当前位置:文档之家› 空调系统风道设计word文档

空调系统风道设计word文档

空调系统风道设计word文档
空调系统风道设计word文档

https://www.doczj.com/doc/1f5752968.html,/zykt/2/2.1.html

第8章空调系统风道设计

§8.1风道设计的基本知识

一、道的布置原则

风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。

1.空调系统的风道在布置时应考虑使用的灵活性。

2.风道的布置应符合工艺和气流组织的要求。

3.风道的布置应力求顺直,避免复杂的局部管件。

4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。

5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。

6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。

二、管材料的选择

用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。

需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。

薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。

对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。

以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。

为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。

三、风管断面形状的选择

风管断面形状:

圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统;

矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。

常用矩形风管的规格如下表所示。为了减少系统阻力,进行风道

设计时,矩形风管的高宽比宜小于6,最大不应超过10。

表8-1矩形风管规格

§8.2风道设计的基本任务

进行风道设计时应统筹考虑经济、实用两条基本原则。

1.确定风管的断面形状,选择风管的断面尺寸。

2.计算风管内的压力损失,最终确定风管的断面尺寸,并选择合适的通风机。

风管的压力损失△P由沿程压力损失△P y和局部压力损失△P j两部分组成:

△P=△P y+△P j(P a)

(一)沿程压力损失的基本计算公式

沿程压力损失是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,又称为摩擦阻力损失。

长度为l(m)的风管沿程压力损失可按下式计算:

△P y=△p y l(P a)

△p y—单位管长沿程压力损失,也称为单位管长摩擦阻力损失,P a/m。

△p y=λ/d e×υ2ρ/2(P a)

式中ρ—空气密度,标准状况下ρ=1.2k g/m3;

υ—风管内空气的平均流速,m/s;

d e—风管的当量直径,m,

圆形风管的当量直径d e=d,d为风管直径;

矩形风管的当量直径d e=2a b/(a+b),a、b分别为矩形风管的两个边长;

λ—摩擦阻力系数:

1/√λ=-2l o g(K/3.71d e+2.51/R e√λ)

式中K—风管内壁的当量绝对粗糙度,各种材料的粗糙度如下表:

8-2各种材料的粗糙度表

R e—雷诺数:

R e=υd e/ν

ν—空气的运动粘度,标准状况下,ν=15.06×10-6m2/s。

风管的沿程压力损失可按上述诸公式进行计算,也可查阅附录13以及有关设计手册中《风管单位长度沿程压力损失计算表》进行计算:标准尺寸的圆形断面薄钢板风管计算表见附录13-1;

标准尺寸的矩形断面薄钢板风管计算表见附录13-2;

非标准尺寸的矩形断面薄钢板风管计算表见附录13-3。

(二)局部压力损失的基本计算公式

局部压力损失

△P j是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流而造成比较集中的能量损失。

风管的局部压力损失计算公式如下:

△P j=ζ×υ2ρ/2(P a)

式中ζ—局部阻力系数;

υ—ζ与之对应的断面流速。

影响局部阻力系数ζ的主要因素有:管件形状、壁面粗糙度以及雷诺数。附录14中载有各种各样管件的局部阻力系数ζ计算表,可供设计时选用。

§8.3风道设计计算的方法与步骤

一.风道水力计算方法

风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。

风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。

1.假定流速法

假定流速法也称为比摩阻法。这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。

2.压损平均法

压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提。在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。一般建议的单位长度风管的摩擦压力损失值为0.8~1.5P a/m。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。

3.静压复得法

静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。

<<返回

二.风道水力计算步骤

以假定流速法为例:

1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。

2.在计算草图上进行管段编号,并标注管段的长度和风量。

管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。

3.选定系统最不利环路,一般指最远或局部阻力最多的环路。

4.选择合理的空气流速。

风管内的空气流速可按下表确定。

表8-3空调系统中的空气流速(m/s)

5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。

通过矩形风管的风量:G=3600a bυ(m3/h)

低温送风空调系统

低温送风空调系统基本知识 1.概述 低温送风空调系统与常规空调系统相比送风温度低、送风温差加大,降低了输送管道和空气处理设备的体积以及送风机能耗等。 冰蓄冷系统可以方便地得到低温冷冻水,因此冰蓄冷与低温送风空调相结合是最佳组合,达到节能、经济的目的。 空调系统分类及所需冷媒温度 空调系统类型 送风温度(℃) 冷媒温度(℃) 范围 名义值 常温送风系统 12~16 13 7 低温送风系统 9~11 10 4~6 6~8 7 2~4 ≤5 4 ≤2 2. 系统工作原理 ● 基本公式 ) 6.3)6.3s n x s n q t t c Q I I Q L -(= -(=ρρ 式中: L 送风量 Is 送风空气焓值 Qq 送风要吸收的余热全热 tn 室内空气温度 Qx 送风要吸收的余热显热 ts 送风温度 ρ 空气密度 c 空气定压比热 In 室内空气焓值 ● 工作原理 由供冷能源中心来的低温(1~4℃)液体送入空调机表冷器,使出风温度达到4~10℃,变风量末端装置根据房间温度要求调节送风量,自控系统根据各末端的风量风压要求调节系统送风量,使送风温度稳定不变。 3. 低温送风系统的优点

这样低的送风温度通常借助于冰蓄冷系统的1~4℃的低温冷冻水或载冷剂。将低温送风技术和冰蓄冷技术相结合,可进一步减少空调系统的运行费用,降低一次性投资,提高空调品质,改善储冷空调系统的整体效能。 1)与常规全空气空调系统相比可以降低初投资 ——减少系统设备费用一直是推动低温送风应用的一个重要因素。较低的送风温度和较大的供回水温差减少了所要求的送风量和供水量,降低了空调机组、风机和水泵以及风管和水管的投资,从而降低了系统设备的费用,并减少设备机房和管道的占用空间,节约初投资,一般低温送风系统的设备费用可降低约10%, 2)提高室内空气品质和舒适度 ——因供水温度低,低温送风系统除湿量大,因此能维持较低的相对湿度,提高了热舒适性。实验研究表明在较低的湿度下,受试者感觉更为凉快和舒适,空气品质更可接受;并可相应提高房间设计温度,减少能耗 3)建筑物投资降低 ——降低层高或增高有效层高; ——设备占用面积减少,办公有效面积增加; ——压缩建筑物高度,电梯、台阶建设费用减少。 4)节约运行费用 低温送风系统由于送风量和供水量的减少,可以有效的减少风机和水泵能耗,从而降低运行费用。一般低温送风系统的风机和水泵的能耗可降低约30%。 与冰蓄冷相结合,能起到削峰填谷缓解城市电网压力的作用,并可节约运行能耗。 对于低温送风空调系统,为了充分发挥它的优越性,建议采用变风量形式。在部分负荷时,定风量系统只能通过提高送风温度满足要求,而变风量系统能一直保证大温差送风。并且和运行费用 ——空气输送设备容量减少意味着电力基本费用降低; ——空气输送动力减少意味着电力附属费用也降低。 4.低温送风的特殊问题 1 结露问题 需对末端风口、水管阀门和所有风管采取防止结露措施。 2 冬季送热风问题 3 不采用二次盘管问题

夏热冬冷地区空调通风系统总结

夏热冬冷地区空调通风系统总结如下: 1.空调系统 1.1.一次回风定风量全空气系统: 大空间的房间适合采用一次回风定风量单风道全空气系统:从室外吸入的新风和室内回风在新回风段混合后经过初效过滤器,进入空气处理机组,经冷却、除湿、加压后经送风管、风量调节阀由铝质散流器送入室内,回风经门铰式风口及回风管接至空气处理机组。气流组织形式采用上送风,上回风。过渡季节可全新风运行,送风量按空调季节送风量的60%运行。空调送风量为新风量加回风量之和,以维持空调房间微正压。 空气处理机组设初效新回风段、中效过滤段、表冷(加热)段、(加湿段)、风机出风段。空气处理机组设于空调机房内。当室内冬季相对湿度要求在40%以上时,需根据一次回风系统的工况分析计算结果,决定是否采用加湿段。冷热水由设在屋面的风冷热泵机组提供。 一次回风系统还适用于电气及仪控设备房,规范规定电气设备间、蓄电池间、UPS间、通讯设备间、控制中心等房间均不允许水管进去,风管也不允许敷设在电气柜及控制柜上方,在设计施工图时应避开电气柜的位置,尽量在电气柜后方离墙800mm的空档里贴墙敷设风管,气流组织采用侧送侧回的形式。如果房间进深不大,就尽量在走道上伸出支管、调节阀及送回风口,实行侧送侧回的方式,风管就不必进入电气用房了。 如无电气及仪控设备房的,由各小房间组成的楼层,如各房间合用一次回风系统的,除非是各房间的人员和使用时间均相同且固定不变,否则应采用风机盘管加新风系统或者多联机中央空调系统,或者变风量系统。因为定风量系统是不可以每个房间单独开启和调节的,集中空调系统一开全开的方式不节能。 空气处理机组送回风管进出空调机房处均应设防火阀,及消声器。 1.2.风机盘管加新风系统: 由各小房间组成的建筑物适合采用风机盘管加新风系统,使各小房间的空调能自行开关和调节,利于节能运行。从室外吸入的新风经新风机组处理到室内温度的焓值后,通过风管送入各空调房间,室内回风经风机盘管冷却、

中央空调水系统与风系统计算方法

中央空调水流量简便计算方法 冷冻水泵的选择 通常选用每秒转速在30~150转的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台工作时取1.1,两台并联工作时取1.2)。水泵的扬程应为它承担的供回水管网最不利环路的总水压降的1.1~1.2倍。最不利环路的总水压降,包括冷水机组蒸发器的水压降Δp1、该环路中并联的各台空调末端装置的水压损失最大一台的水压降Δp2、该环路中各种管件的水压降与沿程压降之和。冷水机组蒸发器和空调末端装置的水压降,可根据设计工况从产品样本中查知;环路管件的局部损失及环路的沿程损失应经水力计算求出,在估算时,可大致取每100m管长的沿程损失为5mH2O。这样,若最不利环路的总长(即供、回水管管长之和)为L,则冷水泵扬程H(mH2O)可按下式估算。 Hmax =Δp1 +Δp2 +0.05L(1+ K) 式中K为最不利环路中局部阻力当量长度总和与直管总长的比值。当最不利环路较长时K取0. 2~0.3;最不利环路较短时K取0.4~0.6。 冷却水泵的选择 1)冷却水泵的流量应为冷水机组冷却水量的1.1倍。 2)水泵的扬程就为冷水机组冷凝器水压降Δp1、冷却塔开式段高度Z、管路沿程损失及管件局部损失四项之和的1.1~1.2倍。Δp1和Z可从有关产品样本中查得;沿程损失和局部损失应从水力计算求出,作估算时,管路中管件局部损失可取5mH2O,沿程损失可取每100m管长约5 mH2O。若冷却水系统来回管长为L,则冷却水泵所需扬程的估算值H(mH2O)约为 H =Δp1 + Z + 5 + 0.05L 3) 依据冷却水泵的流量和扬程,参考有关水泵性能参数选用冷却水泵。 水流量计算 1、.冷却冷却水流量水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2) 2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 3、冷却水补水量一般1为冷却水循环水量的1~1.6%.

空调系统风道设计word文档

https://www.doczj.com/doc/1f5752968.html,/zykt/2/2.1.html 第8章空调系统风道设计 §8.1风道设计的基本知识 一、道的布置原则 风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1.空调系统的风道在布置时应考虑使用的灵活性。 2.风道的布置应符合工艺和气流组织的要求。 3.风道的布置应力求顺直,避免复杂的局部管件。 4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。 5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、管材料的选择 用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。 需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。

为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。

三、风管断面形状的选择 风管断面形状: 圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统; 矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。 常用矩形风管的规格如下表所示。为了减少系统阻力,进行风道 设计时,矩形风管的高宽比宜小于6,最大不应超过10。 表8-1矩形风管规格 §8.2风道设计的基本任务

中央空调系统设计毕业论文

(此文档为word格式,下载后您可任意编辑修改!) 摘要 本工程为苏州市一酒店大楼,拟为之设计合理的中央空调系统,为室内工作人员提供舒适的工作环境。 设计内容包括:空调冷热负荷的计算;空调系统的划分与系统方案的确定;冷源的选择;空调末端处理设备的选型;风系统的设计与计算;室内送风方式与气流组织形式的选定;水系统的设计、布置与水力计算;风管系统与水管系统保温层的设计;消声防振设计等内容。 本设计依据有关规范考虑节能和舒适性要求,设计的空调系统采用风机盘管——新风系统。 关键词:酒店;中央空调;风机盘管——新风系统。

ABSTRACT This project designs on air-conditioning system for a hotel Building in Beijing.By comparing the advantages and disadvantages of the air-conditioning program and the suitable situation, combined with the actual situation and the data in this paper,selecting the appropriate type of air conditioning systems to meet the indoor staff comfortable working environment, and determining the design system. According to the relevent norms and the requirements of energy conservation and comfortableness, all-air primary return air system and the fan-coil unit plus fresh air system are applied to the central air conditioning system, respectively, based on the using function of the building. And both systems are designed, analysed, and calculated,separately. Based on this, the air conditioning wind, water systems and chiller plant are designed. The design contents include: the consultation of the relevant material; the understanding of the design principles of the air conditioning system in high-rise complex building; the determination of the indoor and outdoor design parameters; the calculation of the air-conditioning cooling load; the demonstration and selection of cold and heat source; the calculation of the air-conditioning cooling load; the lectotype of the air terminal processing equipment; the selection of the indoor air supply pattern and air distribution form; the selection of the indoor air form of organization ; the design and accommodate of the vault ventilation system; the design, layout and calculation of the water system; the determination of the type of insulation material; the depiction of the clear engineering drawings. Key words: hotel Building All-air system Fan-coil unit plus fresh air

某会展中心通风空调系统设计方案

XX会展中心通风空调系统设计方案 工程概况 XX会展中心是由XX市政府和XX集团共同兴建的会议展览建筑,建筑基底东西长约100m,南北长约150m,总建筑面积26103.56m2。主展馆居中,为单层钢结构建筑,最高点m,南北两侧局部三层,分别为为礼堂、各种会议、办公及设备用房。消防分类为多层建筑。冷热源机房设于建筑物外。 主要设计参数 室内设计参数 空调水系统设计 本工程夏季冷负荷3951.5kW,单位建筑面积冷负荷指标151.4W/m2;冬季设计热负荷3260KW,单位建筑面积热负荷指标125W/m2。 夏季设计供回水温度7/12℃,冬季设计供回水温度60/50℃,冷热源来自室外机房。 根据建筑物实际可能的使用情况,将水环路划分为展厅、礼堂、会议室三部分,从室外主机房分、集水器分别引入,每个环路均采用异程系统,采取水力平衡措施。 空调风系统设计 展厅 采用全空气定风量一次回风系统。其中高大空间部分采用分层空调方式,侧送下回,靠外墙局部为送风气流死角,增设地板散流器下送风口。空调机房设于展厅东西入口上方的夹层内。侧送风口采用可调型圆形喷口,分上下两排布置,其中上排距地高度7m,下排距地6.5m,通过调整角度满足展厅不同季节、不同射程的气流组织需要。新风由竖风道自屋顶退层内引入,避免破坏建筑物外立面。该部分气流组织示意图见图2。图3 为空调机房平面布

置,图4为风口立面布置图。由妥思公司提供的风口选型结果见表2。 展厅内局部层高6m 的空间采用吊顶空调机组加集中新风的空调方式,气流组织采用上送上回。 礼堂 采用全空气定风量一次回风系统。其中观众席采用全回风机组加全新风机组的空调方式,回风机组设于观众席下方的夹层内,新风机组设于主席台后上方的夹层内。气流组织采用上送侧下回,送风管道在屋顶钢结构内敷设,送风口采用旋流风口, 回风在观众席台阶下

通风空调风道设计常见问题_百度文库.

通风空调风道设计常见问题 一、风道设计问题 现象:风管不能突然扩大、突然缩小。很多工程中由于建筑空间窄小,风管的变径或与设备的连接处,苦于地方不够或虽有足够的空间但对空间的尺寸未能详尽安排,施工者又未从气流合理着手考虑接法等问题,结果造成阻力增大,风量减少。达不到设计要求者屡见不鲜。现举一例如下: 某饭店一个送风系统安装尺寸见图 2.6.6-1(a。设计风量10000m3/h。而竣工后试车时实测风量只有6000m3/h左右。 原因:主要是管道安装不合理,突扩、突缩、直角弯头等,造成吸入段阻力过大,影响了风机效率。 对策:将风管拆掉,重新作安装。尽量按照合理的变径,拐弯等要求制作,如图 2.6.6-1(b)。改装后测得风量为10800m3/h。 注意:风管变径时,顺气流方向分为扩大与缩小两种情况。一般扩大斜度宜不大于1/7,即是≤150,而缩小不宜大于1/4,即≤300。

为了保持上述斜度,变径管的长度L可按下法求得: (1单边变径时,如图2.6.6-2(a。 当(W1-W2 ≥(h1-h2时L=(W1-W2×7 当(W1-W2≤(h1-h2时,L=(h1-h2 ×7 双边均变径时,如图2.6.6-2(b 当(W1-W2 ≥(h1-h2时,L=(W1-W2×3.5 当(W1-W2 ≤(h1-h2时,L=(h1-h2 ×3.5 现象:弯头不能随便弯。 1.弯头无导流叶片时,其弯曲半径R最小不得小于1/2W,(W–为风管的宽度。一般以1W为宜。

2.带导流叶片之弯头。由于受空间及障碍物的限制,弯头内侧的曲率半径小于1/2W时,气流所形成的涡流大,压力损失多,此时需加导流叶片。导流叶片之数量与间距见表2.6.6-1及图2.6.6-3(a、(b。 表2.6.6-1 N R/W X X1X2X3 (叶片数 0.35~0.7010.35W0.65W

空调系统风道系统设计【共23页】

空调系统风道系统设计 ----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方 第六章空调系统的风道设计通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。 § 6、1 风道设计的基本知识一、风道的布置原则风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。 1、空调系统的风道在布置时应考虑使用的灵活性。当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。 2、风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。 3、风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。

4、风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量装置应设在便于操作和观察的地方。 5、风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。 6、风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。 二、风管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。 薄钢板有普通薄钢板和镀锌薄钢板两种。镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。其钢板厚度,一般采用0、5~ 1、5mm左右。 对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。所以,仅限于室内应用,且流体温度不可超过-10~+60℃。 以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。它节省钢材,结合装饰,经久耐用,但阻力较大。在

空调系统、通风系统及防排烟系统设计与施工说明

设计与施工说明(一) 一.工程概况: 1、本项目位于三亚海棠湾B位10号地,建筑面积108279.15平方米。主要分为主体酒店、酒店别墅区及可售别墅区。 2、本设计内容包括空调系统、通风系统及防排烟系统。本次设计范围为酒店地下室后勤区及主楼部分后勤区。 二、主要设计依据: 1、《高层民用建筑设计防火规范》(GB50045-95,2005)。 2、《民用建筑供暖通风与空气调节设计规范》<> 3、《公共建筑节能设计标准》(GB50189-2005)。 4、《海南省公共建筑节能设计标准》(DBJ03-2006)。 5、建筑条件图 6,甲方对设计提出的有关文件。 三、室外空调设计参数: 1、夏季空调计算干球温度:35.1°C,湿球温度:28.1°C。 2、夏季风速为.2.6m/s。 3、夏季大气压力:100.34KPa。 4、冬季不采暖。 四、室内通风空调设计参数: 1、室内空调系统设计参数见附表一。 2、通风换气次数 3、冷源系统: a) 空调冷冻水供回水温度:7~12℃。注:(改为6~12℃。) b) 空调冷却水供回水温度:32~37℃。 4.排烟量:房间和走道机械排烟量按每小时每平方米面积不小于60立方米计算。 五、空调冷源设计: 1.本项目空调计算总冷负荷为6988KW后 2.冷冻站设在后勤区负二层,选用3台600RT的水冷式离心机组及1台200RT螺杆式冷水机组。提供7~12管冷冻水。机组采用环保型冷媒,如R134a。冷水机组采用定频式,冷冻水泵及冷却水泵采用变频式。 3.冷却塔放置在室外地坪上。提供32~37°C冷却水。 4.酒店别墅区及可售别墅区采用一拖多联式小型中央空调空调机组。室外机放置于室外地坪上。详见别墅部分设计图纸。 六、空调水管系统设计: 1.本工程采用一次泵变频供水系统;整个项目供水分为二个回路:主楼回路及后勤区回路; 每个区集水器回路供水干管上安装热量表,计量各回路的冷量消耗。每个回路的管道敷设形式和管径大小详见对应的平面图和系统图。 2.本工程的水系统采用膨胀罐定压补水 3,冷冻水系统采用两管制。采用同程式布置。局部为异程式。 七,空调、通风系统设计: (一)空调系统 1,风机盘管系统: 客房、办公类等较小房间采用风机盘管系统提供空调。送风方式根据室内装修情况具体确定。2,全空气单风道空调系统∶

中央空调系统设计

深圳市某办公楼中央空调系统设计 摘要本设计为深圳市某办公楼的中央空调系统设计;介绍了室内设计参数、冷热负荷、空调系统形式、冷热源、空调水系统、风系统、气流组织及消声隔振的设计;冷热源为直燃型溴化锂吸收式机组;空调系统设计采用风机盘管加新风系统,机组全部采用吊顶布置,送回风方式皆采用侧送下回方式;水系统采用同程式闭式系统,供回水方式为上供下回式;主要风管、水管要保温。 关键词设计双效溴化锂吸收式机组风机盘管加新风系统吊顶式 同程式闭式系统上供下回

The air conditioning design of a hotel in Shenzhen Abstract The design for air conditioning system of a hotel in changsha.Presentsmain indoor design conditions,cooling and heat loads,air conditioning system,cold and heat sourses and the design of water system and air system,air distribution,noise reduction,and vibration isolation.Cold and heat sourses are supplied by direct-fired Lithium-bromide absorption machine. The design of air conditioning adopts the primary returnair conditionging and thefresh air handing process for fan coil units.The machine set all adoptions hang a decoration.Supllying and returning the air method to all adopt incline and give way next time all;The water system adopts together program, providing water and return water adopt to send up next time a way. Main tuber pipe, water pipe keeps warm. Keywords Design Direct-fired lithium-bromide absorption-type machine Primary return air conditioning system Fresh air handing process for fan coil units system Hang type Form type Closing type system Send up next time

暖通空调复习题#精选.

第二章 1夏季空调室外计算干球温度、湿球温度如何确定? 夏季空调室外计算干球取夏季室外空气历年平均不保证50h 的干球温度;湿球温度也同样。历年平均:指近三十年平均。用途:用于计算夏季新风冷负荷 2冬季空调室外计算温度与采暖室外计算温度是否相同,为什么? 不相同。温度值确定不同:规定冬季历年平均不保证1天的日平均温度作为冬季空调室外空气计算温度。采暖室外计算温度是 规定取冬季历年平均不保证5天的日平均温度。 用途不同:前者在冬季利用空调供暖时,计算围护结构的热负荷和新风负荷均用此温度。后者是用于消除余热余湿的通风及自然通风中的计算,进风需冷却时的进风冷负荷也采用。 3外墙和屋面的逐时冷负荷计算温度如何计算?与外玻璃窗的冷负荷计算温度有何不同? 4什么是得热量?什么是冷负荷?两者有何区别? 得热量:单位时间内房间从外界获得的热量 冷负荷:为补偿房间得热,保持一定热湿环境,在单位时间内所需向房间供应的冷量。 差别所在:瞬时得热量中,以对流方式传递的显热、潜热直接放热给空气,构成瞬时冷负荷。辐射方式传热量,为围护结构和物体吸收并贮存,然后放出,称为滞后冷负荷。 瞬时得热量≠瞬时冷负荷;只有当得热量中不存在辐射热或结构和物体无蓄热能力时才相等 5室内冷负荷包括哪些内容?空调制冷系统冷负荷包括哪些内容? 室内冷负荷包括: ①由于室内外温差和太阳辐射,通过围护结构进入室内的热量形成的冷负荷。②人体散热,散温形成的冷负荷。③灯光照明散热形成的冷负荷。④其它设备散热形成的冷负荷 空调制冷系统冷负荷:①室内冷负荷;②新风冷负荷(以上两项是主要部分); ③制冷量输送过程传热;(冷损失)④输送设备(风机、泵)的机械能转变的得热量;⑤某些空调系统采用冷、热抵消的调节手段(如再加热);⑥其它进入空调系统的热量(顶棚回风,灯光热量带入回风系统。) 6湿负荷包括哪些内容,如何计算? 7夏季通风室外计算温度和相对湿度是如何确定的?冬季通风室外计算温度是如何确定的? 夏季 ①通风室外计算温度的确定:《规范》规定取历年最热月14时的月平均温度的平均值。 ②通风室外计算相对湿度的确定:取历年最热月14时的月平均相对湿度的平均值。 冬季 按历年最冷月 时平均温度确定的平均值。 第三章 1何为全水系统,全水系统由哪几部分组成? 全水系统:全部用水作为介质传递室内热负荷,冷负荷的系统。 组成:热源(冷源)、管道系统、末端设备(供热或供冷)。 2风机盘管按结构形式分有哪几类?安装方式有哪几类? 按结构型式分类: 1)立式,2)卧式,3)壁挂式,4)卡式(吸顶式) 安装方式: 1)明装、2)暗装、3)半明装 3如选择风机盘?风机盘管供冷量如何确定? 风机盘管选择方法:应按夏季冷负荷选择,冬季热负荷校核即可。 )()()(.R c c t t AK Q -=ττ

空调及通风系统设计方案

11 洁净空调与通风 本工程为赣州章源钨业高性能、高精度涂层刀片一期年产1000万片技术改造项目,本次设计为全厂各生产厂房及主楼暖通、空调设计。 11.1 专业设计依据 采暖通风与空气调节设计规范(GB50019-2003) 洁净厂房设计规范(GB 50073-2001) 工业企业设计卫生标准(GBZ1-2010) 大气污染物综合排放标准(GB16297-1996) 建筑设计防火规范(GB 50016-2006) 有色金属工业环境保护设计技术规范(YS5017-2004) 11.2 工程概况 (1)本次技术改造项目全厂各生产厂房空调面积:14528m2,其中混合料车间:1682.1m2、压制车间:1243.5m2、烧结车间:1729.4m2、研磨珩磨车间:1873.5m2、CVD化学涂层车间:1063.5m2、PVD物理涂层车间:1063.5m2、模具切削实验中心:1710m2、主办公楼:5747m2。考虑到年产400吨棒材项目棒材车间(计算空调面积:1293.3m2)空调冷(热)源由本次技术改造项目统一输送,则全厂各生产厂房空调面积增为17514m2。 空调夏季总冷负荷约为:7029.1kW,空调冬季总热负荷约为:4912.7kW。 按工艺对冷冻循环水温度要求,设置中温工艺冷冻循环水制冷站一座,低温工艺冷冻循环水制冷站-1一座,低温工艺冷冻循环水制冷站-2一座。工艺冷冻循环水制冷站亦同时考虑年产400吨棒材项目棒材车间工艺冷冻循环水制冷容量。 (2)设计范围: 本工程暖通专业设计范围:全厂供暖、通风、空调及暖通管网设计: a.对工艺有要求的场所设置通风、事故排风装置、微正压温湿度控制空调系统及洁净空调系统设计。 b.按空调冬、夏季负荷要求设置空调冷(热)媒循环水主机站房,利用生产

汽车空调出风口及风道设计的要求规范

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份有限公司

目录 第1章风道及出风口介绍......................................................... 错误!未指定书签。 1.1风道介绍................................................................................................. 错误!未指定书签。 1.2出风口介绍............................................................................................. 错误!未指定书签。 1.3相关法规/标准要求................................................................................ 错误!未指定书签。 1.3.1国家/政府/行业法规要求................................................................ 错误!未指定书签。 1.3.2FCC相关标准要求.......................................................................... 错误!未指定书签。 第2章风道及出风口设计规范 ............................................ 错误!未指定书签。 2.1风道及出风口结构................................................................................. 错误!未指定书签。 2.1.1风道结构.......................................................................................... 错误!未指定书签。 2.1.2出风口结构...................................................................................... 错误!未指定书签。 2.1.3出风口及风道实例.......................................................................... 错误!未指定书签。 2.1.4材料.................................................................................................. 错误!未指定书签。 2.2风道及出风口整车布置......................................................................... 错误!未指定书签。 2.2.1风道整车布置.................................................................................. 错误!未指定书签。 2.2.2出风口整车布置.............................................................................. 错误!未指定书签。 2.3通风性能................................................................................................. 错误!未指定书签。 2.3.1风道中的压力损失.......................................................................... 错误!未指定书签。 2.3.2出风量.............................................................................................. 错误!未指定书签。 2.3.3通风有效面积.................................................................................. 错误!未指定书签。 2.4出风口水平叶片布置方式..................................................................... 错误!未指定书签。 2.4.1叶片数量.......................................................................................... 错误!未指定书签。 2.4.2叶片尺寸要求.................................................................................. 错误!未指定书签。 2.5.3叶片间距.......................................................................................... 错误!未指定书签。 2.5出风口垂直叶片布置方式..................................................................... 错误!未指定书签。 2.5.1叶片数量.......................................................................................... 错误!未指定书签。 2.5.2叶片尺寸要求.................................................................................. 错误!未指定书签。 2.5.3叶片间距.......................................................................................... 错误!未指定书签。 2.6气流性能................................................................................................. 错误!未指定书签。 2.6.1气流方向性...................................................................................... 错误!未指定书签。 2.6.2泄漏量.............................................................................................. 错误!未指定书签。 2.7出风口手感............................................................................................. 错误!未指定书签。 2.7.1拨钮操作力...................................................................................... 错误!未指定书签。 2.7.2拨轮操作力...................................................................................... 错误!未指定书签。 第3章试验验证与评估 ........................................................ 错误!未指定书签。 3.1设计验证流程......................................................................................... 错误!未指定书签。 3.2设计验证的内容与方法......................................................................... 错误!未指定书签。 第4章附录 ............................................................................ 错误!未指定书签。 4.1术语和缩写............................................................................................. 错误!未指定书签。 4.2设计工具................................................................................................. 错误!未指定书签。

空调系统的组成与方式

1 空调系统的组成与方式 1.1 中央空调系统的组成 1.2中央空调系统的分类与比较 1.2.1中央空调系统的分类 1.2.2典型空调系统的比较 1.2.3空调系统选择的原则 1.3 全空气空调系统(AAA) 1.3.1 全空气空调过程 1.3.2 回风方式的选定 1.3.3 风量平衡 1.3.4 系统的划分 1.3.5 分区处理 1.3.6 双风道系统 1.4 变风量空调系统(VAV) 1.4.1 采用变风量的原因 1.4.2 定风量与变风量的区别 1.4.3 变风量末端装置的形式 1.5风机盘管+新风空调系统 1.5.1 风机盘管的构造、类型和基本参数 1.5.2 系统的新风供给方式 1.5.3 系统中的新风终状态的处理方式 1.5.4 风机盘管的水系统与调节 1.6商用、户式中央空调、变流量系统 1.6.1 商用中央空调 1.6.2 户用中央空调 1.6.3 变流量系统(VRV) 1.1 中央空调系统的组成 中央空调系统主要由制冷制热设备或装置(压缩机、压缩冷凝机组、冷水机组、空调箱、锅炉、喷水室等)、管路(制冷剂管路、冷媒管路、载冷剂管路等)、室内末端设备(室内风管水管、散流器、风机盘管、空调室内机等)、室外设备(室外风管、冷却塔、风冷式冷凝器等)、水泵、控制装置及附属设备等组成。 中央空调系统的组成参见图1-1和图1-2,多房间的单风道全空气空调系统参见图1-3。

图1-1 中央空调系统组成示意图1 图1-2 中央空调系统组成示意图2 (多房间的单风道全空气空调系统动画演示) 中央空调系统的组成及举例参见表1-1。 组成举例 空气分布、输送系统送、回风管道、散流器等空气处理设备空调箱、风机盘管 冷媒输送系统冷冻水泵、冷冻水管路及附件 冷热源冷水机组、锅炉等 热媒输送系统热水泵、热水管路及附件 散热系统冷却风系统或冷却水系统

中央空调系统设计说明

中央空调系统设计说明 一.项目概况 该建筑为综合休闲场所,共一层,空调面积约296平方米,以冷负荷指标180-300 W/㎡,热负荷指标100-150 W/㎡的标准进行空调设计。 二.设计依据 根据甲方提供的建筑功能平面图。 《采暖通风与空气调节设计规范》(GB50019-2003) 《通风与空调工程施工及验收规范》(GB50243-2002) 《实用供热通风设计手册》 三.设计范围 各功能房间的夏季制冷和冬季采暖系统、机房布置等设计。 采用设计方案: 风冷热泵模块冷热水机组+风机盘管(吊顶新风空调器)+冷冻水泵 设备置于地面,膨胀水箱高位定压 四.设计参数和空调设计 3.1 室外设计参数 夏季室外空气调节计算干球温度 36.5℃ 夏季室外空气调节计算湿球温度 27.3℃ 冬季室外空气调节计算干球温度 2℃ 冬季室外空气调节相对湿度 82% 3.2 空调室内计算参数 夏季室内设计温度 26±2℃ 冬季室内设计温度 20±2℃ 3.3 室内冷负荷设计指标(见“中央空调工程负荷计算表”) 五.项目分析及方案设计 单位面积冷负荷设计为180~300W/m2,本项目空调面积296m2,空调设计冷负荷为68KW。根据使用功能要求设计2000M3/H的新风系统

六.送风形式 风机盘管:吊顶式暗装盘管(下送风为标准型风压,侧送风为0静压),最终具体选用情况,应与装修公司紧密配合选择。 各房间送风口采用铝合金双层百叶风口,送风方式为下送顶回,以单层百叶铝合金风口作为回风口,新型铝合金材质,外形美观,能与装饰完美和谐地配合,气流组织合理,让人真正享受中央空调“制冷不吹风”的舒适感受。 新风送风口用双层百叶风口,进风口采用防雨百叶风口。 七.系统控制 机组的运行、管理均由微电脑控制系统完成,操作简单,无需专业管理人员;机组根据负荷自动启动/停止压缩机,使机组既运行在最佳经济点,又节约用户能源。机组的各项保护功能齐全,具备故障自检系统,自动平衡压缩机的磨损,冬季自动防冻等功能。 机组自带水力模块,增强了系统的运行稳定性。 八.冷冻水系统 本系统以水作为载冷剂进入房屋,安全,环保、无任何潜在使用危险,也不会出现一点泄漏就造成全系统瘫痪的问题。冷冻水系统经过室外主管进入各空调区域。冷(热)水系统采用冷冻水管:DN≥50MM采用无缝钢管,DN<50MM采用PPR管。风机盘管与冷冻水支管间采用橡胶软接头,阀门采用铜闸阀。系统最低点设立排污阀,局部最高点设自动排空阀。冷凝水排水系统,采用U-PVC管,通过卫生间就地排放。具体要求如下: 2、接管的接口尺寸应符合要求(见机组性能参数表)。 3、机组供水系统安装自动排气阀、水泵和水流开关。 4、排气阀必须设在冷冻水系统最高点。在冷冻水系统连接完毕,检漏试压合格后,打 开排气阀,排尽冷冻水内空气后关闭。如水质及管内不清洁,在水泵运行30分钟后,清洗过滤器。 5、多台机组并联时须设分水器、集水器及水压平衡阀。 6、排水阀应装在水系统的最低点处。 7、水管的设计请参考《空气调节设计手册》,工程施工、验收参见GB50243-1997《通 风与空调工程施工及验收规范》。

相关主题
文本预览
相关文档 最新文档