟的诞生,给定了人类新的时间标准:一秒钟为铯Cs原子精细能级跃迁频率的倒数。铯原子微波频率标准成为了未来可见光波段频率测量技术的基准。 二、光学频率梳技术与可见光频率测量 可见光频率测量方法最早是从铯Cs 原子精细能级跃迁频率开始(微a波),经过一系列保持相位锁定的微波谐波振荡器和特殊激光器,将被测光学频率与Cs 原子微波频率标准连接起来,从而实现对光学频率的绝对测量。然而这种测量方法由于激光器太多,激光间的相互转化积累误差太大,实用性极低,测量精度非常差。 随着基于锁模飞秒脉冲激光的光频梳技术的出现,光学频率的直接测量成为了现实。光学频率梳技术即在时域内锁模飞秒脉冲激光器输出的一系列等间隔的超短脉冲,脉冲宽度为几到几十飞秒,重复频率为几百MHz到几GHz。在频率域内其光谱是由一系列规则等间隔光

2004年诺贝尔物理学奖

2004年诺贝尔物理学奖 2004年物理学奖,由三位美国的物理学家分享,他们是戴维·格罗斯(David J.Gross)、休·普利策(Hugh David Politzer)和弗兰克·维尔泽克(Frank Wilczek。他们提出了量子场中夸克“渐进自由”的理论。 戴维·乔纳森·格罗斯(David Jonathan Gross,1941—),出生于美国华盛顿。1966年获得美国加州大学伯克利分校博士学位。1985年当选为美国科学与艺术学院院士,1986年当选为美国科学院院士,2011年当选为中国科学院外籍院士。格罗斯在理论物理,尤其是规范场理论、粒子物理和超弦理论等方面做出了一系列开创性的研究成果。他是量子色动力学的主要奠基人之一。量子色动力学作为描述自然界四种基本作用力之一的“强相互作用力”的基本理论,成为研究强子性质和原子核物理的基础。 休·戴维·普利策(Hugh David Politzer,1949—),出生于美国纽约。1974年获得哈佛大学的物理学博士学位,后在加利福尼亚理工学院物理系任教授,同时也是该校粒子物理研究领域的学术带头人之一。加州理工学院坐落于帕萨迪纳美丽的圣盖伯利山脚下,是美国声名显赫的名牌私立大学之一。 弗兰克·维尔泽克(Frank Wilczek,1951—),出生在纽约州的米里奥拉,他的祖先来自波兰和意大利。他在昆斯区上中小学。在芝加哥大学物理系本科毕业后,前往普林斯顿大学继续深造,1972年获得数学硕士学位,1974年获得物 1

理学博士学位。毕业后在普林斯顿开始执教生涯。1988年他前往美国西海岸的加利福尼亚大学圣巴巴拉分校担任教授。2000年秋天,他重回东海岸,担任麻省理工学院的物理系教授。他被誉为美国最杰出的理论物理科学家之一。维尔泽克曾是戴维·格罗斯的学生。 近代物理学理论认为,夸克等是比质子和中子等亚原子粒子更基本的物质组成单位,夸克等组成了质子和中子,中子和质子又形成原子核,最终产生原子以及今天的宇宙万物。现有的物理学理论还认为,自然界中存在引力、电磁力、强作用力和弱作用力等4种基本的作用力。其中,夸克通过强作用力组成质子和中子,而这种强作用力主要通过另一种名为胶子的基本粒子来传递。但物理学家们在研究夸克时也发现了一个奇怪的现象,那就是从没有发现过自由的单个夸克,只有2个或3个夸克的集合体才能处于自由状态,通常情况下夸克总是被约束在质子和中子内部。本年度获奖者格罗斯、波利策和维尔切克提出的“渐近自由”理论,为此提供了解释。 1973年,维尔泽克正在普林斯顿大学读研究生,师从格罗斯。师徒二人于1973年发表论文,揭示了粒子物理中强相互作用理论中的渐近自由现象。当时他们分别只有32岁和22岁。同年,普利策也独立发表了相关论文。三位科学家提出的理论认为,强作用力会随着夸克彼此间距离的增加而增大,因此没有夸克可以从原子核中向外迁移,获得真正的自由。通俗地说,这一现象有点像拉一根具有弹性的橡皮筋:橡皮筋拉得越长,其产生的力量越大,人拉起来也更为费劲。同 2

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.doczj.com/doc/1818554879.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

2010年诺贝尔物理学奖揭晓

2010年诺贝尔物理学奖揭晓 英国曼彻斯特大学2位科学家因在石墨烯方面的开创性实验获奖 安德烈·盖姆 康斯坦丁·诺沃肖罗夫

北京时间10月5日下午5点45分,2010年诺贝尔物理学奖揭晓,英国曼彻斯特大学2位科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)因在二维空间材料石墨烯(graphene)方面的开创性实验而获奖。 安德烈·盖姆(Andre Geim),荷兰公民。1958年出生于俄罗斯索契。1987年从俄罗斯科学院固态物理研究所获得博士学位。英国曼彻斯特大学介观科学与纳米技术中心主任。曼彻斯特大学物理学教授及皇家学会2010周年纪念研究教授。 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov),英国和俄罗斯公民。1974年出生于俄罗斯下塔吉尔。2004年从荷兰内梅亨大学获得博士学位。英国曼彻斯特大学教授及皇家学会研究员。 只有一个原子厚度,看似普通的一层薄薄的碳,缔造了本年度的诺贝尔物理学奖。安德烈·盖姆和康斯坦丁·诺沃肖罗夫向世人展现了形状如此平整的碳元素在量子物理学的神奇世界中所具有的杰出性能。 作为由碳组成的一种结构,石墨烯是一种全新的材料——不单单是其厚度达到前所未有的小,而且其强度也是非常高。同时,它也具有和铜一样的良好导电性,在导热方面,更是超越了目前已知的其他所有材料。石墨烯近乎完全透明,但其原子排列之紧密,却连具有最小气体分子结构的氦都无法穿透它。碳——地球生命的基本组成元素——再次让世人吃惊。 安德烈·盖姆和康斯坦丁·诺沃肖罗夫是从一块普通得不能再普通的石墨中发现石墨烯的。他们使用普通胶带获得了只有一个原子厚度的一小片碳。而在当时,很多人都认为如此薄的结晶材料是非常不稳定的。 然而,有了石墨烯,物理学家们对具有独特性能的新型二维材料的研制如今已成为可能。石墨烯的出现使得量子物理学研究实验发生了新的转折。同时,包括新材料的发明、新型电子器件的制造在内的许多实际应用也变得可行。人们预测,石墨烯制成的晶体管将大大超越现今的硅晶体管,从而有助生产出更高性能的计算机。 由于几乎透明的特性以及良好的传导性,石墨烯可望用于透明触摸屏、导光板、甚至是太阳能电池的制造。 当混入塑料,石墨烯能将它们转变成电导体,且增强抗热和机械性能。这种弹性可用于制造新型超强材料,质薄而轻,且具有弹性。将来,人造卫星、飞机及汽车都可用这种新型合成材料制造。 今年的获奖者在一起工作了很长时间。36岁的康斯坦丁·诺沃肖罗夫最初在荷兰以博士生身份与51岁的安德烈·盖姆开始合作。后来他跟随盖姆去到英国。不过他们两人最初都是在俄罗斯学习并开始物理学家生涯。现在他们均为曼彻斯特大学的教授。 爱玩是他们的特点之一,玩的过程总是会让人学到点东西,没准就这么着中了头彩。就像他们现在这样,凭石墨烯而将自己载入科学的史册。

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介 获奖年度:2012年 获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J. Wineland) 获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法 国籍。他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。 大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。 获奖原因 瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。 塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。 在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。 通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。这套新方法允许他们检验、控制并计算粒子。 两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。

1989年诺贝尔物理学奖

1989年诺贝尔物理学奖 1989年物理学奖,由三位物理学家分享,他们是美国的诺曼·拉姆齐(Norman F.Ramscy)(获得奖金的一半)、汉斯·德默尔特(Hans G.Dehmel)和德国的沃尔夫冈·保罗(Wolfgang Paul)(分享另一半奖金)。拉姆齐发明了分离振荡场方法及用之于氢微波激射器及其它原子钟。德默尔特和保罗发展了原子精确光谱学和开发离子陷阱技术。 诺曼·拉姆齐(Norman F.Ramscy,1915—2011),出生于美国华盛顿特区。母亲是德国移民,曾是大学数学教师,父亲是西点军校毕业生,当过美军军官。由于父亲工作没有固定地点,他小时候常随家周游世界,学习不按常规,基本上靠自学。 1919年,第一次世界大战刚刚结束,他父亲被派往法国任职,母亲带着小拉姆齐同父亲一起来到了法国巴黎。母亲喜爱艺术,来到巴黎这个艺术之都后,产生了一个念头:每个月带儿子参观两次卢浮宫,让儿子从小接受艺术的熏陶。但第一次参观卢浮宫,拉姆齐就让母亲大失所望,他对艺术不感兴趣,一件作品是只看两眼便催促母亲赶快走。后来母亲领他去科技博物馆,意外发现他对那里的展品十分感兴趣,甚至有些流连忘返。于是母亲改变了计划,决定每个月带儿子参观两次科技博物馆。 拉姆齐早年对科学的兴趣是通过阅读一篇关于原子的量子理论的文章而激发的。当时他并不认为物理可作为自己的职业。父母曾指望他步父亲的后尘去西点学军事,可是当时 1

他还太小,于是就申请了一项奖学金到堪萨斯大学哥伦比亚学院上学,专业是数学。由于他每年都获得竞赛优胜奖,在高年级时竟然得到了只有研究生才能从事的教学助理的职位。1935年拉姆齐从哥伦比亚大学毕业,由于兴趣转向,改为攻读物理学,他得到奖学金到英国剑桥大学卡文迪什实验室学习。卡文迪什实验室可谓群英荟萃,是20世纪前期物理革命的发祥地之一,先后有二十多人获得诺贝尔奖。在那里,拉姆齐第一次接触到分子束方法,为他日后的科学研究打下了坚实的基础。后来,拉姆齐又回到哥伦比亚大学跟随拉比做博士论文。拉比不仅在研究方面成果辉煌,而且在教书育人方面也卓有成就,在他的学生和学生的学生中,先后有十多人获得了诺贝尔奖,被称之为“拉比树”。后来,拉姆齐在这些人中,创造了三个记录:取得博士学位最快(只用了一年)、获得奖学金最多、荣获诺贝尔奖时的年龄最大(74岁)。 1947年,拉姆齐转到哈佛大学,在那里一直工作了40年。他建立了分子束实验室,以便精确地进行磁共振实验。当时遇到的主要困难是没有足够均匀的磁场,这促使他发明了分离振荡场方法。分离振荡场方法不但为铯原子钟的研制奠定了基础,还使他们有可能测量许多不同分子的分子特性和磁特性,其中包括核自旋、核磁矩和电四极矩,分子旋转磁矩、自旋-旋转相互作用、分子中电子的分布等等。 进入20世纪90年代,拉姆齐还在进行分子束和中子束的研究。他主持建设了哈佛大学的回旋加速器实验室,并用这台加速器进行质子-质子散射研究。 拉姆齐虽然基本上是一位实验物理学家,但他对理论也 2

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

历届诺贝尔化学奖得主

历届诺贝尔化学奖得主简介(1901-2009) 自1901年诺贝尔奖首次颁奖起,至2006年为止,全世界有476人获得诺贝尔奖,其中诺贝尔化学奖得主有162人。在这476位诺贝尔奖得主中,有四位曾两次获奖。 其中,波兰裔法国女物理学家、化学家Marie Sklodowska Curie(玛丽?居礼)(即居礼夫人)获得1903年的诺贝尔物理奖与1911年诺贝尔化学奖 美国物理学家John Bardeen(约翰?巴丁)获得1956年与1972年的诺贝尔物理奖。 在所有得奖科学家中,有三对夫妻共同得奖。 法国物理学家Pierre Curie(皮耶?居礼)和Marie Sklodowska Curie (玛丽?居礼)夫妇获得1903年物理奖。 在所有得奖科学家中,包含有5对父子。共同得到1915年物理奖的是William Henry Bragg & William Lawrence Bragg(布拉格父子);分别得到1906年物理奖和1937年物理奖的是Joseph John Thomoson & George Paget Thomson(汤姆逊父子);分别得到1922年物理奖和1975年物理奖的是Niels Bohr & Aage Niles Bohr(波尔父子);分别得到1924年物理奖和1981年物理奖的是Karl Manne Georg Siegbahn & Kai Manne Borje Siegbahn(赛格巴恩父子)。 在所有得奖科学家中,有10位女性科学家。其中得到物理奖的是1903年得奖的Marie Sklodowska Curie(玛丽?居礼)与1963年得奖的

【历届诺贝尔奖得主(八)】1989年物理学奖,化学奖和生理学或医学奖

1989年12月10日第八十九届诺贝尔奖颁发。 物理学奖 美国科学家拉姆齐因发明观测原子辐射和计量原子辐射频率的精确方法、美国科学家德默尔特因创造冷却捕集电子的方法、德国科学家保罗因在50年代发明的“保罗捕集法”而共同获得诺贝尔物理学奖。 德默尔特,德裔美国人,物理学家。他和德国物理学家w.保罗因开发彭宁阱而分享诺贝尔奖分享1989年诺贝尔物理学奖金的一半,另一半授予美国物理学家N.F.拉姆齐。 彭宁阱是一种在足够长的时间内保存少量离子(带电原子)或电子的电磁设备,以便对它们的性质进行空前精确的测量。德梅尔特战争时期在军队中学习过物理学,1955年他开发的彭宁阱能够将电子和离子长时间相对孤立地约束在小空间内。1973年德梅尔特用他的设备隔离出单个电子进行观察,崭新的技术开辟了精确测量电子关键性质之路。德梅尔特和他的合作者以空前的精确度开发了测量原子频率和单个量子性跳变(原子能级间的跃迁)的方法。70年代中,德梅尔特用他的阱量电子的磁矩,精确到万亿分之四,是当时电子磁矩的最精确量度。 个人履历 他和德国物理学家德默尔特合得1989年诺贝尔物理奖的一半。保尔因开发保尔阱--一种俘获带电原子的电磁学设备,使带电原子在其中停留足够长时间,以便准确测量它们的性质而得奖。 人物生平 20世纪50年代,他开发了保尔阱,利用射频电流维持交变电场,将带电的粒子和原子孤立并限制在一小时内。保尔阱帮助物理学家研究原子性质并以高精确度检验物理学理论,它还是现代光谱学的重要工具。保尔还发明了分离不同质量的离子并将它们储存在保尔阱中的方法,所用原理后被广泛地用于现代分光计中。 化学奖 美国科学家切赫、加拿大科学家奥尔特曼因发现核糖核酸催化功能而共同获得诺贝尔化学奖。 生理学或医学奖 美国科学家毕晓普、瓦穆斯因发现致癌基因是遗传物质,而不是病毒而共获得诺贝尔生理学或医学奖。 荣获诺贝尔医学奖 毕晓普(M.Bishop)美国微生物学家,因与H.E瓦尔默斯一起阐明癌症起源的机理, 发现癌基因而共获1989年诺贝尔生理学或医学奖。 1982年,科学家迈克尔·毕晓普对于癌基因曾简洁地将癌基因描述为“引起恶性肿瘤的基因,它们最初在病毒中被发现,但它们的演化史表明,正常脊椎动物细胞含有这些基因,当它们异常表达时能导致恶性生长。”鉴于毕晓普在癌基因研究方面的卓越贡献,使他于1989年荣获诺贝尔医学奖。 毕晓普毕业于哈佛大学,在哈佛大学医学院的最后两年里,由于马萨诸塞州总医院(MGH)的两位病理学家Castteman及Taft接受他到病理实验室工作一年,使他在医学院的最后两

2013年诺贝尔物理学奖,物理化学和化学物理,及学术的源流

2013年诺贝尔物理学奖,物理化学和化学物理,及 学术的源流 2013.10.29 https://www.doczj.com/doc/1818554879.html,/blog-176-737164.html 在博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》之后本来准备写一篇《2013年诺贝尔物理学奖,物理化学和化学物理,以及学术的源流》,为了收集材料拖了几天,结果遇上了具有中国特色的南京大学王牧和闻海虎之争的大热,只好避几天风头再来炒冷饭。 博文《2013诺贝尔化学奖、物理化学和化学物理,及学术上的尾巴摇狗》链接:https://www.doczj.com/doc/1818554879.html,/blog-176-732783.html 2013年诺贝尔物理学奖又是物理化学和化学物理的胜利 2013年的诺贝尔物理学奖,说来说去又算得上是物理化学和化学物理的胜利。 为什么这样说呢? 2013年诺贝尔物理学奖获得者Peter Higgs的博士老板Charles Coulson是所谓应用数学家和理论化学家,他的主要科学贡献在于应

用量子价键理论去研究分子结构,动力学和化学反应性。Peter Higgs 的博士论文题目是Some Problems in the Theory of Molecular Vibrations(《分子振动理论中的一些问题》),这是典型的物理化学和化学物理研究内容,也是俺比较具有特长的研究领域。另外,今年获得诺贝尔化学奖的Martin Kaplus也在Charles Coulson的研究组做过博士后。Karplus和Higgs算是师出同门,当然是物理化学和化学物理的门。 wiki百科Charles Coulson介绍链接: https://www.doczj.com/doc/1818554879.html,/wiki/Charles_Coulson wiki百科Peter Higgs介绍链接: https://www.doczj.com/doc/1818554879.html,/wiki/Peter_Higgs Peter Higgs在University of Edingburgh他自己的网站上介绍说,“In 1954, he was awarded a PhD for a thesis entitled 'Some Problems in the Theory of Molecular Vibrations', work which signalled the start of his life-long interest in the application of the ideas of symmetry to physical systems.”也就是说,Higgs是在研究分子振动的理论中学到了关于对称性的思想然后才开始了他一生中把对称性思想应用到物理体系中 去的兴趣。 Peter Higgs在Edingburgh大学的网站链接: https://www.doczj.com/doc/1818554879.html,/higgs/peter-higgs

相关主题
文本预览
相关文档 最新文档