当前位置:文档之家› 基于CFD的螺旋桨粘性流场的数值模拟研究

基于CFD的螺旋桨粘性流场的数值模拟研究

基于CFD的螺旋桨粘性流场的数值模拟研究
基于CFD的螺旋桨粘性流场的数值模拟研究

第七 章 CFD仿真模拟

第七章CFD仿真模拟 一.初识CFD CFD是英文Computational Fluid Dynamics(计算流体动力学)的简称。它是伴随着计算机技术、数值计算技术的发展而发展的。简单地说,CFD相当于"虚拟"地在计算机做实验,用以模拟仿真实际的流体流动情况。而其基本原理则是数值求解控制流体流动的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动情况。可以认为CFD是现代模拟仿真技术的一种。 1933年,英国人Thom首次用手摇计算机数值求解了二维粘性流体偏微分方程,CFD由此而生。1974年,丹麦的Nielsen首次将CFD用于暖通空调工程领域,对通风房间内的空气流动进行模拟。之后短短的20多年内,CFD技术在暖通空调工程中的研究和应用进行得如火如荼。如今,CFD技术逐渐成为广大空调工程师和建筑师解决分析工程问题的有力工具。 二.为什么用CFD CFD是一种模拟仿真技术,在暖通空调工程中的应用主要在于模拟预测室内外或设备内的空气或其他工质流体的流动情况。以预测室内空气分布为例,目前在暖通空调工程中采用的方法主要有四种:射流公式,Zonal model,CFD以及模型实验。 由于建筑空间越来越向复杂化、多样化和大型化发展,实际空调通风房间的气流组织形式变化多样,而传统的射流理论分析方法采用的是基于某些标准或理想条件理论分析或试验得到的射流公式对空调送风口射流的轴心速度和温度、射流轨迹等进行预测,势必会带来较大的误差。并且,射流分析方法只能给出室内的一些集总参数性的信息,不能给出设计人员所需的详细资料,无法满足设计者详细了解室内空气分布情况的要求; Zonal model是将房间划分为一些有限的宏观区域,认为区域内的相关参数如温度、浓度相等,而区域间存在热质交换,通过建立质量和能量守恒方程并充分考虑了区域间压差和流动的关系来研究房间内的温度分布以及流动情况,因此模拟得到的实际上还只是一种相对"精确"的集总结果,且在机械通风中的应用还存在较多问题; 模型实验虽然能够得到设计人员所需要的各种数据,但需要较长的实验周期和昂贵的实验费用,搭建实验模型耗资很大,有文献指出单个实验通常耗资3000~20000美元,而对于不同的条件,可能还需要多个实验,耗资更多,周期也长达数月以上,难于在工程设计中广泛采用。 另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程应用所接受。尽管CFD方法还存在可靠性和对实际问题的可算性等问题,但这些问题已经逐步得到发展和解决。因此,CFD方法可应用于对室内空气分布情况进行模拟和预测,从而得到房间内速度、温度、湿度以及有害物浓度等物理量的详细分布情况。 进一步而言,对于室外空气流动以及其它设备内的流体流动的模拟预测,一般只有模型实验或CFD方法适用。表1的比较同样表明了CFD方法比模型实验的优越性。故此,CFD方法可作为解决暖通空调工程的流动和传热传质问题的强有力工具而推广应用。 表1四种暖通空调房间空气分布的预测方法比较 比较项目 1射流公式 2 ZONAL MODEL 3CFD 4模型实验 房间形状复杂程度简单较复杂基本不限基本不限 ?对经验参数的依赖性几乎完全很依赖一些不依赖

一维CFD模拟仿真设计

CFD simulation in Laval nozzle SIAE 090441313 Abstract We aim to simulate the quasi one dimension flow in the Laval nozzle based on CFD computation in this paper .We consider the change of the temperature ,the pressure ,the density and the speed of the flow to study the flow.The analytic solution of the flow in the Laval nozzle is provided when the input velocity is supersonic.We use the Mac-Cormack Explicit Difference Scheme to slove the question. Key words :Laval nozzle ,CFD,throat narrow. Contents Abstract .................................................. . (1) Introduction .............................................. .. (2) Simulation of one-dimensional steady flow (3)

Basis equations ................................................. (3) Dimensionless .......................................... . (10) Mac -Cormack Explicit Difference Scheme (11) Boundary conditions ................................................ (13) Reference .............................................. (13) Annex .................................................. .. (14) Introduction Laval nozzle is the most commonly used components of rocket engines and aero-engine, constituted by two tapered tube, one shrink tube, another expansion tube. Laval nozzle is an important part of the thrust chamber. The first half of the nozzle from large to small contraction to a narrow throat to the middle. Narrow throat and then expand

第三章--螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动 260

导管螺旋桨内流场的PIV测量

第21卷 第2期实验流体力学V ol.21,N o.2 2007年06月Journal of Experiments in F luid Mech anics Jun.,2007  文章编号:167229897(2007)022******* 导管螺旋桨内流场的PIV测量Ξ 张 军1,张志荣1,朱建良1,徐 锋1,陆林章1,代 钦2 (1.中国船舶科学研究中心,江苏无锡 214082;2.上海大学,上海 200072) 摘要:内流场对于导管螺旋桨的设计和性能分析是至关重要的,利用随车式PI V在中国船舶科学研究中心拖 曳水池进行了导管螺旋桨的内流场测量。使用标靶技术建立了物像对应关系,从而修正导管曲率和厚度产生的图 象畸变。使用同步控制器实现螺旋桨相位、CC D摄像和激光器的精确同步控制。试验分别在三个不同进速系数J =1.2,1.0和0.8下进行。 试验结果很好地反映了螺旋桨梢涡、毂部涡、以及螺旋桨上下表面脱落的旋向相反的尾涡,以及近导管内壁、桨毂壁面涡层等流动特征。试验表明,涡强都随着进速系数的减小而增加。与螺旋桨前流动相比,导管内螺旋桨 后轴向速度沿径向分布的不均匀性明显增强。试验结果表明,对于导管厚度与曲率都空间变化的导管螺旋桨,应 用PI V技术进行内流场测量在技术上是可行的。 关键词:导管螺旋桨;内流场;PI V 中图分类号:U661.3 文献标识码:A I nvestigation of internal flow field of ducted propeller using particle image velocimetry ZHANGJun1,ZHANG Zhi2rong1,ZHU Jian2liang1,X U Feng1,LU Lin2zhang1,DAI Qin2 (1.China Ship Scientific Research Center,Wuxi Jiangsu 214082,China;2.Shanghai University,Shang2 hai 200072,China) Abstract:Analysis of internal flow field is very im portant to the design and performance prediction of ducted propeller.The towing PI V is applied to measure the internal flow field of ducted propeller in a towing tank(150m×7.0m×4.5m)of CSSRC.A body2fitted target is used to calibrate the image distortion caused by the duct.The synchronizer controls laser and CC D to operate at preset angular position of propeller blade. The test is carried out at three advanced coefficients J=1.2,1.0and0.8respectively. The test results show clearly the flow characteristics of tip v ortex,hub v ortex,and trailing edge v ortex (TE V)shedding from the upper and lower surface of propeller blade,and the v ortices layer near boundary of the duct and hub.And it als o reveals the variation trends of velocity field,v orticity distribution with advanced coefficients.The results from this test prove that the PI V technique is suitable to measure the internal flow field of ducted propeller. K ey w ords:ducted propeller;internal flow field;PI V Ξ收稿日期:2006206204;修订日期:2006211216 基金项目:水动力学国防科技重点实验室基金项目(514430101ZS210). 作者简介:张 军(1967-),男,江苏如东人,研究员.研究方向:船舶水动力学.

CFD仿真验证及有效性指南

CFD仿真验证及有效性指南 摘要 本文提出评估CFD建模和仿真可信性的指导方法。评估可信度的两个主要原则是:验证和有效。验证,即确定计算模拟是否准确表现概念模型的过程,但不要求仿真和现实世界相关联。有效,即确定计算模拟是否表现真实世界的过程。本文定义一些重要术语,讨论基本概念,并指定进行CFD仿真验证和有效的一般程序。本文目的在于提供验证和有效的重要问题和概念的基础,因为一些尚未解决的重要问题,本文不建议作为该领域的标准。希望该指南通过建立验证和有效的共同术语和方法,以助于CFD仿真的研究、发展和使用。这些术语和方法也可用于其他工程和科学学科。 前言 现在,使用计算机模拟流体的流动过程,用于设计,研究和工程系统的运行,并确定这些系统在不同工况下的性能。CFD模拟也用于提高对流体物理和化学性质的理解,如湍流和燃烧,有助于天气预报和海洋。虽然CFD模拟广泛用于工业、政府和学术界,但目前评估其可信度的方法还很少。这些指导原则基于以下概念,没有适用于所有CFD模拟的固定的可信度和精确度。模拟所需的精确度取决于模拟的目的。 建立可信度的两个主要原则是验证和有效(V&V)。这里定义,验证即确定模型能准确表现设计者概念模型的描述和模型解决方案的过程,有效即确定预期模型对现实世界表现的准确度的过程。该定义表明,V&V的定义还在变动,还没有一个明确的最终定义。通常完成或充分由实际问题决定,如预算限制和模型的预期用途。复合建模和计算模拟没有任何包括准确性的证明,如在数学分析方面的发展。V&V的定义也强调准确度的评价,一般在验证过程中,准确度以对简化模型问题的基准解决方法符合性确定;有效性时,准确度以对实验数据即现实的符合性确定。 通常,不确定性和误差可视为与建模和仿真准确度相关的正常损失。不确定性,即在任一建模过程中由于缺乏知识导致的潜在缺陷。知识缺乏通常是由对物理特性或参数的不完全了解造成的,如对涡轮叶片表面粗糙度分布的不充分描述。知识缺乏的另一个原因是物理过程的复杂性,如湍流燃烧。误差即在建模和

车流量仿真分析-Flotran CFD

2006年用户年会论文 基于ANSYS流体动力学的车流量仿真分析1 [刘长虹,郑杰,朱晓华,张海波,黄虎,陈力华] [上海工程技术大学汽车工程学院,上海,201600] [ 摘要 ] 将交通流比拟为管道流体模型并且利用有限元分析软件ANSYS中的FLOTRAN CFD流体分析模块对隧道口交通流进行比拟及仿真,得出相应交通流量模型和车辆流动模拟图。并对不同车速下 交叉道口的通行能力进行模拟,确定出最佳车速比。且对不同入口形状进行车流通畅度的 ANSYA软件比较模拟,通过模拟直观的展示出不同道路入口形状对车流和道路的影响。最后对 高峰路段路口设计提出有关建议。 [ 关键词]交通流,交通流模型,ANSYS,模拟 Simulating to Traffic Flux By the ANSYS Fluid Dynamic Analysis [Liu Changhong, Zheng Jie, Zhu Xiaohua, Zhang Haibo, Huang Hu, Chen Lihua] [Automobile College Shanghai University of Engineering Science, Shanghai 201600] [Abstract ] Firstly, based on the fluid dynamic mechanics of channel, a traffic flow model is built. Secondly, the traffic flow model on cross road is simulated with the finite element method software (ANSYS). Then according to the calculating results, the simulating traffic ability at the entrance of the roadl in different speed and the different entrance figures are calculated directly. Finally, some suggestions of designing the heavy road are given. [ Keyword ] traffic flow, traffic flow simulation, ANSYS, Simulation. 1.前言 当前,社会经济的迅速发展与交通建设的相对滞后,已经构成非常突出的世界性矛盾,在发展中国家尤其突出。在我国许多大城市中,交通堵塞,事故频繁,成了众所周知的“都市顽症”。以上海市为例,上世纪九十年代的资料表明,在交通高峰期,市中心机动车平均车速不到15km/h,最低的车速仅仅为4km/h,即低于正常的步行速度。解决这个矛盾的一个重要办法是大力进行市政交通建设,实现交通的立体化,现代化。同时还要保证建设道路的合理性。交通流理论是解决这类方法的一种理论方法[1,2],其中有根据流体动力学理 1上海市教委基金项目(041NE31)和上海市科委基金项目(04QMX1452)资助

船用螺旋桨小知识集锦

船用螺旋桨小知识集锦 螺旋桨简介 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 驱动船前进的一种盘形螺旋面的推进装置。由桨叶及与其相连结的桨毂构成。常用的是三叶、四叶和五叶。包括单体螺旋桨、龙叶导管螺旋桨、对转螺旋桨、串列螺旋桨、可调螺距螺旋桨、超空泡螺旋桨、大侧斜螺旋桨等。螺旋桨一般安装在船尾(水下)。船用螺旋桨多由铜合金制成,也有铸钢,铸铁,钛合金或非金属材料制成。对船用螺旋桨的研究分理论和试验两个方面。理论方面现已有动量定理、叶元体理论、升力线理论、升力面理论、边界元方法等理论和分析方法,能较准确地预报螺旋桨的水动力性能并进行理论设计。试验方面的研究主要是通过模型试验研究螺旋桨性能,绘制螺旋桨设计图谱。船用螺旋桨的设计方法分两大类,即理论设计方法和图谱设计方法。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 螺旋桨的分类 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。

减少舵的空泡现象的探讨

减少舵的空泡现象的探讨 管悦然 (江苏科技大学江苏镇江212003) 摘要:本文描述了几类舵的空泡现象,以及用于预测其出现的方法,并提出了可以减小或避免舵的空泡现象的设计方法,介绍了减轻舵空蚀现象的措施。 0引言 船舶附体的空泡现象的生成导致了例如剥蚀、结 构振动和效率低下等不理想的结果,并且性能的降低 和额外的修理明显减少了船舶营运的收益。另为安全 起见,也必须要避免舵被大面积剥蚀。为此,德国劳埃 德船级社提出了一些建议来预防舵的空泡现象。 空泡腐蚀在船速超过22kn,螺旋桨达到高载荷(P/ (0.25D2π)>700kW/m2,P表示螺旋桨功率,D指螺旋桨 直径)时才会出现。空泡腐蚀研究只有发生在用于航行 保持的舵角±4o变化范围内时,才有实际意义。大舵角(大于15o)的空泡现象是不可避免的。为了减小或避免舵的空泡,尤其在设计阶段,应实行空泡危险评估。高流速导致低压力。如果压力下降到水蒸汽压力以下,空泡就形成并被蒸汽填满,当压力增大时空泡就消失了。空泡形成与爆破极为迅速。空泡现象包括非线性多相流的高复杂物理过程。当小水泡被蒸汽填满,在舵叶表面或靠近舵叶表面的地方产生内爆,就会产生空泡腐蚀。由此,导致了舵叶面的小裂纹和材料的剥蚀,海水也将进一步扩大其腐蚀程度(材料电镀的缺失)。为了估算流体空泡现象的可能性,定义无因次空泡数为:σ=Ρ-ΡV 0.5ρV2 P代表大气压力和水静压力,PV代表饱和蒸汽压力(当水温为15℃时,PV=1700Pa)。在理想液体中,空泡现象产生于局部压力降至汽化压力的时候;实际上,空泡现象提早就出现了。 以下列举了不同类型的空泡现象: ●舵叶梢的空泡(见图1) ●舵底承的空泡现象(见图2) 由于舵两边压力不同,吸力面的压力会在舵底承周围产生分流而导致舵梢涡,这种涡空泡如果和叶梢相接将会造成材料损耗。 图1舵的空泡现象 图2舵底空泡腐蚀 ●螺旋桨梢涡空泡现象 空泡水管中的压力降低到一定值时,螺旋桨将导致梢涡的发生。在螺旋桨后面,梢涡会形成螺旋形的涡空泡并与舵相接(见图3)。 ●螺旋桨毂涡空泡现象 螺旋桨叶毂处的涡汇集一起,形成毂涡(见图4)。 ●表面不平处的空泡现象 表面的不平度会影响流过凸形表面和桨叶端部时的层流速度,引起低压,从而导致频繁的空泡腐蚀(见图5)。 ●间隙空蚀 6

船舶螺旋桨毂帽鳍研究与进展

船舶螺旋桨毂帽鳍研究与进展 骆婉珍1,吴铁成2,孙瑜2 (1.集美大学轮机工程学院,福建厦门361021; 2.哈尔滨工程大学船舶工程学院,黑龙江哈尔滨150001) 摘要:螺旋桨毂帽鳍是在桨毂帽处安装整流鳍板的节能装置,具有结构简单、安装方便、故障可能性低以及造价低等诸多优点,并适用于旧船的改造,对提高船舶推进效率、减少船舶能耗有着积极的作用。本文整理归纳了国内外关于螺旋桨毂帽鳍研究工作的文献,并把这些研究按实验研究和理论预报两个部分进行介绍,并对今后的研究方向提出了一些观点。 关键词:螺旋桨;毂帽鳍;实验研究;理论研究 Studies and Advances of Marine Propeller Boss Cap Fin LUO Wanzhen1, WU Tiecheng2, SUN Yu2 (1. Institute of Marine Engineering, Jimei University, Xiamen, 361021, China; 2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China) Abstract: The propeller boss cap fin is an energy-saving device which is installed an rectifying fin in the boss cap, it has the advantages of simple structure, convenient installation, hard to breakdown, and lower cost. It is suitable for transformation of old ships and can reduce the energy consumption. This paper summarizes the domestic and foreign articles about the research of propeller boss cap fin and divides these studies into two parts, one is experiment study, the other one is theory prediction, and also, we give some opinions about future research. Keywords: propeller, boss cap fin, experiment study, theory study 1引言 近年来,我国船级社、研究设计院所、高等学校和船厂通过对中国船舶的EEDI指数计算验证。并与MEPC提供的Baseline比较得出,中国63%散货船的EEDI指数大于Baseline;57%集装箱船的EEDI指数超过Baseline;73%的共同规范(CSR)散货船超标[1]。2011年7月MEPC第62次会议上,正式通过《MARPOL73/78公约》附则Ⅵ修正案,确定了EEDI和SEEMP两项船舶能效准则。两项准则在2013年1月1日已经生效,2015年起强制执行[2],EEDI指数超标的新设计船将不能通过船级社或IMO的审核,EEDI指数超标的运营船舶可能被强制报废或者无法进入国际航运市场。届时我国船舶工业将面临着巨大挑战与严重的订单影响。因此,船舶节能减排是一个需要重新搬到台面上并更加重视的一个方面。 螺旋桨毂帽鳍(Propeller Boss Cap Fins)作为重要的船舶附加水动力节能装置,是在1987年首先由日本大阪商船三井船舶株式会社等研制的,它是在桨毂帽处安装整流鳍板的一种节能装置[3]。毂帽鳍具有结构简单、安装方便、故障可能性低以及造价低等诸多优点,并且适用于旧船的改造。毂帽鳍的节能机理有 作者简介:骆婉珍,女,在读硕士研究生,主要从事新能源应用领域的研究。E-mail: luowanzhen@https://www.doczj.com/doc/1c17748129.html,。

船用螺旋桨的选择

船用螺旋桨 定义 两个或多个叶片与毂相连,其叶面为螺旋面或近似螺旋面的船用推进器。 简介 螺旋桨 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。

类型 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。 串列螺旋桨 将两个或三个普通螺旋桨装于同一轴上,以相同速度同向转动。当螺旋桨直径受限制时,它可加大桨叶面积,吸收较大功率,对减振或避免空泡有利。串列螺旋桨重量较大,桨轴伸出较长,增加了布置及安装上的困难,应用较少。

螺旋桨的强度计算

342 第八章 螺旋桨的强度校核 为了船舶的安全航行,必须保证螺旋桨具有足够的强度,使其在正常航行状态下不致破损或断裂。为此,在设计螺旋桨时必须进行强度计算和确定桨叶的厚度分布。螺旋桨工作时作用在桨叶上的流体动力有轴向的推力及与转向相反的阻力,两者都使桨叶产生弯曲和扭转。螺旋桨在旋转时桨叶本身的质量产生径向的离心力,使桨叶受到拉伸,若桨叶具有侧斜或纵斜,则离心力还要使桨叶产生弯曲。此外,桨叶上也可能受到意外的突然负荷,例如:碰击冰块或其他飘浮物体等。同时螺旋桨处于不均匀的尾流场中工作,使桨叶受力产生周期性变化,故较难精确地算出作用在桨叶上的外力。 在计算桨叶的强度时,我们可以把桨叶看作是扭曲的、变截面的悬臂梁,而且其横截面是非对称的,故计算较为复杂,即使能正确地求得桨叶上的作用力,要精确地进行强度计算也是很困难的。目前,对于动态负荷(即计及伴流不均匀性影响)下螺旋桨的强度计算方法虽然有所发展,但计算繁复,付之实用还为时尚早。故在螺旋桨设计的实践中,一般都用理论和实验相结合的近似方法来进行螺旋桨的强度计算。 计算螺旋桨强度的近似方法很多,中国船级社于2001年颁发的《钢质海船入级与建造规范》(以下简称《规范》)中对螺旋桨的强度也有了规定,因为比较偏于安全,用近似方法计算的厚度未必一定能满足规范的要求,因此对“入级”海船应采用规范规定的方法计算。本章中主要介绍我国2001年《规范》的规定,由此确定桨叶厚度。为了使读者了解桨叶上的受力情况,对于分析计算方法也作必要的介绍。 § 8-1 《规范》校核法 一、螺旋桨桨叶厚度的确定 为了保证螺旋桨的安全,中国船级社2001年《钢质海船入级与建造规范》第三分册第三篇第十一章中,对螺旋桨的强度要求作了明确具体的规定。 螺旋桨桨叶厚度t (固定螺距螺旋桨为0.25R 和0.6R 切面处,可调螺距螺旋桨为0.35R 和0.6R 切面处)不得小于按下式计算所得之值: X K Y t -= (mm ) (8-1) 式中 Y —— 功率系数,按(8-2)式求得;

CFD案例5-发动机仿真

ANSYS对航空工业解决方案(三)航空发动机仿真方案_2 发表时间:2008-10-23 作者: 安世亚太来源: 安世亚太 关键字: 航空航天 CAE 仿真解决方案 ANSYS 安世亚太 第三章航空发动机仿真方案航空发动机行业概况航空发动机研制中的典型CAE问题航空发动机结构力学计算需求及ANSYS实现航空发动机流体力学和温度场的计算需求及ANSYS实现航空发动机电磁场计算需求及ANSYS实现航空发动机耦合场计算需求及ANSYS实现航空发动机关键零部件的设计分析流程简要说明 4航空发动机流体力学和温度场的计算需求及ANSYS实现 航空燃气涡轮发动机内的流场很复杂,不仅动静流场同时存在,同时还伴有多相流、传热、燃烧等现象,即使从物理上进行很大的简化,模型最后仍然是三维、有粘、非定常的可压流动。航空发动机流场数值计算的发展经历了S2流面法、基于一元管道的流线曲率法、有限差分方法求解非正交曲线坐标系中的S1、S2流面基本方程、有限差分、有限体积和有限差分与流线曲率混合的方法对S1流面跨音速流场的计算,而现在由S1与S2流面相互迭代形成的准三元和全三元计算也发展起来了。现在的采用有限体积法求解NS方程全三维流场计算已经广泛采用,航空发动机的流场数值计算已趋于成熟,可以充分考虑旋转流动、转静干涉问题、多相流、燃烧、亚超跨音速等复杂现象。而且现在求解的规模也不断扩大,利用并行等成熟的CFD技术可以计算达几千万甚至上亿的计算网格。因此结果也更为真实有效。 ANSYSCFX凭借TASCFLOW在叶轮机旋转流动的传统优势,结合更为先进的网格处理技术和高效的求解器,更适合航空发动机流动的复杂性,求解问题的规模和计算精度大大提高,一直处于航空发动机流动模拟的最前沿。

CFD仿真技术在航空发动机中的应用

CFD仿真技术在航空发动机中的应用 摘要:随着科学技术的发展,航空航天和空间技术有了飞跃的发展,在这些飞 跃的发展技术中主要的技术就是CAE技术。航空工业可以说是CAE技术发展的摇篮,各种CAE技术正是在以航空工业为主的实际工业应用的推动下在不到半个世 纪时间里迅猛发展起来的。以ANSYS、LS-DYNA、Nastran、CFX、Fluent等为代表 的高端CAE软件早已活跃在全球航空工业中。 关键词:CFD仿真技术;航空发动机;应用 1 引言 目前国际知名企业的航空发动机研制周期从过去的10~15年缩短到6~8年 甚至4~5年,试验机也从过去的40~50台减少到10台左右。在发达国家的航 空企业里CAE已经作为产品研发设计与制造流程中不可逾越的一种强制性的工艺 规范加以实施,在生产实践作为必备工具普遍应用。 2、CFD技术国内外使用状况简介 CFD作为CAE技术的一种,已经越来越多的被国内外航空企业广泛的得以应用。第一个商用CFD软件包FLUENT,由与美国空军合作的流体技术服务公司Creare公司于1983年推出的。商业CFD软件的开发及应用,加速了航空工业的 发展,使得基于虚拟样机仿真的现代设计方法成为了可能。以波音公司航空研发 发展历史为例,不难发现,波音公司先后采用了经典的实验测试方法、半经验的 方法、空气动力学的计算、政府内部及企业的CFD代码及广泛的采用CFD商业代码。在波音公司2005年的软件应用报告中明确指明,在1998至2005年内,其 公司每年数值仿真成果的增加量都接近84%左右,采用CAE/CFD的速度超过了工 业的成长速度,CFD技术已经成为其设计的主要手段之一。另外从美国软件公司ANSYS公司的销售业绩报告上显示,航空工业上的应用产值是其公司的主要收益 来源之一。 CFD软件正以其强大的优势在研发中发挥的巨大的作用,例如在NISA的报告 中提到,原本需要7年完成的维吉尼亚级潜水艇的设计,通过CFD技术的应用, 5年就顺利完成;而预计需要11年完成的B-2轰炸机的飞行测试,则在短短的4 年内就通过了测试。 国内在CFD技术上的应用一般,特别是在航空发动方面的使用上,起步与国 外相比较晚,力度上也相差较多。 3、CFD技术的应用 目前在航空发动机的实际应用中是最广泛的一款CFD商业软件是ANSYS旗下 的商业软件FLUENT,其不仅容易使用,而且其准确性及行业的广泛性都是其它商业软件所不能比拟的。CFD软件的使用已经遍及了航空发动机的各个部分的研究,接下来本文通过对其它文献的分析逐一介绍CFD在航空发动机中的使用。 3.1 CFD技术在压缩机、涡轮方面的应用 气动稳定性的设计是当代航空发动机发展研制过程中的重要技术问题之一。 在航空发动机中,对气流最敏感的部件是风扇、压气机和涡轮。在以上3个部件中,CFD的主要应用集中在对压气机和涡轮效率分析上,多级压气机/涡轮最主要 的气动问题就是各级流动是否匹配,总的效率是否达到设计要求。在涡轮方面,CFD不仅可以计算涡轮效率,而且对涡轮叶片的冷却效果分析有着重要的应用。

传热模拟CFD 总结

CFD总结一 CFD是英文computational Fluid Dynamics(计算流体力学)的简称。它是伴随着计算机技术和数值计算技术的发展而发展的。简单地说,CFD相当于虚拟的在计算机内做实验,用它模拟仿真实际流体的流动情况。而其基本的原理是数值求解控制流体的微分方程,得出流体流动的流场在连续区域上的离散分布,从而近似模拟流体流动的情况。即CFD=流体力学+热学+数值分析+计算机科学。 流体力学就不用多说了,很多专业都要用到,主要的概念有层流和湍流,牛顿流体和非牛顿流体等等。热学包括热力学和传热学。数值分析就是如何用计算机解人工很难完成的计算,如何处理无解析解得方程。计算机科学主要是计算机语言,如c、fortran)还包括一些图形处理技术,如在后处理,为了使用户对结论有一个很直观的认识,就需要若干图表。以下就对经常在CFD使用的软件做简单的介绍。 一、CFD的结构: 1、提出问题——流动性质(内流、外流;层流、湍流;单相流、多项流;可压、不可压……),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 2、分析问题——建模——N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 3、解决问题——差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 4、成果说明——形成文字,提交报告,赚取应得的回报。 二、CFD实现过程: (一)建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下 AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: 1、CATIA: 航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! 2、UG: 软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现在关键是看市场了。 3、Solidworks: Solidworks讲的是实用主义,中端CAD软件它功能最强,Solidedge功能是不比它差,但是Solidworks的合作伙伴可能是SE的十几倍,接口也比SE多很多,相比之下Solidworks是最佳选择。Autodesk Inventor也只能算是中端软件,目前说来,我是处于观望态度,看发展再决定。总之,Solidworks目前的发展如日中天,合作伙伴多如牛毛。用起来极其顺手。这里极力向大家推荐的是ICEM-CFD DCI FOR Solidworks!有了这个东西画个全机网格也很容易了。

基于CFD的内压式MBR污水处理过程的模拟与仿真

International Journal of Mechanics Research 力学研究, 2019, 8(2), 118-125 Published Online June 2019 in Hans. https://www.doczj.com/doc/1c17748129.html,/journal/ijm https://https://www.doczj.com/doc/1c17748129.html,/10.12677/ijm.2019.82014 Simulation and Simulation of Internal Pressure MBR Wastewater Treatment Process Based on CFD Xuefei Dai, Chunqing Li, Ming Ma School of Computer Science and Software Technology, Tianjin Polytechnic University, Tianjin Received: May 16th, 2019; accepted: Jun. 4th, 2019; published: Jun. 11th, 2019 Abstract MBR (membrane bioreactor) is an emerging high-efficiency water treatment technology in recent years. Its working principle is to use the membrane separation equipment to intercept the acti-vated sludge and macromolecular organic matter in the sewage. The essence of this process is solid-liquid separation. To study the wastewater treatment process of MBR, we simulated the process using CFD-related software. First, the membrane module portion of the internal pressure MBR is selected for modeling and meshing. Then, we use the Euler multiphase flow model to set the fluid in the membrane tube as water and suspended particles. The model was solved by FLUENT calculation, and it was found that after 500 iterations, the residual curve converges at about 17 times. Finally, the calculation results were imported into the post-processing software for visualization. It was observed that the pressure distribution and water flow direction of the membrane module were consistent with the actual situation. At the same time, the actual data of a sewage treatment plant was used for calculation and verification, which proved that the model is reliable and effective. Keywords CFD, MBR, Euler Multiphase Flow Model 基于CFD的内压式MBR污水处理过程的 模拟与仿真 戴雪飞,李春青,马明 天津工业大学计算机科学与软件学院,天津

相关主题
文本预览
相关文档 最新文档