当前位置:文档之家› 1.碳化硅加工工艺流程

1.碳化硅加工工艺流程

1.碳化硅加工工艺流程
1.碳化硅加工工艺流程

碳化硅加工工艺流程

一、碳化硅的发展史:

1893年艾奇逊发表了第一个制碳化硅的专利,该专利提出了制取碳化硅的工业方法,其主要特点是,在以碳制材料为炉芯的电阻炉中通过加热二氧化硅和碳的混合物,使之相互反应,从而生成碳化硅,到1925年卡普伦登公司,又宣布研制成功绿碳化硅。

我国的碳化硅于1949年6月由赵广和研制成功,1951年6月,第一台制造碳化硅的工业炉在第一砂轮厂建成,从此结束了中国不能生产碳化硅的历史,到1952年8月,第一砂轮厂又试制成功了绿碳化硅。

随着国民经济的发展,我国又相继发展了避雷器用碳化硅、立方碳化硅、铈碳化硅及非磨料碳化硅。到1969年第一砂轮厂、第二砂轮厂建成4000KW、3000KW 的活动式电阻炉,显著提高了机械化程度,大大改善了作业环境。1980年第一砂轮厂建造了我国第一台特大型电阻炉—8000KW;就我们一车间7750KW的冶炼炉在当时也算特大型电阻炉,到现在30000KW的电阻炉已不算稀奇,所以说碳化硅的发展速度是相当快的。

二、碳化硅的分类:(黑碳化硅、绿碳化硅)

通常按碳化硅的含量进行分类,含量越高、纯度越高、它的物理性能越好。一般来讲:含量在95%——98%为一级品,含量在98%以上的为特级品、含量在80%——94%为二级品、含量在70%左右为三级品,碳化硅的含量及纯度越高其价值也就越大。

化学成份:主要杂质有:游离硅(F.Si),它一部分溶解在碳化硅晶体中,一部分与其它金属杂质(铁、铝、钙)呈金属状态存在。

游离二氧化硅(F.SiO2)通常存在于晶体表面,大都是由于冶炼碳化硅电阻炉冷却过程中,碳化硅氧化而形成。正常的情况下,绿碳化硅结晶块表面的游离硅,二氧化硅的含量为0.6%左右,当配料中二氧化硅过量时,二氧化硅会蒸发凝聚在碳化硅晶体表面上,呈白色绒毛状。

碳:(C),当配比碳过量时,看到明显的游离状态的碳粒。铁、铝、钙、镁由于炉内产品高温及还原性气氛,结晶块中的这些杂质大都呈合金状态或碳化物状态。

碳化硅磨料的化学成分;随着磨料粒度的变化略有波动,粒度越细,纯度越低。(为什么呢?杂质出来了)

化学性质:耐高温,抗氧化性能好。

物理性能:介于刚玉和金刚石之间,硬度高、耐磨,粒度越细,机械强度越高,抗碎,韧性强。

导电性能:工业碳化硅是一种半导体,但其随着各种杂质的含量不同,导电性也随之发生变化,含铝较多时导电性显著增大,虽电场强度的增大而迅速提高,而且有非线性变化的特点。碳化硅的这一特性被用于制作避雷器阀片。

碳化硅的电阻率随温度的变化而改变,但在一定的温度范围内与金属的电阻温度特性是相反的,随温度升高到一定时值时、出现峰值,继续升高温度时,导电率又会下降。

三、碳化硅的用途:

1、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。绿碳化硅具较高的硬度和一定的韧性;多用于磨加工光学玻璃、硬质合金、钛合金以及轴承钢的研磨抛光、高速钢刀具的刃磨等。黑碳化硅多用于切割和研磨抗强度低的材料,如;有色金属、灰铸铁工件、玻璃、陶瓷、石材和耐火制品;微粉磨料专用于轴承的超精磨、其特点是磨削效率和精度高。

2、耐火材料和耐腐蚀材料---主要是因为碳化硅具有高熔点(分解温度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。碳化硅具有很好的抗热震性能,因此是一种优质耐火材料,按制品的生产工艺不同可分为再结晶碳化硅、制品、高温热压制品、以氮化硅或粘土为结合剂的制品等,主要产品及用途有;高温炉窑构件、支撑件、如匣体衬板

等,在电炉中作加热式炉底、换热器、热电偶套管等;炼铁高炉用于出铁槽,铁水包内衬或碳化硅耐火砖等,焦化厂使用碳化硅材料衬砌炽热焦炭用流槽,砌筑碳化室炉底等。

3、冶金行业和化工行业:在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。因为碳化硅可在溶融钢水中分解并和钢水中的游离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂;多用于各种冶炼的耐火内衬,炼钢脱氧剂,铸铁组织改良等;比焦炭、硅粉等传统炼钢脱氧剂效果好,可使钢材质量提高;电工行业:多用于电热原件高温半导体材料、远红外线板,避雷器阀片材料等。化工行业利用碳化硅的稳定性制作各种化工管道、阀门等。用于电镀法将碳化硅微粉涂敷于汽(水)轮机叶轮上,可以大大提高叶轮的耐磨性能,由于碳化硅具有优良的高温强度和抗氧化性能,它以成为高温非氧化物陶瓷的主要原材料。一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。

四、碳化硅产品加工工艺流程

1、制砂生产线设备组成

制砂生产线由颚式破碎机、对辊破碎机、球磨机、清吹机、磁选机、振动筛和皮带机等设备组合而成。根据不同的工艺要求,各种型号的设备进行组合,满足客户的不同工艺要求。

2、制砂生产线基本流程

首先,原料由粗碎机进行初步破碎,然后,产成的粗料由皮带输送机输送至细碎机进行进一步破碎,细碎后的原料进入球磨机或锤式破碎机进行精细加工,再经过清吹机除游离碳,磁选机除磁性物,最后经过振动筛筛分出最终产品。

3、制砂生产线性能介绍

该制砂生产线自动化程度较高,工序紧凑,操作简便,配套合理,运行成本低,生产率高,节能,产量大,污染较少,维修简便,生产出的成品砂符合国家标准,粒度均匀,粒形较好,各粒度段分布较为合理。

4、制砂生产线特点和优势

1,投资仅为同等处理能力常规生产线的1/3—1/5。

2,每吨砂生产成本仅为常规生产线的1/3—1/4。

3,生产自动化程度较高,每班生产人员为湿法制砂一半以下。

4,投资回收期短,一般3个月可收回投资。

五、碳化硅破碎工艺方案选择

1、破碎工艺流程的选择,首先是确定破碎段数,这取决于最初给料粒度和对最终破碎产品的粒度要求。一般情况下,只经过初级破碎是不能生产最终产品的。(三级品破碎除外)

最初给料粒度与冶炼分级方法及分级产品的入库保存方式有关;

最终破碎产品粒度主要取决于破碎之后的产品工艺要求及现场的设备工艺水平有关。

2、破碎段一般分为:一段法、二段法、三段法和四段法;

一段法主要是初级破碎:即采用颚破、锤破进行破碎;而且锤破只能破碎硬度较小的三级品。产品粒度一般在0-30mm至0-50mm。锤破产品不经过筛分粒度一般在0-10mm左右。

二段法主要是初级破碎加上中级破碎:即采用颚破进行初级破碎后,使用对辊破、锤破、反击破等大中型破碎机进行中级破碎,然后得到最终产品,对辊破产品粒度一般在0-30mm左右。锤破、反击破产品不经过筛分粒度一般在0-10mm 左右。

三段法主要是初级破碎加上中级破碎,之后在进行精细破碎:即采用颚破进行初级破碎后,使用对辊破、锤破、反击破等大中型破碎机进行中级破碎,然后

使用球磨机、巴马克破碎机、轮碾加工后等得到最终产品,不经过筛分粒度一般在0-5mm左右。配合振筛可以得到0-1mm的产品,筛上物一般在10%-30%左右;巴马克破碎机的筛上物可以达到在30%-50%左右。从产品的粒型来评价;轮碾最好,球磨机最差。另外制粉加工也属于三段法:即初级破碎加上中级破碎,之后在进行雷蒙磨制粉加工。

四段法一种是在前面安排进行预先破碎,然后进行初级破碎、中级破碎,再进行精细破碎;另一种是初级破碎加上中级破碎,在进行精细破碎后再重新进行整形破碎:主要是球磨机加工后进行整形加工等得到最终产品,经过多次整形加工后得到最佳的产品粒型。

我厂的产品加工主要是二段法和三段法:即初级破碎采用颚破,中级破碎采用对辊破、锤破,精细破碎使用球磨机、巴马克、雷蒙磨加工后等得到最终产品。

六、我厂碳化硅加工部分产品加工工艺流程比较分析

1、典型0-1mm产品:首先,原料由颚式破碎机进行初步破碎,然后,产成的粗料由皮带输送机输送至对辊破碎机进行进一步破碎,细碎后的原料进入球磨机或锤式破碎机进行精细加工,最后经过振动筛筛分出最终产品。有磁性物要求的产品,还要使用磁选机除磁性物。最终,加工出来的产品经过产品化验符合技术指标后,正式封袋入库。

方案中不同主要是在使用球磨机或锤式破碎机进行精细加工;使用球磨机产品的粒型较好,产品加工过程中,粉尘可以很好的控制,但弊端在于:球磨机的使用费用较大,投入的设备较多,电费大。使用锤破时产品的粒型较差,产品加工过程中,粉尘无法控制,更换锤头次数比较频繁,筛分过程中筛上物较多;但好处在于:锤破的使用费用较小,投入的设备较少,电费花费小。

2、80目以细或100目以细产品:首先,原料由颚式破碎机进行初步破碎,然后对辊破碎机进行进一步破碎,细碎后的原料进入球磨机或雷蒙磨进行精细加工,最后经过振动筛筛分出最终产品。有磁性物要求的产品,还要使用磁选机除磁性物。最终,加工出来的产品经过产品化验符合技术指标后,正式封袋入库。

方案中不同主要是在使用球磨机或雷蒙磨进行精细加工;使用球磨机产品的粒型较好,产品加工过程中,粉尘可以很好的控制,但弊端在于:球磨机的生产率较低,筛上物较多,筛分时损失较小。使用雷蒙磨时产品的粒度较细,产品在筛分加工过程中,粉尘无法控制,筛上物较少,但筛分时损失较大。

3、典型3-5mm产品:首先原料由颚式破碎机进行初步破碎,然后对辊破碎机进行进一步破碎,细碎后的原料进入巴马克或锤式破碎机进行精细加工,最后经过振动筛筛分出最终产品。有磁性物要求的产品,还要使用磁选机除磁性物。最终,加工出来的产品经过产品化验符合技术指标后,正式封袋入库。

方案中不同主要是在使用巴马克或锤式破碎机进行精细加工;使用巴马克加工产品的粒型较好,产品加工过程中,粉尘可以很好的控制,但弊端在于:巴马克的使用费用较大,投入的设备较多,换巴马克锤头次数特别频繁,筛分时筛上物十分大,原料制备量大。使用锤破时产品的粒型较差,产品加工过程中,粉尘无法控制,更换锤头次数比较频繁,筛分过程中筛上物较多;但好处在于:锤破的使用费用较小,投入的设备较少,原料制备量较大。

七、筛分技术简介

机械筛分是目前筛分作业使用的主要筛分技术,振动筛设备的主要工作构件是筛面,目前广泛应用的是钢板冲孔筛和编织筛,这里我们将介绍下筛分的应用方面及一般的计算方法。

制砂加工中筛分技术的应用集中在以下两个方面,一是对原料中的杂质进行清理,二是将原料或产品按粒径进行分级,包括原料杂质清理、粉碎物料分级、制粒前的粉料杂质清理、制粒产品的分级。加工过程中筛分效果的好坏对碳化硅加工产品的质量和产量具有相当重要的影响。

筛分效率及其影响因素

1. 筛分效率筛分效率包括二个方面:应该留存筛面物料(预期筛上物)的筛上留存比例和应该通过筛面物料(预期筛下物)的筛上留存比例。这二个指标在清理操作中影响杂质的清除效果和净原料的损失,在分级操作中影响产品的粒度和产量,

在检测中则影响分级结果的可靠性。前者称为筛净率,后者称为误筛率,用公式表示为:

η1=w1/w2×100%

η2=w3/w4×100%

式中η1—筛净率,%;η2—误筛率,%;W1—预期筛上物的筛上留存量,kg/h;W2—预期筛上物总量,kg/h;W3—预期筛下物的筛上留存量,kg/h;W4—预期筛下物总量,kg/h。

将上面二个指标用于评价清理筛效率,当筛上物为杂质时,η1相当于除杂率,η2相当于净原料损失率。

2、影响筛分效果的因素通过筛孔的最大物料颗粒直径可由下式估算:

d=D cos α-e sin α

式中,d—通过筛孔的最大颗粒直径,mm;D—筛孔直径,mm;e—筛网网丝直径,mm;α—筛面倾角。

从式(3)可以看出,筛孔直径、网丝直径、筛面倾角均影响颗粒能通过筛孔的最大粒径。但式(3)只能决定临界粒径,一个小于临界粒径的颗粒能否通过筛孔,还取决于其他条件。

2.1 颗粒与筛孔形状式(3)的计算以球形颗粒和圆形筛孔为基础,在碳化硅加工行业的生产实际中,筛分原料大多为多面体、片状体或不规则颗粒,筛孔既有正方形又有矩形,物料颗粒接触筛孔时的状态对颗粒能否通过影响很大,如一个 4×10 mm的颗粒直立时能通过一个孔径5 mm的筛孔,横向则不能。因此,颗粒通过与否具有一定的偶然性,只能通过统计的手段加以研究。一般对圆柱形颗粒,矩形筛孔通过性能较好;而对于各个方向尺寸差别不大的不规则颗粒,圆孔的通过性能较好。

2.2 筛面开孔率筛面开孔率越大,通过性能越好。保证筛面强度的情况下,编织筛能比冲孔筛获得较高的开孔率,因而前者的通过性能优于后者。

2.3 物料层厚度使用平面筛时,如通过振动筛筛面的物料层过厚,料层上部小颗粒通过筛孔困难,会引起误筛率上升,这在原料清理中将增大净原料损失,在颗

粒分级中则将降低产量(上层筛料层过厚)、影响成品质量(下层筛料层过厚)。料层过薄则筛分产量太低,也不可取。合适的料层厚度应通过试验确定,筛面倾角小、筛体振幅较大时料层可稍厚。理论上,料层厚度由产量决定,但实际使用中,由于筛面进料不均,物料可能集中在筛面一侧,造成局部料层过厚从而影响筛分效果。圆筒筛和圆锥筛存在类似问题,当瞬间物料流量过大时,筛分效果同样受到影响。

2.4 筛体运动状态筛分过程进行的必要条件之一是筛选物料与筛面之间存在适宜的相对运动,产生这种相对运动的方法可以是筛面作水平往复直线运动(回转)、垂直往复直线运动(振动)或二者的组合。筛体仅有水平往复运动或垂直往复运动,筛分效果都不理想。后者由于物料缺乏与筛面的水平相对运动,容易造成料层厚薄不均。实践表明,将二种运动结合起来的回转振动筛效果较好。

2.5 物料特性物料的粒度、含水率、摩擦特性、流动性等都与筛分过程有关。物料颗粒粒径存在差异是物料组分筛分分离的前提,而且这种差异越大,筛分过程越容易进行。物料含水率越高、内外摩擦角越大、流动性越差,其颗粒通过筛孔的性能就越差。因此,实际使用中,要获得良好的筛分效果,应根据物料的具体情况选用不同的工艺参数。

八、产品加工质量的控制

1、如何控制产品质量

第一,树立产品质量是企业的命脉意识。

要全员认识到:产品的产品质量不好,产品就没有市场,产品没有市场,企业就失去了利润来源,时间长了,企业就会倒闭,随之而来的就是员工失业。即使产品市场良好,也要“居安思危”,要把我们的产品产品质量做得更好。

第二,树立产品质量的客户意识。

一切以客户为中心,把自己看成客户,把自己看成是下一道工序的操作者,把自己看成是产品的消费者。这样,在工作当中就会自觉地把工作做好,大家都把工作做好了,产品的产品质量才会有保证,如果在工作中偷工减料,危害的将是自己的切身利益。

第三,树立产品质量的预防意识。

“产品的产品质量是生产出来的、设计出来,不是靠检验出来的,第一时间就要把事情做好。”这不是一句口号,这很好地体现了产品质量的预防性,如果我们的产品质量控制不从源头控制,我们将很难控制产品的质量。即使生产中投入大量的检验人力去把关,生产时由于没从源头去控制而产生的大量次品甚至废品,产品的成本将大大提高,给企业的生产成本造成沉重负担及损失。况且有些产品的质量问题可能无法从后工序发现弥补,这更要求我们在第一时间把事情做好,预防产品质量问题的发生。

第四,树立产品质量的程序意识。

产品质量管理是全过程的,而各个过程之间,各部门之间的工作必须是有序的、有效的,要求全体产品质量管理人员、操作人员严格按程序做,如果不按程序工作出错的机会就会增多,产品的质量也就无法保证。

第五,树立产品质量的责任意识。

质量问题有80%出于管理层,而只有20%的问题起源于员工,也就是说,管理者可控缺陷约占80%,操作者可控缺陷一般小于20%。

区分操作者可控缺陷也管理者可控缺陷的原则:

A.操作者知道他怎么做和为什么要这样做;

B.操作者知道他生产出来的产品是否符合规范的要求;

C.操作者知道他生产出来的产品不符合规格将会产生什么后果;

D.操作者具备对异常情况进行正确处理的能力。

●如果上述四点都已得到满足以及生产中设备、工装、检测及材料等物质条件均具备而故障依然发生,则认为是操作者可控的缺陷。

●如果上述四点中有任何一点不能得到满足或者生产中设备、工装、检测及材料等物质条件不具备而产生故障,那就是管理人员的责任。只有了解产品质量问题的责任,才能有的放矢地去改善问题将产品质量提高。

第六,树立产品质量的持续发送意识。

产品质量没有最好,只有更好;产品质量改善是一个持续的、回圈的、不断完善的过程,它遵循PDCA回圈模式,PDCA回圈模式可简述如下:

P—计划:根据产品的要求,制定改善计划;

D—实施:实施计划;

C—检查:根据产品要求,对过程和产品进行检验;

A—处置:采取措施,以持续改进产品产品质量。

只有这样,我们的产产品质量量才会不断上升,也只有这样不断地提高质量及创新,才会不断地取胜于市场。

第七,树立产品质量的成本意识(即产品质量标准意识)。

保证产品质量,追求利润是企业永远的目标。企业要发展,不得不注重生产的成本,然而成本与产品质量息息相关,产品质量做得好,可以将产品的成本降到最低,所以我们在生产时,要求各工序和环节严格按客户标准要求去做,这样我们才会最大限度地降低成本,提高产品竞争优势。

第八,树立产品质量的教育意识。

伴随时代的发展,产品质量管理观念也在不断地更新,需要学习。加强内部培训,提高全员工作创新能力,“产品质量始于教育,终于教育。”

2、产品质量控制需要注意的地方

1.达到技术标准并不是质量要求的终点

许多管理人员都以为制定了产品标准,每个产品都符合质量标准,质量就可以了,这是一种以生产为中心的质量观。是不可取的,必须根据实际生产的情况设计一个合理的、可操作的产品标准下发生产班组及岗位。

2.质量问题不完全是加工过程的问题

当发生质量问题时,许多管理人员经常强化工人的培训,这种质量意识解决不了根本问题。在一线的工人或服务人员的表现固然存在影响,但他们的一举一动却是受上层管理人员的计划和行动的影响。销售形势好时,增加生产任务,忽视企业的质量目标,使质量管理昙花一现,不能长久。

3.对关键节点的控制

在加工过程中,有许多工序转换的节点,在这些节点就是需要重点进行关注和必须进行质量监控的关键点。例如;在我厂碳化硅产品的加工过程中,原料破碎前,细破后,筛分前后,入库前后,都是需要进行碳化硅全部或个别指标进行检验的时间,这些地方宁可慢一点,也要等所需要的测试指标出来才能进行下一步工序,绝不能图快,否则,返工是必然的。

4.从事后检验到事前预防追求工作“零缺陷”

传统质量观念强调事后检验把关,就是说,出现质量问题的产品不出厂。要懂得出现不合格品再重新加工也是浪费,原料、人工、设备、辅材的浪费;要加强提前预控,加强事前预防,提前做出几种方案,选取最有利于生产的方案进行实施,提前排除质量事故苗头,强调第一次就把事情做好,追求工作“零缺陷”。

5.产品质量涉及到生产全过程。

产品质量在产品的工艺设计阶段就已经开始形成了,其重要性甚至超过生产过程,另外产品加工的服务以及用后处理等环节中,也会出现质量事故,因此产品质量不是某个岗位、某个员工的事情,它涉及到生产全过程及全体员工。

6.生产要预留出应急反应时间

在生产前要充分考虑到各种不良因素,尽可能给生产留出补救的时间,不能把生产时间全部排满,否则,一旦出现各种变故,都会造成生产的被动。

33

碳化硅工艺过程

生产技术 一、生产工艺 1.碳化硅 原理:通过石英砂、石油胶和木屑为原料通过电阻炉高温冶炼而成,主要反应机理是SiO2+3C----SiC+2CO。 碳化硅电阻炉制炼工艺:炉料装在间歇式电阻炉内,电阻炉两端端墙,近中心处是石墨电极。炉芯体连接于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。冶炼时,给电炉供电,炉芯温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发尘化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成碳化硅愈来愈多。碳化硅在炉内不断形成,蒸发移动,晶体长大,聚集成为—个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。 破碎:把碳化硅砂破碎为微粉,国内目前采用两种方法,一种是间歇的湿式球磨机破碎,一种是用气流粉末磨粉机破碎。我公司已由气流粉末磨碎机代替湿式球磨机破碎。 湿式球磨机破碎时用是用湿式球磨机将碳化硅砂磨成微粉原料,每次需磨6-8小时。所磨出的微粉原料中,微粉约占60%左右。磨的时间越长,则微粉所占的比例越大。但过粉碎也越严重,回收率就会下降。具体的时间,应该与球磨比、球径给配、料浆浓度等工艺参数一起经实验优选确定。该方法最大的优点就是设备简单,缺点是破碎效率较低,后续工序较复杂。

雷蒙磨粉机工作原理是:颚式破碎机将大块物料破碎到所需的粒度后,由提升机将物料输送到储料仓,然后由电磁振动给料机均匀连续地送到主机的磨腔内,由于旋转时离心力作用,磨辊向外摆动,紧压于磨环,铲刀与磨辊同转过程中把物料铲起抛入磨辊与辊环之间,形成填料层,物料在磨辊与磨环之间进行研磨。粉磨后的粉子随风机气流带到分级机进行分选,不合要求的粉子被叶片抛向外壁与气流脱离,粗大颗粒在重力的作用F落入磨腔进行重磨,达到细度要求的细粉随气流经管道进入大旋风收集器,进行分离收集,再经卸料器排出即为成品粉子,气流由大旋风收集器上端回风管吸入鼓风机。在磨腔内因被磨物料中有—定的水分,研磨时发热,水气蒸发,以及各管道接口不严密,外界气体被吸入,使循环风量增高,为保证磨机在负压吠态下工作,增加的气流通过余风管排入除尘器,被净化后排入大气。整个气流系统是密闭循环的,并且是在正负压状态下循环流动的。该法最大的优点是效率较高。而且后续工序较简单。 2、碳化硅微粉 (一)、碳化硅微粉的生产

牛肉干加工工艺流程

牛肉干加工工艺流程 一、牛肉干加工工艺流程图: 选肉→分割→浸泡→煮制→切制→炒制→烘烤→检验→包装→入库 二、工艺操作要点(求): 1、选肉:采用卫生检疫合格的牛肉,腥而不臭,牛肉颜色呈红褐色,组织硬而 有弹性。质量好的牛肉其肌肉组织之间含有脂肪。脂肪颜色为白色,且较硬、未满一年的小牛肉色呈淡红色,水分多、脂肪少。 2、分割:按照肉的自然纹理分割,要求将脂、牛毛、杂骨等剔除,精肉中带脂 率≤5%,且脂中不能带精肉,并挑出粘带的血污、杂质,分割后用水冲洗牛肉以去除牛肉表面血污。 3、浸泡:用水浸泡牛肉4小时,以除去血水,减少膻味。 4、煮制:煮肉前先检查上一工序的牛肉是否符合要求,不符合要求的返工,直 至符合为止。按肉块大小分开煮制,煮制时间1.5小时左右,水温保持在90以上。使用蒸汽时,阀门开启要缓慢,使压力逐渐升高,最高压力不得超过 0.2MPa,同时调整好疏水阀,使之保持最佳状态,严禁一开到底或一关到底, 避免压力的骤然变化。待肉块中心呈灰色即刻出锅,防止肉煮得太烂,切片易碎,煮制时间也不可过短,否则切片易薄易破。煮制完毕,将牛肉放于摊晾架上摊晾。 5、切制:挑出变质、变味的不能使用的牛肉;剔除脂、筋、杂骨等非精肉组织; 按肉的自然纹理(应以切顺丝为原则)切制出符合牛肉干、肉粒、肉丝生产要求的精肉。将经漂洗后的筋、头肉放入绞肉机内绞制。切片厚度控制在3-4mm,切粒时肉粒的规格为15×15×15mm左右,撕丝时约为4-6mm粗,切

条时约为20-60×8×8mm。 6、炒制:先将称好的辅料(白砂糖、辣椒等)放于炒锅中,再放原料肉,调整 炒锅转速6转/分钟,蒸汽压力控制在0.2MPa,炒制时间30-40分钟(每锅一般60Kg原料肉),炒制15分钟左右后放自制油,当开锅无糖水滴出即可出锅,出锅后立即转入下道工序。 7、烘烤:将炒制好的肉摆盘,要求均匀平整、不得有折叠、重合现象,每盘摊 丝、片净重约2Kg,肉粒净重约2.5Kg。烘烤温度为60-70℃,蒸汽压力0.2Mpa,烘烤时间约1-1.5小时(根据蒸汽压力的大小控制,即蒸汽压力不得小于0.2 Mpa和大于0.2Mpa);烘烤30分钟后,必须翻动肉干,防止水分不均匀、烤糊、烤焦;交换上下烤盘,防止受热不均匀;水分要求13-16%。烘烤完毕,将半成品倒在晾床上摊平晾透,堆放厚度≤7cm。回潮时间8-10小时,回潮完毕后方可进行包装。在此期间注意控制室内的(26℃以下)和湿度(60-65%)并进行记录。 8、检验:半成品出来后,化验员对其感官、微生物指标进行化验,合格后方能 包装。 9、包装:将检验合格的半成品进行大包装(大包装6kg一袋),封口机封口; 小包装:(1)肉粒(外观:无糖纸脱落,无开缝外露肉干,两端糖纸等距离且整齐,从感观上看均匀整齐,无超大粒及超小粒,糖纸的“金凤徕”图案包在肉粒枕的中央。内质:要求每颗肉糖粒无焦糊、杂质、皮筋、霉变现象。 单颗肉糖粒净重 3.5—4g,每颗均有肉粒大块,当由碎块组合成肉粒时,每颗肉粒均不超过3小块肉粒渣)。(2)肉丝(外观:颜色一致,无结球、湿丝、筋皮、杂质、异味、霉变。成品丝每根3—5mm粗,大小均匀整齐;肉丝的长

碳化硅工艺过程简述

碳化硅磨料通常以石英、石油焦炭为主要原料。它们在备料工序中经过机械加工,成为 合适的粒度,然后按照化学计算,混合成为炉料。磨料调节炉料的透气性,在配炉料时要加适量的木屑。制炼绿碳化硅时,炉料中还要加适量的食盐。 炉料装在间歇式电阻炉内。电阻炉两端是端墙,近中心处有石墨电极。炉芯体即连于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。制炼时,电炉供电,炉芯体温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发生化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成的碳化硅也越来越多。它在炉内不断形成,蒸发移动,结晶长大,聚集成为一个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。炉自送电初期,电热主要部分用于加热炉料,而用以形成碳化硅的热量只是较少的一部分。送电中期,形成碳化硅所用的热量所占比例较大。送电后期,热损失占主要部分。调整送电功率与时间的关系,优选出最有利的停电时间,以期获得最好的电热利用率。大功率电阻炉通常选择送电时间在24小时左右,以利作业安排。在此基础上,调整电炉功率与炉子规格的关系。 电阻炉送电过程中,除了形成碳化硅这一基本反应外,炉料中各种杂质也发生一系列化学的和物理的变化,并发生位移。食盐亦然。炉料在制炼过程中不断减少,炉料表面变形下沉。反应所形成的一氧化碳则弥漫于大气中,成为污染周围大气的有害成分。 停电后,反应过程基本结束。但由于炉子很大,蓄热量就很大,一时冷却不了,炉内温度还足以引起化学反应,因此,炉表面仍继续有少量一氧化碳逸出。对于大功率电炉来说,延续的残余反应可达3~4小时。这时的反应比起送电时的反应来说,是微不足道的。但因为当时 炉表面温度已经下降,一氧化碳燃烧更不彻底。从劳动保护角度来说,仍应予以足够重视。停电后经过一段时间冷却,就可以拆除炉墙,然后逐步取出炉内各种物料。 制炼后炉内的物料,从外到里,构成下列各物层: (1)未经反应的物料 这部分炉料在制炼时未达到反应温度,因而不起反应,只起保温作用,它在炉中所占的位置叫保温带。保温带炉料与反应带炉料的配制方法、制炼后该部位炉料的利用方法不尽相同。有一种工艺方法,在保温带的特定区域内装炉时装以新料,制炼后取出配到反应料中去,这就叫做焙烧料。若将保温带上未反应的料经再生处理,稍加焦炭及适量木屑,配制成保温料重新利用,就称之为乏料。 (2)氧碳化硅层

第三代半导体面-SiC(碳化硅)器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限

饲料厂生产工艺流程介绍

(一)、配合饲料的生产工艺流程图(略) (二)、原料的接收 1 、散装原料的接收以散装汽车、火车运输的,用自卸汽车经地磅称量后将原料卸到卸料坑。 2 、包装原料的接收:分为人工搬运和机械接收两种。 3 、液体原料的接收:瓶装、捅装可直接由人工搬运入库。 (三)、原料的贮存 饲料中原料和物料的状态较多,必须使用各种形式的料仓,饲料厂的料仓有筒仓和房式仓两种。 主原料如玉米、高粮等谷物类原料,流动性好,不易结块,多采用筒仓贮存,而副料如麸皮、豆粕等粉状原料,散落性差,存放一段时间后易结块不易出料,采用房式仓贮存。 (四)、原料的清理 饲料原料中的杂质,不仅影响到饲料产品质量而且直接关系到饲料加工设备及人身安全,严重时可致整台设备遭到破坏,影响饲料生产的顺利进行,故应及时清除。 饲料厂的清理设备以筛选和磁选设备为主,筛选设备除去原料中的石块、泥块、麻袋片等大而长的杂物,磁选设备主要去除铁质杂质。

(五)、原料的粉碎 饲料粉碎的工艺流程是根据要求的粒度,饲料的品种等条件而定。 按原料粉碎次数,可分为一次粉碎工艺和循环粉碎工艺或二次粉碎工艺。 按与配料工序的组合形式可分为先配料后粉碎工艺与先粉碎后配料工艺。 1 、一次粉碎工艺: 是最简单、最常用、最原始的一种粉碎工艺,无论是单一原料、混合原料,均经一次粉碎后即可,按使用粉碎机的台数可分为单机粉碎和并列粉碎,小型饲料加工厂大多采用单机粉碎,中型饲料加工厂有用两台或两台以上粉碎机并列使用,缺点是粒度不均匀,电耗较高。 2 、二次粉碎工艺 有三种工艺形式,即单一循环粉碎工艺、阶段粉碎工艺和组织粉碎工艺。 ( 1 )单一循环二次粉碎工艺 用一台粉碎机将物料粉碎后进行筛分,筛上物再回流到原来的粉碎机再次进行粉碎。 ( 2 )阶段二次粉碎工艺

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.doczj.com/doc/1817803262.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

植物油提炼设备工艺流程

工艺流程: 1.油料清理 (1)油料在收获、晾晒、运输和贮藏等过程中会混进一些沙石、泥土、茎叶及铁器等杂质,如果生产前不予清除,对生产过程非常不利,油料中所含杂质可分为无机杂质、有机杂质和含油杂质三大类。 (2)所谓油料清理,即除去油料中所含杂质的工序之总称。对清理的工艺要求,不但要限制油料中的杂质含量,同时还要规定清理后所得下脚料中油料的含量。 2.油料剥壳与仁壳分离 剥壳要求 ①仁中含壳率:不超过*%。 ②壳中含仁率(手拣)不超过*%。 3.油料干燥 油料干燥是指高水分油料脱水至适宜水分的过程。油料收获时有时在雨季,所以水分含量高。为了安全贮藏,使之有适宜水分,干燥

就十分必要。 利用干燥设备加热油料,可使其中部分水分汽化,同时,油料周围空气中的湿度,必须小于油料在该温度下的表面湿度,这样形成湿度差,则油料中的水分才能不断地汽化而逸入大气,并且在单位时间内,通过油料表面的空气量越多,则油料的脱水速度越快,干燥设备强制通入热风进行干燥,就是利用这个原理。 4.油料破碎 用机械的方法,将油料粒度变小的工序叫破碎。破碎的目的,对于大粒油料而言,是改变其粒度大小利于轧胚;对于预榨饼来说,是使饼块大小适中,为浸出或第二次压榨创造良好的出油条件。 5.油料软化 软化是调节油料的水分和温度,使其变软。增加塑性的工序。为使轧胚效果达到要求,对于含油量较低的大豆、含水分较少的油菜籽以及棉籽等油料,软化是不可缺少的。对于大豆,由于含油量较低,质地较硬,如果再加上含水分少,温度又不高,未经软化就进行轧胚,

势必会产生很多粉末,难以达到要求。 6.油料轧胚 轧胚亦称“压片”、“轧片”。它是利用机械的作用,将油料由粒状压成薄片的过程。轧胚的目的,在于破坏油料的细胞组织,为蒸炒创造有利的条件,以便在压榨或浸出时,使油脂能顺利地分离出来。 对轧胚的基本要求是料胚要薄,面均匀,粉末少,不露油,手捏发软,松手散开,粉末度控制在筛孔1毫米的筛下物不超过10%~15%,料胚的厚度:大豆0.3毫米以下。轧完胚后再对料胚进行加热,使其入浸水分控制在7%左右,粉末度控制在10%以下。 7.油料蒸炒 油料蒸炒是指生胚经过湿润、加热、蒸胚和炒胚等处理,使之发生一定的物理化学变化,并使其内部的结构改变,转变成熟胚的过程。 蒸炒是制油工艺过程中重要的工序之一。因为蒸炒可以借助水分和温度的作用,使油料内部的结构发生很大变化,例如细胞受到进一步的破坏,蛋白质发生凝固变性,磷脂和棉酚的离析与结合等,而这些变化不仅有利于油脂从油料中比较容易地分离出来,而且有利于毛

碳化硅性能与碳化硅生产工艺

碳化硅性能与碳化硅生产工艺 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质: 碳化硅主要有两种结晶形态:b-SiC 和 a-SiC。b-SiC 为面心立方闪锌矿型结构,晶格常 数 a=0.4359nm。a-SiC 是 SiC 的高温型结构,属六方晶系,它存在着许多变体。 碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近, a-SiC 一般为3.217g/cm3,b-SiC 为 3.215g/cm3.纯碳化硅是无色透明的,工业 SiC 由于含有游离 Fe、Si、C 等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC 热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为 64.4W/ (m·K)。常温下SiC 是一种半导体。 碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成: ①碳化硅的冶炼方法,合成碳化硅所用的原料主要是以 SiO2 为主要成分的脉石低档次的碳化硅可用低灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中 SiO2 含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的 SiO2 可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于 1.2%,挥发分小于 12.0%,石油焦的粒度通常在 2mm 或 1.5mm 以下。木屑用于调整炉料的透气性能,通常的加入量为 3% ~5%(体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在 2000~2500℃的电阻炉内通过以下反应生成碳化 硅:SiO2+3C→SiC+2CO↑-526.09Kj CO 通过炉料排出。加入食盐可与 Fe、Al 等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO 气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从 1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2 熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成 Sic 的反应;温度升高至1700~1900℃时,生成 b-SiC;温度进一步升高至 1900~2000℃时,细小的 b-SiC 转变为 a-SiC,a-SiC 晶粒逐渐长大和密实;炉温再升至 2500℃左右,SiC 开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK 法。 艾奇逊法:传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,

第三代半导体材料碳化硅

第三代半导体材料碳化硅 一、第三代半导体发展简述 半导体产业的基石是芯片。制作芯片的核心材料按照历史进程分为三代:第一代半导体材料(主要为目前广泛使用的高纯度硅)、第二代化合物半导体材料(砷化镓、磷化铟)、第三代化合物半导体材料(碳化硅、氮化镓)。 第三代半导体材料也称为禁带半导体材料,是指禁带宽度在2.3eV(电子伏特)及以上的半导体材料(硅的禁带宽度为1.12eV),其中较为典型的和成熟的包括碳化硅(SiC)、氮化镓(GaN)等,其余包括氧化锌(ZnO)、金刚石、氮化铝(AlN)等的研究尚处于起步阶段。 第三代半导体材料在禁带宽度、热导率、介电常数、电子漂移速度方面的特性使其适合制作高频、高功率、高温、抗辐射、高密度集成电路;其在禁带宽度方面的特性使其适合制作发光器件或光探测器等。 5G基站射频器件对高频材料的需求,以及功率器件正向着大功率化、高频化、集成化方向发展的趋势凸显出了第三代半导体材料的重要性及广阔前景。而该领域基本由美日企业主导,我国相对薄弱,研发仍主要集中于军工领域。 国家战略新兴产业政策中多次提到以碳化硅、氮化镓为代表的第三代半导体器件,随着国内多家企业开始重视该领

域,积极布局相关项目,我国的第三代半导体材料及器件有望实现较快发展。 二、第三代半导体---碳化硅概述 碳化硅是第三代化合物半导体材料的,具有优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率。 半导体芯片分为集成电路和分立器件,但不论是集成电路还是分立器件,基本结构都可以划分为“衬底—外延—器件”结构。碳化硅在半导体中存在的主要形式是作为衬底材料。 图:碳化硅晶片产业链

碳化硅生产工艺

碳化硅的生产工艺和投资估算 碳化硅是人工合成的材料,其化学计量成分以克分子计:Si 50%、C 50%以质量计:Si 70.04%、C 29.96%,相对分子质量为40.09。 碳化硅有两种晶形:β-碳化硅类似闪锌矿结构的等轴晶系;α-碳化硅则为晶体排列致密的六方晶系。β-碳化硅约在2100℃转变为α-碳化硅。 碳化硅的物理性能:真密度α型3.22g/cm3、β型3.21g/cm3,莫氏硬度9.2,线膨胀系数为(4.7~5.0)×10-6 /℃,热导率(20℃)41.76W/(m·K),电阻率(50℃)50Ω·cm,1000℃2Ω·cm,辐射能力0.95~0.98。 碳化硅的合成方法 (一)用二氧化硅和碳(煤)合成碳化硅 工业上合成碳化硅多以石英砂、石油焦(无烟煤)为主要原料,在电炉内温度在2000~2500℃下,通过下列反应式合成: SiO2+3C SiC+2CO -46.8kJ(11.20kcal) 1. 原料性能及要求 各种原料的性能:石英砂,SiO2>99%,无烟煤的挥发分<5%。 2. 合成电炉 大型碳化硅冶炼炉的炉子功率一般为10000kW, 每1kg SiC电耗为6~7kW·h,生产周期升温时为26~36h,冷却24h。 3. 合成工艺 (1) 配料计算: 式中,C为碳含量,SiO2为二氧化硅含量,M=37.5。碳的加入量允许过量5%。炉内配料的重量比见表3。 表1 炉体内各部位装料的配比 一般合成碳化硅的配料见表4。 表2合成碳化硅的配料

在碳化硅的生产过程中,回炉料的要求:包括无定形料、二级料,应满足下列SiC>80%,SiO2+Si<10%,固定碳<5%,杂质<4.3%。 焙烧料的要求:未反应的物料层必须配人一定的焦炭、木屑、食盐后做焙烧料。加入量(以100t计)焦炭0~50kg,木屑30~50L,食盐3%~4%。 保温料的要求:新开炉需要配保温料。焦炭与石英之比为0.6。如用乏料代特应符合如下要求:SiC<25%,SiO2+Si>35%,C 20%,其他<3.5%。 加入食盐的目的是为了排除原料的铁、铝等杂质,加人木屑是便于排除生成的一氧化碳。 (2) 生产操作:采用混料机混料,控制水分为2%~3%,混合后料容重为1.4~1.6g/cm3。 装料顺序是在炉底先铺上一层未反应料,然后添加新配料到一定高度(约炉芯到炉底的二分之一),在其上面铺一层非晶形料,然后继续加配料至炉芯水平。 炉芯放在配料制成的底盘上,中间略凸起以适应在炉役过程中出现的塌陷。炉芯上部铺放混好的配料,同时也放非晶质料或生产未反应料,炉子装好后形成中间高、两边低(与炉墙平)。 炉子装好后即可通电合成,以电流电压强度来控制反应过程。当炉温升到1500℃时,开始生成β-SiC,从2100℃开始转化成α-SiC,2400℃全部转化成α-SiC。合成时间为26~36h,冷却24h后可以浇水冷却,出炉后分层、分级拣选。破碎后用硫酸酸洗,除掉合成料中的铁、铝、钙、镁等杂质。 工业用碳化硅的合成工艺流程,如图1所示。

风干牛肉加工工艺

风干牛肉作业指导书 一、工艺流程: 原料检验—缓化-修整-切片——配料—-滚揉——摆片——腌制——风干——断段--切条——称量-—油炸——冷却-—内包装(抽真空)-—灭菌——外包装-—入库 工艺流程要点: 1、原料检验:原料肉要来自安全非疫区并有检疫证明,且应选用注册屠宰场屠宰得部位肉。要求无骨、无皮、无毛、无淋巴、游离得结缔组织、无淤血、无血污。每批到厂原料肉须附带检疫证明及检验报告。选用牛部位大黄瓜条为原料,确定厂家、产品名称与实物相符,方可使用。更换厂家或原料肉时,要取2件,在0—4℃得环境中解冻,感官检验肉质得颜色,气味等,测缓化损失与碎肉率(脂肪与筋膜)。缓化水分损失3%—6%,筋膜3%-5%为正常,数据异常,需及时上报,得到允许后方可使用、修整时用消毒得刀剔除肉块中筋、皮、膜、多余脂肪、修掉伤斑、筋腱等,剔除干净后方可进行下道工序。 2、原料缓化:将原料肉去掉外包装箱,记录原料肉重量,填写标识卡片写明日期,重量等内容,码放整齐,放置在0-4℃得环境中缓化解冻,解冻时间约36-48小时,在36小时前后,关注原料肉得解冻程度,根据生产进度,决定就是否需要将包装袋去掉与就是否将肉块撬开、因缓化时间较长,需密切关注环境温度湿度变化。缓化过程中保持静态缓化,最大限度降低失水率。缓化过程中应促进空气流通,均衡原料肉上下层温差,每块原料肉边缘手按较为柔软,松弛、无冰晶、呈还原态部

分≥70%,原料肉由内到外呈麻酥状态解冻效果为最佳。刀要锋利,下刀要准确,麻酥状态下刀刚好按工艺要求准确无误切下。肉中心温度应0-4℃,原料肉缓化刚好进入麻酥状态时,造型处理,及时放入切片机中进行切片、切片工艺中,防止模具对原料肉施加一定压力,要充分保持麻酥程度。 3、修整、切片:原料肉解冻至麻酥状态,用手指按压,肉质表面较软,但无塌陷得痕迹,方可切片。将原料肉平放在操作台上,用尖刀修去原料肉表面得脂肪与筋膜,将平整一面与操作人员相对,把大黄瓜条得大尾巴一面向下与操作台接触平实,固定位置后,按要求切片。原料肉中间温度较低,肉片呈冷冻状态,需摊凉,使其缓化至麻冻状态。为保证产品品质,切好得精品切片与散货切片准确称量25Kg/后,及时放入0—4℃得腌制间中。 (1)精品切片:厚度1。5厘米,切面平整,上下厚度差在0、1厘米范围内,无刀花为合格产品。单独放置、 (2)散货切片:肉块表面形状不规则得、厚度在2-2、5厘米得肉条,与两部位肉中间得筋膜与脂肪较多得肉片,修去筋膜脂肪后,按精品得切片标准(厚度1。5厘米)切分,并分开放置做散货切片。 4、配料:按配方要求准确称量,同时配置几种口味得调料时,需标示清楚,分开放置,避免调料用错得情况出现。称量清水时,先放掉管道得存水,再按要求称量。将辅料按加入量比例依次加入实腌肉中。 配料:原料肉25Kg,调料1包(四种口味),清水2.5L,海天生抽XXg。 5、滚揉:将调料与麻酥状态得原料肉在不锈钢盆中搅拌均匀后,装入

植物油生产工艺流程图(1)

植物油生产工艺流程图 原料验收 清选去杂 烘干冷却 破碎脱皮 热风烘炒 降温、轧糁 蒸炒 榨油 降温过滤毛油成品油

生产工艺操作规程 1.原料验收: (1)原料100%来自经评审合格的供应商或备案基地。 (2)原料进厂前,对所收购的原料按《原辅料验收制度》进行验收,不合格的原料一律拒收。 (3)原料进厂时,检查供应商的三证和检验证明。 (4)合理安排生产所需的原料量,按先进先出的原则进行生产。 2.清选去杂 清除原料中的石子等杂质,用分级筛分离出花生中的未成熟粒、霉变粒、破碎 粒等不完善粒,这部分可用于生产二级油,单独销售。 3. 烘干冷却 将花生在烘干房用热风气流干燥机烘干后水分控制在5%~6%。然后迅速用冷空 气把油粒温度降至40℃以下。 4. 破碎脱皮 用齿辊式破碎机将红外衣扒掉,破碎后用风力风选器或吸风平筛将红外衣吸出,分 离出的花生红皮可用作医药化工原料。 5. 热风烘炒 将总量25%~30%的花生瓣送至燃煤热风烘炒炉,在此烘炒炉内油料被加热到180℃~200℃。烘炒温度是浓香花生油产生香味的关键因素,温度太低,香味较淡; 温度太高,油料易湖化。 6. 降温与轧糁 为防止油料糊化和自燃,烘炒后应迅速散热降温,降温后用齿辊式破碎机轧成碎粒状。 7.蒸炒 用蒸炒锅对生坯进行蒸炒。出料温度108℃~112℃,水分5%~7%,为保证花生油有浓郁的香味,蒸炒锅炉的间接蒸汽压力应不小于0.6mpa。 8. 榨油 本工艺使用的是200型螺旋榨油机,对榨油机主轴转速作了适当调整,主轴转速由原来的8rpm提高到10rpm,并适当放厚饼的厚度,一般控制在10mm左右。入榨温度135℃,入榨水分 1.5%~2%,机榨饼残油9%~10%。 9.降温 用冷冻盐水于低速搅拌下将植物油冷却到10℃~15℃,然后保温沉淀静置48h。 10.过滤毛油 将沉淀48h后的毛油泵入板框压滤机进行过滤。在滤饼形成前得到的过滤油较浑浊,应在滤饼形成后重新过滤。

饲料厂生产工艺流程介绍完整版

饲料厂生产工艺流程介 绍 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

(一)、配合饲料的生产工艺流程图(略) (二)、原料的接收 1 、散装原料的接收以散装汽车、火车运输的,用自卸汽车经地磅称量后将原料卸到卸料坑。 2 、包装原料的接收:分为人工搬运和机械接收两种。 3 、液体原料的接收:瓶装、捅装可直接由人工搬运入库。 (三)、原料的贮存 饲料中原料和物料的状态较多,必须使用各种形式的料仓,饲料厂的料仓有筒仓和房式仓两种。 主原料如玉米、高粮等谷物类原料,流动性好,不易结块,多采用筒仓贮存,而副料如麸皮、豆粕等粉状原料,散落性差,存放一段时间后易结块不易出料,采用房式仓贮存。 (四)、原料的清理 饲料原料中的杂质,不仅影响到饲料产品质量而且直接关系到饲料加工设备及人身安全,严重时可致整台设备遭到破坏,影响饲料生产的顺利进行,故应及时清除。 饲料厂的清理设备以筛选和磁选设备为主,筛选设备除去原料中的石块、泥块、麻袋片等大而长的杂物,磁选设备主要去除铁质杂质。 (五)、原料的粉碎 饲料粉碎的工艺流程是根据要求的粒度,饲料的品种等条件而定。 按原料粉碎次数,可分为一次粉碎工艺和循环粉碎工艺或二次粉碎工艺。 按与配料工序的组合形式可分为先配料后粉碎工艺与先粉碎后配料工艺。

1 、一次粉碎工艺: 是最简单、最常用、最原始的一种粉碎工艺,无论是单一原料、混合原料,均经一次粉碎后即可,按使用粉碎机的台数可分为单机粉碎和并列粉碎,小型饲料加工厂大多采用单机粉碎,中型饲料加工厂有用两台或两台以上粉碎机并列使用,缺点是粒度不均匀,电耗较高。 2 、二次粉碎工艺 有三种工艺形式,即单一循环粉碎工艺、阶段粉碎工艺和组织粉碎工艺。 ( 1 )单一循环二次粉碎工艺 用一台粉碎机将物料粉碎后进行筛分,筛上物再回流到原来的粉碎机再次进行粉碎。 ( 2 )阶段二次粉碎工艺 该工艺的基本设置是采用两台筛片不同的粉碎机,两粉碎机上各设一道分级筛,将物料先经第一道筛筛理,符合粒度要求的筛下物直接进行混合机,筛上物进入第一台粉碎机,粉碎的物料再进入分级筛进行筛理。符合粒度要求的物料进入混合机,其余的筛上物进入第二台粉碎机粉碎,粉碎后进入混合机。 ( 3 )组合二次粉碎工艺 该工艺是在两次粉碎中采用不同类型的粉碎机,第一次采用对辊式粉碎机,经分级筛筛理后,筛下物进入混合机,筛上物进入锤片式粉碎机进行第二次粉碎。 3 、先配料后粉碎工艺 按饲料配方的设计先进行配料并进行混合,然后进入粉碎机进行粉碎。 4 、先粉碎后配料工艺 本工艺先将待粉料进行粉碎,分别进入配料仓,然后再进行配料和混合。

牛肉干生产工艺流程及设备

课程设计论文 牛肉干生产工艺流程及设备 --《食品加工技术装备》课程设计 2010.12 前言:牛肉是一种高蛋白食品,每100g牛肉中含蛋白质20. 3g(比猪肉约多3. 3%,比羊肉约多10% ),而且牛肉胆固醇含量和脂肪

都比其它肉类食品低,含蛋白质较高,味道鲜美,营养成分易于被人体消化吸收,因而历来深受人们的喜爱。以牛肉为原料加工成的牛肉干,含有丰富的营养成分,主要为蛋白质和脂肪。每100g牛肉干中含蛋白质45. 6g,是新鲜牛肉的2. 3倍,脂肪含量为40g,是新鲜牛肉的4倍;另外还含有钙43mg、磷464mg、铁15. 6mg。这些无机成分除能满足人体的营养需要外,还具有重要的生理作用,其中铁的存在形式主要为血红素铁,生物利用率高,不受食物中其他因素的干扰,更有利于人体的吸收。肉品经干制后,水分含量低,产品耐贮藏;体积小,质量轻便于运输和携带;蛋白质含量高,营养丰富,风味浓郁,回味悠长。 牛肉干是大众喜爱的风味独特的干肉制品,它与肉脯、肉松均为我国传统的干肉制品,其生产历史已有二千余年。它们以耐贮、风味独特、营养且卫生方便,因此肉干制品是深受我国人民喜爱的休闲方便食品,并且出口到世界各地,受到各地人们的欢迎。而且,我国传统的干肉制品加工方法也对世界肉制品加工产生了深刻的影响,尤其是近几十年来,世界各国的食品科学家、肉类加工学家等从营养卫生、加工学方面对它们进行深入的研究,创新了干肉制品的加工工艺,生产出了适应现代生活、营养卫生、风味独特口感佳的新型干肉制品。 传统肉干加工工艺干燥脱水时间长(6~7 h),肉块受热不均匀,表层会因受热过长而出现焦糊现象,同时有色泽深暗、质地坚硬、咀嚼困难等缺陷。参考传统牛肉干配方工艺,结合现代肉品加工设备和工艺技术,对牛肉干的生产工艺进行深入研究,提出了较为合理的生产工艺,并且进行了小试和中试,生产的牛肉干口感好,色泽红亮,滋

碳化硅陶瓷生产工艺_碳化硅陶瓷烧结方法

碳化硅陶瓷生产工艺_碳化硅陶瓷烧结方法 21世纪是信息化时代,但很多人都开始了传统的生活,注意养生,比如想要逃离城市,进入乡村,因为乡下的空气好;又比如不再吃大鱼大肉,而是吃起了野菜。那么传统的陶瓷自然也受到人们的喜爱了。碳化硅陶瓷生产工艺是什么,碳化硅陶瓷烧结方法有哪些,碳化硅扰动喷嘴清洗剂哪种好,这就是今天小编带来的问题内容。 碳化硅陶瓷-生产工艺 碳化硅陶瓷主要组成物是SiC,这是一种高强度、高硬度的耐高温陶瓷,在1200℃~1400℃使用仍能保持高的抗弯强度,是目前高温强度高的陶瓷,碳化硅陶瓷还具有良好的导热性、抗氧化性、导电性和高的冲击韧度。是良好的高温结构材料,可用于火箭尾喷管喷嘴、热电偶套管、炉管等高温下工作的部件;利用它的导热性可制作高温下的热交换器材料;利用它的高硬度和耐磨性制作砂轮、磨料等。 SiC具有很高的抗氧化性,因为在体材料的氧化过程中会在氧化界面形成SiO2层,从而阻止了氧化

的进行化学方程式:2SiC+3O2=2SiO2+2CO(好的稳定性就包括化学稳定强和物理稳定性强,化学稳定性强包含抗氧化、 耐腐蚀,物理稳定性主要 指热膨胀系数低、抗弯强 度高、耐高温,不容易受 温差和外部环境影响。) 力学性能 陶瓷材料是工程材料中刚 度好、硬度高的材料,其 硬度大多在1500HV以上。 陶瓷的抗压强度较高,但 抗拉强度较低,塑性和韧 性很差。 热性能 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有好的化学稳定性;同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 电性能 陶瓷散热片具有良好的电绝缘性,绝缘阻抗为10GΩ(吉欧) 化学性能 陶瓷材料在高温下不易氧化,因为在体材料的氧化过程中会在氧化界面形成SiO2层,从而阻止了氧化的进行。化学方程式:2SiC+3O2=2SiO2+2CO,并对酸、碱、盐具有良好的抗腐蚀能力。碳化硅扰动喷嘴-清洗剂如何选择 1、碳化硅喷嘴清洗剂应不产生影响清洁过程及现场卫生的泡沫和异味。 2、清洗剂清洁污垢的速度要快要彻底。

三代半导体之碳化硅

半导体也分代?三代半导体之碳化硅。 三代半导体是什么??? 随着半导体逐渐进入人们的视野 时至今日半导体材料家族也在逐渐扩大 现在的半导体迭代也已经到了第三代 第三代半导体以碳化硅以及氮化镓为代表 可应用在更高阶的高压功率元件 以及高频通讯元件领域:例如高温、高频、抗辐射、大功率器件等等~

第三代半导体的优势在哪里呢? —比导通电阻是硅器件的近千分之一(在相同的电压/电流等级),可以大大降低器件的导通损耗; —开关频率是硅器件的20倍,可以大大减小电路中储能元件的体积,从而成倍地减小设备体积,减少贵重金属等材料的消耗; —理论上可以在600 ℃以上的高温环境下工作,并有抗辐射的优势,可以大大提高系统的可靠性,在能源转换领域具有巨大的技术优势和应用价值。 第三代半导体器件如今的应用领域非常广泛 智能电网、电动汽车、轨道交通、新能源并网、开关电源、工业电机以及家用电器等领域得到应用,并展现出良好的发展前景,可以说全球正在逐渐进入第三代半导体时代。

而就第三代半导体来说:碳化硅是目前发展最成熟的半导体材料,氮化镓紧随其后,金刚石、氮化铝和氧化镓等也成为国际前沿研究热点。以下将通过一个系列3篇分别介绍当前的发展状况。 既然提到了成熟的碳化硅 那么我们就来聊一聊这个碳化硅是什么 碳化硅又名碳硅石、金刚砂,是一种无机物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。在C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。

1.碳化硅加工工艺流程

碳化硅加工工艺流程 一、碳化硅的发展史: 1893年艾奇逊发表了第一个制碳化硅的专利,该专利提出了制取碳化硅的工业方法,其主要特点是,在以碳制材料为炉芯的电阻炉中通过加热二氧化硅和碳的混合物,使之相互反应,从而生成碳化硅,到1925年卡普伦登公司,又宣布研制成功绿碳化硅。 我国的碳化硅于1949年6月由赵广和研制成功,1951年6月,第一台制造碳化硅的工业炉在第一砂轮厂建成,从此结束了中国不能生产碳化硅的历史,到1952年8月,第一砂轮厂又试制成功了绿碳化硅。 随着国民经济的发展,我国又相继发展了避雷器用碳化硅、立方碳化硅、铈碳化硅及非磨料碳化硅。到1969年第一砂轮厂、第二砂轮厂建成4000KW、3000KW的活动式电阻炉,显著提高了机械化程度,大大改善了作业环境。1980年第一砂轮厂建造了我国第一台特大型电阻炉—8000KW;就我们一车间7750KW 的冶炼炉在当时也算特大型电阻炉,到现在30000KW的电阻炉已不算稀奇,所以说碳化硅的发展速度是相当快的。 二、碳化硅的分类:(黑碳化硅、绿碳化硅) 通常按碳化硅的含量进行分类,含量越高、纯度越高、它的物理性能越好。一般来讲:含量在95%——98%为一级品,含量在98%以上的为特级品、含量在80%——94%为二级品、含量在70%左右为三级品,碳化硅的含量及纯度越高其价值也就越大。 [ 化学成份:主要杂质有:游离硅(),它一部分溶解在碳化硅晶体中,一部分与其它金属杂质(铁、铝、钙)呈金属状态存在。 游离二氧化硅()通常存在于晶体表面,大都是由于冶炼碳化硅电阻炉冷却过程中,碳化硅氧化而形成。正常的情况下,绿碳化硅结晶块表面的游离硅,二氧化硅的含量为%左右,当配料中二氧化硅过量时,二氧化硅会蒸发凝聚在碳化硅晶体表面上,呈白色绒毛状。 碳:(C),当配比碳过量时,看到明显的游离状态的碳粒。铁、铝、钙、镁由于炉内产品高温及还原性气氛,结晶块中的这些杂质大都呈合金状态或碳化物状态。 碳化硅磨料的化学成分;随着磨料粒度的变化略有波动,粒度越细,纯度越低。(为什么呢杂质出

相关主题
文本预览
相关文档 最新文档