当前位置:文档之家› 差动保护试验

差动保护试验

差动保护试验
差动保护试验

谈差动保护试验

差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。

传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性

变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。

上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

C三相逐相试验,如果差动电流回路较多,则以一个回路为基准,其余回路逐个与基准回路组合试验。

二、用极性试验法判断互感器及电缆接线是否正确

用极性试验法在电流互感器的一次接线端依次施加瞬间电池电流,在保护屏相应电流端子上依次观察电流表偏转方向即可判断电流互感器及从电流互感器至保护屏的电缆接线是否正确。

首先,把被保护设备(变压器、母线或线路等)看作节点,然后,打开保护屏的电流端子,按如下方法操作: 如果电流互感器是星形接线则道理很简单,在保护屏该侧电流回路某相电流端子上接直流毫安表的正极表笔,在地端子上接负极表笔,如果用电池形成一个流入节点的电流(正极接电流互感器远离节点的端子,负极接电流互感器靠近节点的端子)瞬间,表针正偏则说明接线正确。以上操作逐相试验。

如果是Y,D-11型接线变压器的角形电流互感器接线回路,则在保护屏上该侧电流回路的A相电流端子上接直流毫安表的正极表笔,C相电流端子上接负极表笔,用电池在A 相电流互感器中构成一个流入节点的电流瞬间,表针正转则说明A相接线正确。同理,在保护屏上该侧电流回路的B相电流端子上接直流毫安表的正极表笔,A相电流端子上接负极表笔,用电池在B相电流互感器中构成一个流入节点的电

流瞬间,表针正转则说明B相接线正确; 在保护屏上该侧电流回路的C相电流端子上接直流毫安表的正极表笔,B相电流端子上接负极表笔,用电池在C相电流互感器中构成一个流入节点的电流瞬间,表针正转则说明C相接线正确。在保护屏上该侧电流回路的C相电流端子上接直流毫安表的正极表笔,B相电流端子上接负极表笔,用电池在C相电流互感器中构成一个流入节点的电流瞬间,表针正转则说明C相接线正确。

以上操作逐侧回路进行试验。当然,如果以上试验中所有侧电流回路的所有相都反偏也正确。

把保护的所有电流回路极性检查完后,即能保证电流互感器至保护屏间的接线正确,再加上第一部分能证明保护屏内接线正确,就能保证整个差动保护的接线正确了。

三、试验差动保护的动作特性

母线及线路保护的动作特性比较简单,在此不再赘述。变压器差动保护的动作特性比较复杂,传统的差动继电器通常采用直流制动,三相变压器合闸时涌流中的直流分量有时不大,只依靠直流闭锁不很可靠,现在的自动化系统差动保护单元大多采用二次谐波制动的比率差动和差

动速断,其动作特性如图所示。下面以自动化

系统差动保护单元为例,讨论其实验方法,其

它设备可以参照执行。

为了方便起见,三圈变压器在高压侧电流Ih、中压侧电流I1、低压侧电流Im中选择两侧回路逐相相加电流。试验箱电流的“头”对应保护单元电流回路的“头”,试验箱电流的“尾”对应保护单元电流回路的“尾”,则差动电流(Ic)等于两侧电流矢量和,制动电流(Izd)等于两侧电流矢量差(注意试验箱电流值应经接线系数和平衡系数校正)。

首先试验比率差动。第一,加Ic

Imk+Kb*(Izd-Isd1)时不应动作,Ic至Imk+Kb*(Izd-Isd1)时应可靠动作。接下来投入二次谐波闭锁,试验二次谐波闭锁比率差动。重复以上试验并且在变压器的电源侧同时加二次谐波电流,当I(2)≥Kxb*I(1)且Ic

最后试验差动速断。为了方便起见,只在变压器一侧回路逐相加电流,所加电流即为Ic。加IcI〈sd的工频电流保

护不应动作,逐渐调整试验箱电流值使Ic至Isd定值时应可靠动作。

以上试验依次在A、B、C三相上分别做,三相都正确动作,说明差动保护的动作特性正确。

如果以上试验完毕,基本上可以保证差动的正确性,设备投运后做六角图再次验证。通常做六角图用功率表法,要求主变负荷不能太小,如果用高精度相位表则可以对负荷要求较低,且快速而简便。

四、结束语

笔者用上述方法检验了数十个差动保护,其中既有差动继电器式的也有自动化系统差动保护单元型的,既有变压器(包括两圈的和三圈的)差动保护,也有短线路差动保护,均取得了成功。如果经过以上试验仍然有误动和拒动则应重点做如下检查: 第一,核对定值,看定值是否适合实际工程。第二,检查电流互感器及电缆,看电流互感器的伏安特性是否适合实际工程及电流回路实际负荷是否超过电流互感器

的额定负荷。第三,检查硬连接及软设置,看差动、制动、平衡线圈的连接位置是否正确,软卡参数如: 变比、平衡系数、定值等设置是否正确。总之,该方法是一种简便易行,无任何负作用即可对各种差动保护做出系统、全面、准确评价的试验方法。

差动继电器实验报告

竭诚为您提供优质文档/双击可除差动继电器实验报告 篇一:变压器差动保护实验 实验内容实验二变压器差动保护实验 (一)实验目的 1.熟悉变压器纵差保护的组成原理及整定值的调整方法。 2.了解Y∕Δ接线的变压器,其电流互感器二次接线方式对减少不平衡电流的影响。 3.了解差动保护制动特性的特点。 (二)变压器纵联差动保护的基本原理1.变压器保护的配置 变压器是十分重要和贵重的电力设备,电力部门中使用相当普遍。变压器如发生故障将给供电的可靠性带来严重的后果,因此在变压器上应装设灵敏、快速、可靠和选择性好的保护装置。 变压器上装设的保护一般有两类:一种为主保护,如瓦斯保护,差动保护;另一种称后备保护,如过电流保护、低

电压起动的过流保护等。 本试验台的主保护采用二次谐波制动原理的比率制动 差动保护。 2.变压器纵联差动保护基本原理 如图7-1所示为双绕组纵联差动保护的单相原理说明图,元件两侧的电流互感器的接线应使在正常和外部故障时流 入继电器的电流为两侧电流之差,其值接近于零,继电器不动作;内部故障时流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。但是,由于变压器高压侧和低压侧的额定电流不同,为了保证正常和外部故障时,变压器两侧的两个电流相等,从而使流入继电器的电流为零。即: 式中:KTAY、KTA△——分别为变压器Y侧和△侧电流 互感器变比;KT——变压器变比。 显然要使正常和外部故障时流入继电器的电流为零,就必须适当选择两侧互感器的变比,使其比值等于变压器变比。但是,实际上正常或外部故障时流入继电器的电流不会为零,即有不平衡电流出现。原因是:(1)各侧电流互感器的磁化特性不可能一致。 (2)为满足(7-1)式要求,计算出的电流互感器的变比,与选用的标准化变比不可能相同; (3)当采用带负荷调压的变压器时,由于运行的需要

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

探究220kV线路光纤差动保护联调方案

探究220kV线路光纤差动保护联调方案 摘要:文章依据220kV线路的结构特点,分析了线路中光纤分相差动保护的工 作原理,光纤分相差动保护装置的特点,差动保护中通信装置的接口方式,以及 时钟在保护装置中所起到的作用。从保护联调的角度分析了联调的具体实施方法 和存在的问题。 关键词:线路;光纤;差动保护;联调 220kV线路是电力系统中联系整个系统的支架,线路是否运行在安全可靠的 状态下在很大程度上决定着整个电力系统是否能安全可靠的运行。因此,在 220kV输电线路上采用的多个成套微机保护装置应同时满足继电保护装置选择性、灵敏性、速动性以及可靠性四个最基本的要求。 一、输电线路上常用差动保护概述 在输电线路上最常使用的差动保护方式是分相电流差动保护。分相电流差动 保护,从保护的工作原理上来说,是一种理想化的方式。分相电流差动保护的优 势体现在,保护方式不受震荡干扰、不受运行方式影响,过渡电阻对它的影响非 常小,保护方式自身具备选相的能力,因其具备继电保护装置应该具备的绝对选 择性、灵敏性以及速动性等诸多优点,光纤分相电流差动保护已成为了220kV输 电线路上使用最多最主要的保护方式。分相电流差动保护的保护原理是,通过输 电线路两侧的微机保护装置之间的互通信息,实现对本输电线路的保护。要想确 保分相电流差动保护能够安全可靠的投入到运行中,就要对输电线路两侧的微机 保护装置进行联调。 就目前一些铺设的输电线路,分相电流差动保护是采用光纤通道,将220kV 输电线路两侧的微机保护装置进行纵向联结,将一端的电流、电压幅值及方向等 电气量数据传送到另一端,将两端的电气量数值进行对比,依此判断输电线路上 的故障时发生在本段线路范围之内还是范围之外,针对于线路范围之内的故障才 采取切断线路的一系列动作。 在输电线路的实际应用中,差动保护装置在交换线路两侧电气量的时候一般 采用允许式信号作为接受对侧电气量的指示,当装置发生异常或者是TA发生断 线时,发生异常的这一侧的起动元件及差动继电器有可能都发生动作,但线路的 另一侧不会向异常的这一侧发出允许信号,有效避免了纵联差动保护的误动现象,提高了输电线路运行的可靠性;另外,输电线路上的保护装置还能传输来自远方 的跳闸信号,传输过电压命令信号等,纵联差动实现了输电线路两侧断路器在故 障发生时快速跳闸,从而保证了继电保护装置的速动性。 二、纵联差动保护的相关概念 (一)纵联差动保护的数字通道 就目前新铺设的一些输电线路,继电保护装置的通道多采用光纤通道,即某 一特定传输速率的同向接口复接通信。输电线路两侧保护装置要实现同步的关键 在于时钟,光纤通道在负责传输数据信号的同时,还负责着时钟信号的传输,正 是因为通道之中也有着时钟信号,输电线路两侧数据流的准确传输才成为了可能。在允许式传输方式中,也就是采用允许式信号的传输方式中,保证唯一的主时钟 存在,并将对侧的保护装置作为从时钟,从而才能实现数据的同步传输,并为输 电线路两侧将要做比对的电气量值确立一个统一的基准,在实现输电线路两侧保 护装置数据传输同步的同时,也确保了数据分析的同步。 (二)纵联差动保护的联调

比率差动保护测试

使用微机型测试仪后,在测试软件中提供了对应微机保护算法的自动测试方案,可由制动电流和差动电流根据制动方程和动作方程自动计算出变压器各侧所需输入的电流值,并且可以采用扫描的方法扫描出动作边界,自动计算出比率制动系数。 目前国内的主要微机型测试仪有三路电流和六路电流两种。采用六路电流测试时,接线比较简单,并且可以同时检测两侧三相。采用三路电流测试时,只能进行分相检测,并且在测试过程中要注意补偿电流还要防止其他相误动,接线比较复杂。 本节通过具体的测试实例,重点介绍三绕组变压器差动保护装置的测试方法。其他具有相同原理的保护测试可参考此试验方法。主要包括: (1)六路电流测试仪测试采用Y→?变化的变压器保护:以国电南自PST-1200 型变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部Y 侧补偿时,采用六路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (2)三路电流测试仪测试采用Y→?变化的变压器保护:以国电南自PST-1200 型变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部Y 侧补偿时,采用三路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (3)六路电流测试仪测试采用?→Y 变化的变压器保护:以南瑞继保RCS-978 变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部?侧补偿时,采用六路电流测试仪进行星—角及星—星两侧分别测试的具体方法。 (4)三路电流测试仪测试采用?→Y 变化变压器保护:以南瑞继保RCS-978 变压器保护为例,通过该例介绍对于Y/Y/?-11 接线方式的变压器,当差动保护采用保护内部?侧补偿时,采用三路电流测试仪进行星—角及星—星两侧分别测试的具体方法。

差动保护试验

谈差动保护试验 差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。 传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。因此,以上方法不便采用。下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性 变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。这样,变压器各侧电流回路正好反相。现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。 上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。现在的自动化系统差动保护单元都有差动电流显示,根据显示数据即可判定其接线正确性——若为两电流有效值之差则接线正确,若为两电流有效值之和电流则有极性接反,若为两电流和与差之间的数值则相位处理有错误。如果无差电流显示则只能靠动作与否来判断接线正确与否了,即不动作为正确,动作为不正确,试验时一定要吃透图纸,注意接线极性,可规定从某相(头)流入保护屏,从地(尾)流出保护屏为正方向。这样A、B、

浅析光纤电流差动保护通道联调及通道故障处理 赵晓蕾

浅析光纤电流差动保护通道联调及通道故障处理赵晓蕾 发表时间:2019-12-02T09:44:35.833Z 来源:《电力设备》2019年第15期作者:赵晓蕾[导读] 摘要:本文简单介绍了光纤差动保护通道联调试验,影响通道正常通信的因素以及通道故障处理方法。 (国网山西省电力公司运城供电公司山西运城 044000) 摘要:本文简单介绍了光纤差动保护通道联调试验,影响通道正常通信的因素以及通道故障处理方法。 关键词:光纤;差动保护;通道;联调引言 随着经济的发展和科技水平的提高,人们对电力的需求也有了很大的提高。为了向客户提供优质、经济和稳定的电力能源,就需要电力系统本身更加高效安全稳定。当电力系统发生故障时可能产生上万安培的故障电流,这对故障点附近的居民人身安全和系统本身的安全稳定运行,造成重大的影响。 随着光纤通信技术在继电保护中应用越来越广泛。在实际运行中存在一些必须考虑的问题。例如通道联调试验,通道异常处理等, 1 现状 公司线路光纤差动保护曾出现因通道异常而被迫停用保护的现象。由于现场设备的限制,常用的自发自收来检验光纤通道的保护试验方法,只能排除保护装置问题,不能从根本上查清通道异常原因。因此,有必要完善光纤差动保护带通道联调调试流程,以规范保护人员的作业行为,及时查清通道异常原因并处理。 2 差动保护通道介绍 电流差动保护可以准确、可靠、快速的切除故障线路。通过采用比较线路两侧电流向量的方法,判断线路是否发生故障。 由于差动保护需要每时每刻对线路两侧的电流进行采样、比较并计算,而线路通常都有几十公里长,直接从线路两侧CT采集电流是不可能的,这就要借助数据通道把线路对侧的电流数据传递到本侧来。光纤差动保护的通道由保护装置、光电转换装置、PCM通信装置、OPGW复用光缆以及装置间连接用光缆、数据线构成。采用光信号可以用来传递保护两侧的电流信号,光信号通过光纤传播,不易受外界的干扰。 3 光纤保护通道联调试验 在通道联调之前,必须先完成保护装置自环试验,以保证装置的采样精度、出口逻辑、保护功能的正确性。首先用FC接头单膜尾纤将保护的发与收短接,将保护装置定值按自环整定。定值中“投纵联差动保护”、“专用光纤”以及“通道自环试验”均置一,然后复位装置让保护自环运行,自环试验完成后再进行通道联调才有意义。 “专用光纤”控制字按实际整定,要求:(1)精度试验:(2)跳闸试验: ①M侧断路器在合闸位置,N侧断路器在断开位置,M侧模拟单相故障,则M侧差动保护动作跳开本侧断路器。 ②两侧断路器在合闸位置,两侧分别进行如下试验:N侧加入34V(相电压)的三相电压,M侧模拟单相故障,则差动保护瞬时动作跳开断路器,然后单相重合。 ③两侧断路器在合闸位置,两侧分别进行如下试验:M侧模拟单相故障(故障相电压应至少降低3V),N侧模拟运行状态,则M侧差动保护动作(动作时间应大于100ms)跳开M侧断路器并联跳N侧断路器。 ④两侧断路器在合闸位置,两侧分别进行如下试验:M侧模拟相间故障的同时N侧三相电压正常,则差动保护不动作;两侧断路器在合闸位置,N侧加入34V(相电压)的三相电压,M侧模拟相间故障,则两侧差动保护同时动作跳开两侧的断路器。 ⑤远跳:两侧投入远跳压板,M侧TJR动作发远跳信号,N侧收到远跳信号,经或者不经N侧启动元件控制。 上述试验必须两侧配合,两侧轮流进行。 4 常见的通道故障 在继电保护调试过程中出现通道故障的原因有以下几种: ①光纤头对接不准或拔插太频繁粘上灰尘; ②光电转换装置规约转换的跳线整错; ③保护通信的地址或时钟整定出错; ④“专用光纤”、“通道自环试验”、“主机方式”等保护定值中控制字整定出错。 故障中光纤头对接不准的问题最多也最难发现。出现“通道异常”告警时,检修人员一般采用层层自环的方法寻找异常原因,低效耗时,有时通道莫名其妙地恢复正常。工作中发现,在进行层层自环时免不了拔插光纤头,这就将对接不准的光纤头重新插好,所以出现了通道自己恢复正常的假像。在维护和处理通道异常时,如将光纤头拔下用酒精轻轻擦拭再插上,大多数情况下通道就会恢复正常。光纤头和光口的连接过程中,如果同心度不好,接续衰耗将很大,甚至造成不通的现象;如果光纤头和光口的间距太远,由于光的折射作用,接续衰耗也很大;尾纤和长光缆熔接时,对接的两头要采用同型号的光纤,否则将由于芯径失配增加接续衰耗。调试过程中光纤接好通信畅通后,要尽量减少光纤头的插拔次数,以免损坏光纤头。 故障中保护通信要求保护装置两侧数据采集的时钟同步,复接网络方式的数据通信由省调提供统一的时钟同步信号,保护装置的信号收、发都要使用这个时钟信号,所以保护装置要整定为外部时钟。保护装置通过整定控制字“专用光纤(内部时钟)”来决定通信时钟方式,对于复用通道(包括64kbit/s速率和2048kbit/s速率),要将“专用光纤”控制字置“0”,这也就是我们经常说的使用外时钟方式。 在保护通道调试时出现光纤接好后发现通道中断现象,如果保护整定和跳线都没问题,一般采用层层自环的方法查看故障点。在通道联调过程中,要注意监视通道延时、通道传输数据丢包率等关键数据,确保满足通道的传输要求,使通道的正常运行。 另外,光纤通道的现场维护也是很重要的工作。①保证光纤接口处连接可靠;②尾纤不能折,防止损坏玻璃纤维;③现场注意防鼠,以防老鼠咬坏尾纤;④要把多余的尾纤正确盘好,并固定好,防止开关屏门时挤坏尾纤;⑤安装和通道试验时注意保护尾纤。 5 结束语

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

差动保护试验方法

差动保护试验方法 国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式。 1. 用继保测试仪差动动作门槛实验: 投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流0.90A ,步长+0.01A ,观察差流,缓慢加至差动保护动作,记录动作值。 说明: 注意CT 接线形式对试验的影响。 若CT 接为“Y-△,△-Y 型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即1.73动作,低测动作值为定值,即1.00动作 若CT 接为“Y-Y 型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即1.00动作 2. 用继保测试仪做比率差动试验: 分别作A ,B ,C 相比率差动,其他相查动方法与此类似。 以A 相为例,做比率差动试验的方法:在高,低两侧A 相同时加电流(测试仪的A 相电流接装置的高压侧A 相,B 相电流接装置的低压侧A 相),高压侧假如固定电流,角度为0度,低压侧幅值初值设为x ,角度为180度,以0.02A 为步长增减,找到保护动作的临界点,然后将x 代入下列公式进行验证。 0Ir Ir Id Id k --= 其中: Id :差动电流,等于高侧电流减低侧电流 Id0:差动电流定值 Ir :制动电流,等于各侧电流中最大值 Ir0:制动电流定值 K :制动系数 例如: 定值:Id0=1(A ); Ir0=1(A ); K =0.15 接线:测试仪的Ia 接装置的高压侧A 相,Ib 接装置的低压侧A 相 输入:Ia =∠0 o5A Ib =∠180 o5A 步长Ib =0.02A 试验:逐步减小Ib 电流,当Ib=3.4A 时装置动作。 验证:Id =5-3.4=1.6A Id0=1A Ir =5A Ir0=1A 15.04 6.0151)4.35(==---=k 3. 用继保测试仪做差动速断试验 投入“差动速断”压板,其他压板退出。依次在装置的高压侧,低压侧的A ,B ,C 相加入单相电流9.8A ,每次以0.01A 为步长缓慢增加电流值至动作,记录动作值。 例如:

差动保护总结

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 2、变压器纵差动保护的特点 励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φ m 。但由于铁心中的磁通不能突变,因此 将出现一个非周期分量的磁通+Φ m ,如果考虑剩磁Φ r ,这样经过半过周期后铁 心中的磁通将达到2Φ m +Φ r ,其幅值为如图8-6所示。此时变压器铁芯将严重饱 和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 条件 谐波分量占基波分量的百分数(%) 直流分 量 基波 二次谐 波 三次谐 波 四次谐 波 五次谐波 励磁涌流第一个周期 第二个周期 第八个周期 58 58 58 100 100 100 62 63 65 25 28 30 4 5 7 2 3 3 内部短路故障电流电流互感器饱和 电流互感器不饱 和 38 100 100 4 9 32 4 9 7 2 4 ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 3、变压器——不平衡电流产生的原因 1、相位不同导致 2、CT变比不一致导致

弧光保护单元试验报告

电弧光保护装置测试报告 一、参数: 变电站:CB-10kv开闭所测试时间:2015.1.20 型号:BPR342ARC 操作电压:DC220V 保护跳闸电流:1.2I e 保护跳闸条件设定:弧光及电流 额定电流I e:5A 出厂日期:2014.10 生产厂家:弘毅电器有限公司 二、测试内容: 上电前: 1.主单元 (1)单元固定安装是否正确、牢固———————□是□否(2)主单元接线是否按图纸接正确无误—————□是□否(3)主单元设置是否按现场要求设置正确————□是□否2.辅助单元 (1)辅助单元安装是否正确、牢固———————□是□否(2)辅助单元地址等设置是否正确,合乎要求——□是□否(3)辅助单元到主单元之间连接是否正确————□是□否(4)辅助单元与传感器之间连接是否正确————□是□否3.通讯电缆 通讯电缆是否有损坏或压伤————————□是□否 上电后:

1.主单元显示是否正常———————————□是□否 2.辅助单元显示是否正常——————————□是□否 3.主单元上显示的辅助单元数量是否正确———□是□否 4.主单元上显示的传感器数量是否正确————□是□否 5.定值整定: (1)主单元保护定值是否按现场要求设置———————□是□否(2)电流达到定值主单元是否能反映出来———————□是□否(3)实际电流值___6_A___主单元显示值___6.01A___ 6.测试传感器: (1)传感器线是否有损伤或压伤———————————□是□否(2)传感器安装是否正确,牢固———————————□是□否 7.模拟弧光: (1)传感器传到辅助单元的地址是否正确———————□是□否(2)传感器传到主单元显示的地址是否正确——————□是□否(3)在6I e下打开弧光发射器,保护动作是否正常———□是□否

纵联差动保护联调方法

采样 相关概念: ?定值中的“CT变比系数”: 将电流一次额定值大的一侧设定为1,小的一侧整定为本侧电流一次额定值与对侧电流一次额定值的比值。 如:本侧CT变比1250/5;对侧2500/1,则本侧CT变比系数整定为0、5,对侧整定为1。 步骤: 本侧CT变比:a/b,对侧CT变比c/d。 ?(1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 ?(2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 模拟空充 相关概念: ?没有CT断线时差动跳闸需同时满足如下条件: 1、两侧差动保护均投入(控制字+软压板+硬压板) 2、没有通道异常 3、有差流 4、本侧保护启动 5、对侧差动信号,即给本侧发差动允许信号(a、b同时满足) a、有差流 b、对侧分位无流或对侧启动 步骤: ?①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 解释: 1、对侧分位无流+有差流->给本侧发允许信号 2、对侧不启动->对侧不跳 ?②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 相关概念: ?保护启动方式: 1、电流变化量启动 2、零序过流元件启动 3、位置不对应启动(针对偷跳) 4、弱馈启动(针对弱电源侧) 步骤: ?①两侧合位。对侧加一低于正常值电压34V(1、之所以加34V就是为了满足如下两 条:a、满足弱馈条件<65%额定,b、大于33V避开PT断线,2、其实PT断线并不影响弱馈启动,即只要加的电压满足<65%额定即可,也就就是说不加也行。),本侧加差流,则两侧跳。 解释: 1、本侧启动+有差流->给对侧发允许信号

2、对侧弱馈+本侧允许信号->对侧启动(弱馈启动方式) 3、对侧启动+有差流->给本侧发允许信号 ?②两侧合位。本侧加一低于正常值电压34V,对侧加差流,则两侧跳。 模拟远跳 步骤: 方法一: ?①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧 跳。(若点的就是TJR继电器,则对侧也跳,但保护装置跳闸灯不亮。若点的就是保护装置的TJR开入,则对侧开关不跳。) ?②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧 跳。 (注:因TJR与启动量需要时间上的配合,较难把握,可采用如下简便方法。) 方法二: ?①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ?②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 简化整组联调实用版步骤: 一、前提: 1、“通道异常”灯熄灭,两侧主保护投入(控制字+软压板+硬压板)。 2、给两套主保护并上电压、串上电流。 二、采样 本侧CT变比:a/b,对侧CT变比c/d。 (1)本侧加电流I1,则对侧显示差流:I1*a*d/b/c。 (2)对侧加电流I2,则本侧显示差流:I2*c*b/d/a。 三、模拟空充 ①对侧分位,本侧合位。本侧加差流,则本侧跳,对侧不跳。 ②本侧分位,对侧合位。对侧加差流,则对侧跳,本侧不跳。 模拟弱馈 ①两侧合位。对侧加一小于65%额定电压,本侧加差流,则两侧跳。 ②两侧合位。本侧加一小于65%额定电压,对侧加差流,则两侧跳。 四、模拟远跳 方法一: ①本侧投入“远跳经本侧控制”,本侧合位,对侧点TJR的同时本侧加一启动量,则本侧跳。 ②②对侧投入“远跳经本侧控制”,对侧合位,本侧点TJR的同时对侧加一启动量,则对侧跳。方法二(较简单): ①本侧退出“远跳经本侧控制”,本侧合位,对侧点TJR,本侧跳。 ②对侧退出“远跳经本侧控制”,对侧合位,本侧点TJR,对侧跳。 ③两侧恢复“远跳经本侧控制”。

电力系统继电保护实验实验报告

网络高等教育《电力系统继电保护》实验报告 学习中心:奥鹏学习中心 层次:专科起点本科 专业:电气工程及其自动化 年级: 学号: 学生:

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的的实际结构,工 作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法。 二、实验电路 1.过流继电器实验接线图 过流继电器实验接线图 2.低压继电器实验接线图 低压继电器实验接线图

三、预习题 1.过流继电器线圈采用_串联_接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用__并联 _接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 答:1.使继电器返回的最小电压称为返回电压;使继电器动作的最大电压称为动作电压;返回电压与动作电压之比称为返回系数。 2.使继电器动作的最小电流称为动作电流;使继电器返回的最大电流称为返回电流;返回电流与动作电流之比称为返回系数。 四、实验容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表

2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表 五、实验仪器设备

六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 答:由于摩擦力矩和剩余力矩的存在,使得返回量小于动作量。根据返回力矩的定义,返回系数恒小于1. 2.返回系数在设计继电保护装置中有何重要用途? 答:返回系数是确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系数不被切除。 3. 实验的体会和建议 电流保护的动作电流是按躲开最大负荷电流整定的,一般能保护相邻线路。在下一条相邻线路或其他线路短路时,电流继电器将启动,但当外部故障切除后,母线上的电动机自启动,有比较大的启动电流,此时要求电流继电器必须可靠返回,否则会出现误跳闸。所以过电流保护在整定计算时必须考虑返回系数和自起动系数,以保证在上述情况下,保护能在大的启动电流情况下可靠返回。电流速断的保护的动作电流是按躲开线路末端最大短路电流整定的,一般只能保护线路首端。在下一条相邻线路短路时,电流继电器不启动,当外部故障切除后,不存在大的启动电流情况下可靠返回问题

差动保护试验方法

变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT 变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1 而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。ND300系列变压器差动保护软件移相均是移

光差保护联调试验方法

光差保护联调实验的方法说明 两侧装置纵联差动保护功能联调方法: 1、模拟线路空冲时故障或空载时发生故障 a、本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟单相故障,本侧差动保护瞬时动作跳开断路器,然后单相重合。 b、本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟相间故障,本侧差动保护动作跳开断路器。 注意:注意保护装置里开入量显示应确实有三相跳闸位置开入,且将“投纵联差动保护”控制字置“1”、压板定值里“投主保护压板”置“1”,屏上“主保护压板”投入。 c、两侧断路器均在合闸位置,对侧加且只加三相正常的平衡电压,本侧模拟单相故障,差动保护不动作。 d、两侧断路器均在合闸位置,对侧加且只加三相正常的平衡电压,本侧模拟相间故障,差动保护不动作。 2、模拟弱馈功能: U(37.5V)但是大注意在模拟弱馈功能的时候,弱馈侧的三相电压加的量应该小于65% n 于TV断线的告警电压33.3V,使装置没有“TV断线”告警信号。 模拟弱馈功能的方法之一:对侧只加三相平衡的34V(大于33.3V小于37.5V)的电压量:a、两侧断路器在合闸位置,对侧加相电压34V的三相电压,本侧模拟单相故障,两侧差动保护相继动作跳开断路器,然后单相重合。 b、两侧断路器在合闸位置,对侧加相电压34V的三相电压,本侧模拟相间故障,两侧差动保护相继动作跳开断路器。 模拟弱馈功能的另外一种方法:对侧不加任何电压电流模拟量: a、两侧断路器在合闸位置,对侧不加任何电压电流模拟量,本侧模拟单相故障,两侧差动保护相继动作跳开断路器,然后单相重合。 b、两侧断路器在合闸位置,对侧不加任何电压电流模拟量,本侧模拟相间故障,两侧差动保护相继动作跳开断路器。 (注意:由于常规的220KV变电站的220KV线路的电压大部分接的都是母线PT,所以此时在不加任何电压的情况下,由于开关是处于合位,此时三相电压向量和小于8伏,但正序电压小于33.3V,则肯定是延时1.25秒发TV断线异常信号的,虽然此时装置报TV断线,由于此时装置主保护投入,通道正常,没有其他什么闭锁重合闸开入,也还是可以充起电的,所以这样模拟出来的仍然是弱馈功能。)

浅谈差动保护的试验

龙源期刊网 https://www.doczj.com/doc/1f14191397.html, 浅谈差动保护的试验 作者:王娟平 来源:《科学与财富》2016年第13期 摘要:牵引变压器的主保护是瓦斯保护和差动保护,瓦斯保护是非电量保护,直观易懂 且出错可能性不大;差动保护是电量保护,且涉及3到5个电流互感器,对极性要求很严,二次接线复杂难懂,很容易出错。对于新牵引变电所、综合自动化改造、更换110KV电流互感器后的差动保护试验非常重要,本文主要讨论通过差动保护试验确保其运行的正确性。 关键词:牵引变压器;差动保护;比率差动;差动速断;试验 引言:对保护装置进行试验就是人为的加电流、电压量,使得保护装置动作,从而看装置动作值与整定值之间存在哪些误差,根据此误差可以对保护装置进行改进或将整定值进行重新核定,这样可使用保护装置满足可靠供电的要求。试验方法过简会使一些参数未能得到验证,试验方法过于复杂,又大大增加了工作量,因此科学的办法才是既能准确的了解装置性能又大大地节省人力物力。 一、牵引变电所差动保护 定义:差动保护(包括差动速断和比率差动)是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 动作原理:差动保护是由变压器两侧的电流互感器二次绕组串联形成环路,差动继电器并接在环路上,因此,根据基尔霍夫电流定律,流入差动继电器的电流等于两侧电流互感器二次绕组电流之差。在正常情况或差动保护范围外发生故障时,两侧电流互感器二次绕组电流大小相等,相位相同,因此流经继电器的差动电流为零,但如果在差动保护区内发生短路故障,流经继电器的差动电流大于零,继电器动作,使断路器跳闸,从而起到保护作用。 差动保护接线方式:差动保护的接线是根据牵引变压器的不同接线方式和保护装置的厂家不同而变化,综合目前在牵引变电所中使用的差动保护接线方式主要有以下六种: 二、差动保护流互极性试验 1.电流互感器 电流互感器按精度要求不同,分为不同的等级:①0.2 级:指一次电流在额定电流附近时,二次绕组电流误差不超过2%,用于计量;②0.5 级:指一次电流在额定电流附近时,二次绕组电流误差不超过5%,用于测量;③P级:指一次电流为额定电流的30倍时,二次绕组的电流误差不超过5% 用于保护。

继电保护试验报告标准格式

C S L101B线路保护全部定期检验调试报告 1.绝缘试验 以开路电压为1000V的摇表按下表对各回路进行绝缘试验,绝缘电阻应不小于10兆欧。试验结果填入表1。 2.直流稳压电源检查 2.1 经检查,本装置电源的自启动性能良好,失电告警继电器工作正常()。 2.2各级输出电压值测试结果见表2。 4.经检查,本装置CPU及MMI所使用的软件版本号正确(),记录见附表1。 5.经检查,本装置主网1、主网2及本装置所附带的打印卡、打印电缆线全部完好,打印功能正常()。 6.开入量检查 6.1 保护压板开入量检查全部正确(),记录于表3。

7.开出传动试验 a. 保护开出传动试验 对CPU1、CPU2、CPU3进行开出传动试验,注意观察灯光信号应指示正确,并在装置端子上用万用表检查相应接点的通断(),试验结果记录于表5 。

b. 重合闸开出传动试验 对CPU4进行开出传动试验(),结果记录于表6。 c. 经检查,起动元件三取二闭锁功能正确()。

8.1 零漂调整打印结果记录于附表4,要求允许范围为±0.1()。 8.2 电流、电压刻度调整打印结果记录于附表5,要求误差小于±2%()。 8.3 经检查,电流、电压回路极性完全正确()。 9.模拟短路试验 9.1 各保护动作值检验 a.经检查,高频距离保护在0.95倍定值时可靠动作,在1.05倍定值时 可靠不动作(); b.经检查,高频零序保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); c.经检查,相间、接地距离I段保护在0.95倍定值时可靠动作,在1.05 倍定值时可靠不动作(); d.经检查,相间、接地距离II段、III段保护在0.95倍定值时可靠动 作,在1.05倍定值时可靠不动作(); e.经检查,零序I段保护在0.95倍定值时可靠不动作,在1.05倍定值 时可靠动作(); f. 经检查,零序II段、III段、IV段保护在0.95倍定值时可靠不动 作,在1.05倍定值时可靠动作(); g. 经检查,保护装置在单相接地短路和两相短路时可靠不动作,在三相

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

7SD538差动保护试验

7SD538光纤差动保护调试 一。7SD538的光纤差动保护原理。 1。差动保护1段测试(87-2)。 差动电流快速段(差动保护I 段)校验(仅考察差动I 段,可将差动II 段定值设为最大)? 单端模拟对称或不对称故障(所加入的故障电流必须保证装置能起动,使用直接冲击方式测试),使故障电流为: I = m*(Imax) ? Imax1为差动保护I 段定值 ? m=0.95 时差动保护I段应不动作,m=1.05 时差动保护I段能动作,在m=1.2时测试差动保护I 段的动作时间(含继电器出口) 20 ms 左右。 2。差动保护2段测试(87-1)。 差动电流低定值(差动保护II 段)试验:(考察差动II 段,恢复差动II 段正常定值)? 模拟对称或不对称故障(所加入的故障电流必须保证装置能起动),使故障电流为: I = m*(Imax2) ? Imax2 为差动保护II 段定值+1%In(测量误差)+ 差动保护II 段定值*P253 (k_alf/k_alf_n CT error ) (Imax2 就是制动电流。通常差动保护II 段定值

二。下面介绍调试光纤差动保护的3种方法: 差动保护的装置分布在两处或多处,调试很不方便。为解决这个问题, 7SD538 提供了3 种差动的调试模式。 1) 退出差动计算 在该模式下,本地装置退出了差动保护系统。参与差动保护的其他各端不受影 响,可以继续差动保护。利用该模式可以在不影响差动保护系统的前提下,退出本地装置进行检修。该方式对T 接等多端系统很有用。 可以通过以下方式将装置切换到" 退出差动计算" 模式下: ? 通过装置上键盘:主菜单控制/ 标记/ 设备: " 本侧退出差动" ? 通过DIGSI:控制 / 标记 " 本侧退出差动运算" ? 通过开入量(No. 3452 "> 本侧退出差动运算", No. 3453 "> 本侧恢复差动运算") 对进入" 退出差动计算" 状态的请求,装置要检查以下条件是否满足: ? 本地断路器是打开的吗? (要求开关辅助接点表明断路器已分且电流无流) ? 本装置退出后,剩余装置的通讯是否有保障? ? 本装置未工作在单端调试模式? 2) 单端调试模式 在该模式下,本地装置自动将远方来的测量电流取为0。此时的差动电流和制动电流只有本侧的量,可以作差动保护的单端调试,不需要通讯链路支持,适用于线路未投运前的调试。 可以通过以下方式将装置切换到" 单端调试模式" 模式下: ? 通过装置上键盘:主菜单控制/ 标记/ 设备: " 差动单端调试模式" ? 通过开入量 (No. 3197 "> 进入单端调试模式", No. 3198"> 退出单端调试模式") ? 通过DIGSI:控制 / 标记 " 差动:差动保护设为单端调试模式" 3) 不出口调试 在该模式下,整个差动保护不会出口。我们可以在该模式下观察差动电流和制动电流,而不会有差动出口的危险。 可以通过以下方式将装置切换到" 不出口调试模式" 模式下: ? 通过装置上键盘:主菜单控制/ 标记/ 设备:" 差动不出口调试模式" ?通过开入量(No. 3260 "> 差动不出口调试模式投入", No. 3261"> 差动不出口调试模式退出") ? 通过DIGSI:控制 / 标记" 差动:差动保护设为不出口调试模式"

相关主题
文本预览
相关文档 最新文档