当前位置:文档之家› 高二数学 几种常见函数的导数

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数
高二数学 几种常见函数的导数

高二数学 几种常见函数的导数

一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x ,

2'11x x -=??? ??.x x 21

)'(=

二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数.

三、教学过程:

(一)公式1:(C )'=0 (C 为常数).

证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0,

,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0.

公式2: 函数x x f y

==)(的导数 证明:(略)

公式3: 函数2)(x x f y ==的导数

公式4: 函数x

x f y 1)(==的导数 公式5: 函数x x f y

==)(的导数 (二)举例分析

例1. 求下列函数的导数.

⑴3x ⑵21x

⑶x 解:⑴=')(3x 133-x 23x = ⑵='??

? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2

1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数:

⑴ y =x 5; ⑵ y =x 6; (3);13x

y = (4).3x y = (5)x x y 2= 例2.求曲线x

y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y

=上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率;

(3)点A 处的切线的斜率; (4)点A 处的切线方程

例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离.

(三)课堂小结

几种常见函数的导数公式

(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??

? ??.x x 21)'(= (四)课后作业

《习案》作业四

北师版数学高二-3.4素材 导数的运算中的几种常见题型分析

导数的运算中的几种常见题型分析 一、根据斜率求对应曲线的切线方程 例1.求曲线122 -=x y 的斜率等于4的切线方程. 分析:导数反映了函数在某点处的变化率,它的几何意义就是相应曲线在该点处切线的斜率,由于切线的斜率已知,只要确定切点的坐标,先利用导数求出切点的横坐标,再根据切点在曲线上确定切点的纵坐标,从而可求出切线方程. 解:设切点为),(00y x P ,则 x x y 4)12(2='-=',∴40='=x x y ,即440=x ,∴10=x 当10=x 时,10=y ,故切点P 的坐标为(1,1). ∴所求切线方程为)1(41-=-x y 即.034=--y x 说明:数学问题的解决,要充分考虑题设条件,捕捉隐含的各种因素,确定条件与结论的相应关系,解答这类问题常见的错误是忽略切点既在曲线上也在切线上这一关键条件,或受思维定势的消极影响,先设出切线方程,再利用直线和抛物线相切的条件,使得解题的运算量变大. 二、化为幂函数的结构特征利用公式求函数的导数 例2.求下列函数的导数: 1.12x y =;2.41x y =;3.53x y =. 分析:根据所给问题的特征,恰当地选择求导公式,将题中函数的结构施行调整.函数41x y =和53x y =的形式,这样在形式上它们都满足幂函数的结构特征,可直接应用幂函数的导数公式求导. 解:1..1212)(1111212x x x y =='='- 2..44)4()(55144x x x x y -=-=-='='---- 3..535353)()(52521535353x x x x x y ==='='='-- 说明:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的模式,以免求导过程中出现指数或系数的运算失误.运算的准确是数学能力高低的重要标志,要从思想上提高认识,养成思维严谨,步骤完整的解题习惯,要形成不仅会求,而且求对、求好的解题标准. 三、求常函数的导数 例3.设2 π=y ,则y '等于( )

几个常用函数的导数(教案)

3.2.1几个常用函数导数 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 教学过程: 【合作探究】 探究任务一:函数() ==的导数. y f x c 问题:如何求函数() y f x c ==的导数 新知:0 y'=表示函数y c=图象上每一点处的切线斜率为 . 若y c=表示路程关于时间的函数,则y'=,可以解释为 即一直处于静止状态. 试试:求函数() ==的导数 y f x x 反思:1 y'=表示函数y x=图象上每一点处的切线斜率为 . 若y x=表示路程关于时间的函数,则y'=,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4 y x y x y x ===的图象,并根据导数定义,求它们的导数.

(1)从图象上看,它们的导数分别表示什么 (2)这三个函数中,哪一个增加得最快哪一个增加得最慢 (3)函数(0)y kx k =≠增(减)的快慢与什么有关 【典型例题】 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以0 0lim lim 00x x y y x ?→?→?'===? 函数 导数 y c = 0y '= 0y '=表示函数y c =图像上每一点处的切线的斜率都为0. 若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim11x x y y x ?→?→?'===?

高二数学导数知识点归纳

高二数学导数知识点归纳 导数基础 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a 即为在x0处的导数,记作f'(x0)或df/dx(x0)。 1.y=c(c为常数)y'=0 2.y=x^ny'=nx^(n-1) 3.y=a^xy'=a^xlna y=e^xy'=e^x 4.y=logaxy'=logae/x y=lnxy'=1/x 5.y=sinxy'=cosx 6.y=cosxy'=-sinx 7.y=tanxy'=1/cos^2x 8.y=cotxy'=-1/sin^2x 9.y=arcsinxy'=1/√1-x^2 10.y=arccosxy'=-1/√1-x^2 11.y=arctanxy'=1/1+x^2 12.y=arccotxy'=-1/1+x^2 在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=u'v-uv'/v^2 3.y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy'=e^x和 y=lnxy'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1) ⊿y/⊿x=a^x(a^⊿x-1)/⊿x 如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道: ⊿x=loga(1+β)。 所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β 显然,当⊿x→0时,β也是趋向于0的。而 limβ→0(1+β)^1/β=e,所以 limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x- 1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。 可以知道,当a=e时有y=e^xy'=e^x。 4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

3.2.1几个常用函数的导数教案

3.2.1几个常用函数的导数教案 教学目标: 1. 能够用导数的定义求几个常用函数的导数; 2. 利用公式解决简单的问题。 教学重点和难点 1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。 教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。 教学过程: 一 复习 1、函数在一点处导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的步骤。 二 新课 例1.推导下列函数的导数 (1) ()f x c = 解:()()0y f x x f x c c x x x ?+?--===???, '00()lim lim 00x x y f x x ?→?→?===? 1. 求()f x x =的导数。 解: ()()1y f x x f x x x x x x x ?+?-+?-===???, '00()lim lim 11x x y f x x ?→?→?===?。 '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则' 1y =可以解释为某物体做瞬时速度为1的匀速运动。 思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢? (2).函数(0)y kx k =≠增的快慢与什么有关? 可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快. 2. 求函数2()y f x x ==的导数。

解: 22 ()()()2y f x x f x x x x x x x x x ?+?-+?-===+????, ''00 ()lim lim (2)2x x y y f x x x x x ?→?→?===+?=?。 '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化: (1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x>0时,随着 x 的增加,2y x =增加得越来越快。 3. 求函数1()y f x x ==的导数。 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x -?+?--+?+?====-???+??+??, ''220011()lim lim ()x x y y f x x x x x x ?→?→?===-=-?+?? 思考:(1)如何求该曲线在点(1,1)处的切线方程? '(1)1k f ==-,所以其切线方程为2y x =-+。 (2)改为点(3,3),结果如何? (3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。 三 例题 1. 试求函数()y f x = 解: ()()y f x x f x x x ?+?-==??= ''0()lim lim x x y y f x x ?→?→?====? 2. 已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求与直线PQ 平行的曲线 的切线方程。 解:'2y x =,设切点为00(,)M x y ,则0'02.x x y x ==

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

3-2-1 几个常用函数的导数及基本初等函数的导数公式

基础巩固强化 一、选择题 1.设y =e 3,则y ′等于( ) A .3e 2 B .e 2 C .0 D .以上都不是 [答案] C [解析] ∵y =e 3是一个常数,∴y ′=0. 2.(2012~2013学年度陕西宝鸡中学高二期末测试)函数y =sin x 的导数是( ) A .y =sin x B .y =-cos x C .y =cos x D .y =-sin x [答案] C [解析] ∵(sin x )′=cos x , ∴选C. 3.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 [答案] B [解析] ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有两条. 4.若y =cos 2π 3,则y ′=( ) A .-3 2 B .-12

C .0 D.12 [答案] C [解析] 常数函数的导数为0. 5.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D.12 [答案] D [解析] ∵y ′=1x ,∴y ′|x =2=1 2,故图象在x =2处的切线斜率为12. 6.y =x α在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 [答案] B [解析] y ′=(x α)′=αx α-1, 由条件知,y ′|x =1=α=-4. 二、填空题 7.曲线y =ln x 与x 轴交点处的切线方程是__________. [答案] y =x -1 [解析] ∵曲线y =ln x 与x 轴的交点为(1,0) y ′|x =1=1,∴切线的斜率为1, ∴所求切线方程为:y =x -1. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于____________.

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为) ,(00y x A ,则 2 00x y =①又函数的导数为x y 2/ =, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

高二数学选修-2导数2种题型归纳(中等难度)

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0 lim →?x x x f x x f Δ)()Δ(00-+,表示 函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+??? ??'=π,则?? ? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 四、基本导数的求导公式 ①0;C '=(C 为常数) ②()1 ;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; A . B . C . D .

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =, )(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经过显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式

(完整word版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

人教版数学高二选修2-2教案几个常用函数的导数

1.2.1 几个常用函数的导数 教学目标: 1. 能够用导数的定义求几个常用函数的导数; 2. 利用公式解决简单的问题. 教学重点和难点 1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数. 教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆. 教学过程: 一、复习 1、函数在一点处导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的步骤. 二、新课 1. 求()f x x =的导数. 解: ()()1y f x x f x x x x x x x ?+?-+?-===???, '00()lim lim 11x x y f x x ?→?→?===?. '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则'1y =可以解释为某物体做瞬时速度为1的匀速运动. 思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢? (2).函数(0)y kx k =≠增的快慢与什么有关? 可以看出,当k >0时,导数越大,递增越快;当k <0时,导数越小,递减越快. 2. 求函数2 ()y f x x ==的导数.

解: 22 ()()()2y f x x f x x x x x x x x x ?+?-+?-===+????, ''00 ()lim lim (2)2x x y y f x x x x x ?→?→?===+?=?. '2y x =表示函数2y x =图象上每点(x ,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化: (1)当x <0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x >0时,随着 x 的增加,2y x =增加得越来越快. 3. 求函数1()y f x x ==的导数. 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x -?+?--+?+?====-???+??+??, ''220011()lim lim ()x x y y f x x x x x x ?→?→?===-=-?+?? 思考:(1)如何求该曲线在点(1,1)处的切线方程? '(1)1k f ==-,所以其切线方程为2y x =-+. (2)改为点(3,3),结果如何? 三 、例题 例1 :试求函数()y f x == 的导数. 解: ()()y f x x f x x x ?+?-==??= ''0()lim lim x x y y f x x ?→?→?====? 例2:已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求与直线PQ 平行的曲线的切线方程.

1常见函数的导数公式

1.常见函数的导数公式: (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈); (3)x x cos )'(sin =; (4)x x sin )'(cos -=; (5)a a a x x ln )'(=; (6)x x e e =)'(; (7)e x x a a log 1)'(log = ; (8)x x 1)'(ln = . 2.导数的运算法则: 法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 ''(0)u u v uv v v v -?? =≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 例题:一:1:求函数323y x x =-+的导数. 2: y = x x sin 2.函数y =x 2cos x 的导数为 。 函数y =tanx 的导数为 。 2:求下列复合函数的导数: ⑴3 2 )2(x y -=; ⑵2 sin x y =; ⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y .3 2 c bx ax y ++=

4.曲线y =x 3的切线中斜率等于1的直线 ( ) A .不存在 B .存在,有且仅有一条 C .存在,有且恰有两条 D .存在,但条数不确定 5.曲线3()2f x x x =+-在0P 处的切线平行于直线41y x =-,则0P 点的坐标为( ) A 、( 1 , 0 ) B 、( 2 , 8 ) C 、( 1 , 0 )和(-1, -4) D 、( 2 , 8 )和 (-1, -4) 6.f (x )=ax 3 +3x 2 +2,若f ′(-1)=4,则a 的值等于 ( ) A. 3 19 B. 3 16 C. 3 13 D. 3 10 7.曲线22x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 8.已知曲线122+=x y 在点M 处的瞬时变化率为-4,则点M 的坐标是( ) A (1,3) B (-4,33) C (-1,3) D 不确定 9.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率 . 10.曲线y =x 3-3x 2 +1在点(1,-1)处的切线方程为__________________. 11.已知l 是曲线y = 3 1x 3 +x 的切线中,倾斜角最小的切线,则l 的方程是 . 12.已知过曲线y =3 1x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.?? ? ??38, 2 B.?? ? ??- 34,1 C.?? ? ??- -328,1 D.?? ? ??320, 3 13.已知c bx ax x f ++=24)(的图象经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f y =的解析式. 14.求过点(2,0)且与曲线y = x 1相切的直线的方程.

基本初等函数的导数公式

基本初等函数的导数公式 学习目标: 掌握初等函数的求导公式; 学习重难点: 用定义推导常见函数的导数公式. 一、复习 1、导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的流程图。 (1)求函数的改变量()(x f x x f y -?+=? (2)求平均变化率 x y = ?? (3)取极限,得导数/y =()f x '=x y x ??→?0 lim 本节课我们将学习常见函数的导数。首先我们来求下面几个函数的导数。 (1)、y=x (2)、y=x 2 (3)、y=x 3 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 二、学习过程 1、基本初等函数的求导公式: ⑴ ()kx b k '+= (k,b 为常数) ⑵ 0)(='C (C 为常数) ⑶ ()1x '= ⑷ 2()2x x '= ⑸ 32()3x x '= ⑹ 2 1 1()x x '=- ⑺ '= 由⑶~⑹你能发现什么规律? ⑻ 1()x x ααα-'= (α为常数) ⑼ ()ln (01)x x a a a a a '=>≠, ⑽ a a 11(log x)log e (01) x xlna a a '= = >≠,且 ⑾ x x e )(e =' ⑿ x 1)(lnx =' ⒀ cosx )(sinx =' ⒁ sinx )(cosx -=' 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。

例1、求下列函数导数。 (1)5-=x y ( 2)x y 4= (3)x x x y = (4)x y 3log = (5)y=sin(2 π +x) (6) y=sin 3 π (7)y=cos(2π-x) 例2.若直线y x b =-+为函数1y x = 图象的切线,求b 的值和切点坐标. 变式1.求曲线y=x 2 在点(1,1)处的切线方程. 总结切线问题:找切点 求导数 得斜率 变式2:求曲线y=x 2过点(0,-1)的切线方程 变式3:已知直线1y x =-,点P 为y=x 2 上任意一点,求P 在什么位置时到直线距离最短. 三:课堂练习. 1.求下列函数的导数 (1)3y x = (2)y = (3)2 1y x = (4)3x y = (5)2log y x = (6)cos y x = 四、小结 (1)基本初等函数公式的求导公式 (2)公式的应用 随堂检测: 1. 已知3()f x x =,则'(1)f = 。 2.设y = ,则它的导函数为 。 3.过曲线3y x -=上的点1 (2,)8 的切线方程为 。 4.求下列函数的导函数 (1)2y x -= (2)y = (3)41y x = (4)2x y = (5)4log y x = (6)ln y x = (7)sin()2y x π=- (8)3cos()2 y x π =+ 5.求曲线x y e =在0x =处的切线方程。

相关主题
文本预览
相关文档 最新文档