当前位置:文档之家› 导数极限知识总结

导数极限知识总结

导数极限知识总结
导数极限知识总结

导数极限知识总结——仅作了解切忌深究

一.洛必达法则是什么(鄙人觉得高中数学神器)

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

在导数问题的3)问中通常会出现形似

的式子,而一般会出现求其导数,极值,甚至是某一点极限的问题,洛必达法则就是解决这一类而且不能用普通导数解决的问题。

引入:试求

试求 x

x x

x x sin sin lim

+-∞→

显而易见,这两个极限在以往的算法中一个是

式,一个则是∞

,无法求导,这时就需要用到高端大气上

档次的洛必达法则了。 1.使用条件

定理1 若函数)(x f 与函数)(x g 满足下列条件: (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)0)(lim 0

=+→x f a x 0)(lim 0

=+→x g a x

(3)A x g x f a x =+→)(')('lim 0

则A x g x f x g x f a x a x ==+→+→)

(')

('lim )()(lim 00(包括A 为无穷大的情形)

定理2 若函数)(x f 和)(x g 满足下列条件 (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)∞=+→)(lim 0

x f a x ∞=+→)(lim 0

x g a x

(3)

A x g x f a x =+→)(')('lim

则A x g x f x g x f a x a x ==+→+→)

(')

('lim )()(lim 00(包括A 为无穷大的情形)

此外法则所述极限过程对下述六类极限过程均适用:

-∞→+∞→∞→→→→-

+

x x x x x x x x x ,,,,,000。

简而言之,当满足

或 ∞

∞的不定式时,A x g x f x g x f a x a x ==+→+→)

(')('lim )()

(lim

0000

PS :一次求导不行仍未不定式,则多次求导 于是上面的两个式子可以这样解

例一.

=

=

=

例二.1)sin sin (lim cos 1cos 1lim sin sin lim

-=-=+-=+-∞→∞→∞→x

x

x x x x x x x x x (此为错解)

事实上,1sin 1sin 1lim sin sin lim =+

-

=+-∞→∞→x

x

x x

x x x x x x (正解),这里为了说明问题,才使用上面的解法,这里也可以看出,寻找最为简便的解题方法才是正确解题的关键。

2.未定式的其它类型:∞?0、∞-∞、00、0∞、∞1型极限的求解

此外,除了型型或∞

这两种待定型外,还可以通过转化,来解其他待定型。譬如.10000∞∞-∞∞?∞,,,,等待定型,由于他们都可以转化为型型或∞

00,因此,也可以用洛必达法则

来求出他们的值。

关于如何转换,例如,)(lim ,0)(lim ∞==x g x f 则)()(lim x g x f 是∞?0形式,这时,可以写为

)

(1)()(1)()()(x f x g x g x f x g x f 或=

,这就转化为型型或∞∞00了。此外对于0001∞∞

,,等不定式,可以取对数化为∞?0的形式,再运用如上方法便可转化为型型或

∞00

了,

下面对这些待定型一一举例解答以作说明[3]

。 1). ∞?0形式

,)(lim ,0)(lim ∞==x g x f 可以写为)

(1)()(1)()()(x f x g x g x f x g x f 或=

这就转化为了型型或∞∞

00 2)∞-∞形式(同理就简写了!!以下写法仅为记号)

3)0

、0∞、∞1形式

(对于此类内容切记它使用的条件,不要一味去滥用,毕竟取巧不如实干,建议过一遍手,自己推倒一遍)

练手时间: 求.cos 1lim 2

0x x x

-→(1/2)

求).0(ln lim αα

x x

x +∞→(0)

0101-?

∞-∞0000?-? . 0

=???

??∞??∞????→??????∞∞

ln 01ln 0ln 01000

取对数.

0 ∞?

?

(0)

[解析]相继应用洛必达法则n 次,得 (+∞)

(0)

(e)

( )

PS. 时

故正解为 从上面的例子可知洛必达法则的使用条件:充分不必要,下面将详细讲解洛必达失效问题

3.洛必达法则对于实值函数的失效问题

1)使用洛必达法则后,极限不存在(非∞),也就是不符合以上定理1、2的条件 即引入问题

中的

计算x x x x x sin sin lim +-∞→ 解:原式=1sin 1sin 1lim

=+

-

∞→x

x x x

x 2)使用洛必达法则后,函数出现循环,而无法求出极限,也就是不符合定理1、定理2的条件

计算)(lim 型∞

-+--∞→x x

x x x e e e e 多次求导后出现循环

)0( ln lim >+∞→n x

x

n x 求)0 ( lim >+∞→λλ为正整数,求n e x x

n

x x n x x n x e nx e x λλλ1lim lim -+∞→+∞→=x n x e

x n λλ0

!lim ?==+∞→ 0=.lim 2x x e x -+∞

→求)0(∞?).1sin 1

(lim 0

x

x x -→求)

(∞-∞.lim 0x x x +

→求)

0(0.lim 11

1

x

x x

-→求)

1(∞.cos lim x x x x +∞→求1

sin 1lim x x -=∞→原式).

sin 1(lim x x -=∞→)cos 1

1(lim x x

x +

=∞

→原式.1

=

三)使用洛必达法则后,函数越来越复杂,无法简单判断出函数是否存在极限,也就是不符合定理1、定理2的条件

计算)00(lim

10型x e

x

x -+→ 正解:令x

t 1

=,则原式=1lim 1lim 00==+→-+→t x t x e t t

e

二.无穷小代替法

应用等价无穷小量代替法化简,牢记下列等价无穷小量:当0→x 时,

,~)1ln(,~1~arcsin ,~tan ~sin x x x xe x x x x x x +-,

x x x x x ~112

~cos 12

--+-,

用此方法应要注意,加减的无穷小量不能用等价无穷小量代替,需是无穷小量比的形式,或是极限中的乘积因子为无穷小量,且替换后极限存在,才能用等价无穷小量替换,下面举个例子作为比较。

求2

22

0sin cos 1lim x x x x -→ 解1:(运用无穷小量代替法)2

121lim sin cos 1lim 4402220==-→→x x

x x x x x 解2:(利用洛必达法则)

2220sin cos 1lim x x x x -→=22320sin cos 2sin 2lim x x x x x x +→ =2

222

0sin cos sin lim x x x x x +→ =223220cos 2sin 2cos 2cos 2lim x x x x x x x x x +-→=22220sin cos 2cos lim x x x x x -→=2

1

三,夹逼定理(纯洁的人才不会想歪)

法一

法二:

四.椭圆求导不是梦之隐函数求导(摆脱窘境) 1.隐函数求导,解决一系列极值问题的大杀器。 比如

求y 极值。我再补一句:两边求导数

得到另一条

曲线然后带回去解出来即可。

PS .1、通常的隐函数,都是一个既含有x 又含有y 的方程,将整个方程对x 求导;

2、求导时,要将y 当成函数看待,也就是凡遇到含有y 的项时,要先对y 求导,然后乘以y 对x 的导数,也就是说,一定是链式求导;

3、凡有既含有x 又含有y 的项时,视函数形式,用积的的求导法、商的求导法、链式求导 法,这三个法则可解决所有的求导;

4、然后解出dy/dx ;

5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中.

再给几个例子应该就懂了: 例一:求导(x 2)+ (y 2)-(r 2)=0

并将y 2看作x 的复合函数则有即 2x+2yy'=0 ,于是得y'=-

从上例可以看到, 在等式两边逐项对自变量求导数, 即可得到一个包含y'的一次方程, 解出y'即为隐函数的导数.

例二: 求由方程y 2=2px 所确定的隐函数y=f(x)的导数.

解: 将方程两边同时对x 求导, 得2yy'=2p,解出y'即得y'=p/y

例三:求由方程y=x ln y 所确定的隐函数y=f(x)的导数.

解: 将方程两边同时对x 求导, 得y’=ln y+xy' /y 解出y'即得 .

例四 由方程x 2+xy+y 2=4确定y 是x 的函数, 求其曲线上点(2, -2)处的切线方程. 解: 将方程两边同时对x 求导, 得 2x+y+xy'+2yy'=0, 解出y'即得

. y'=-(2x+y)/(x+2y)

(把y 看作关于x 的复合函数进行求导)

五.拉格朗日中值定理——微分学应用的桥梁

1罗尔()Rolle 中值定理

如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0

'

=ζf

罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ?

AB 上至少有一点()(),C

f ζζ ,曲线在C 点的切线平行于x 轴,如图1,

注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'

=ζf . 这就是说定理的条件是充分的,但非必要的.

2拉格朗日()lagrange 中值定理(图二)

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a

b a f b f f --=

ζ'

拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ?

AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2,

从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即

()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的

一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理.

3 证明拉格朗日中值定理

证明 作辅助函数 ()()()()f b f a

F x f x x b a

-=

-

-

显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗

尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0'

'=---

=a

b a f b f f F ζζ.即 ()()()a

b a f b f f --=

ζ' 4.柯西中值定理

若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续; ⑵ ()x f '

与()x g '在开区间()b a ,内可导;

⑶ ()x f

' 与()x g '在()b a ,内不同时为零;

⑷ ()()g a g b ≠,

则在()b a ,内至少存在一点ζ,使得()()

()()a b a f b f g f --=

ζζ''.

中值定理是反映函数与导数之间联系的重要定理,对于解一些不等式有着开拓视野的作用,在一些选 择填空最后一道题中有着一定作用

六.泰勒展式——暴力美感

在实际应用中对于具有复杂形式的函数我们常常希望用较为简单的函数形式表示它,那多项式就是这种简单的形式。

首先还是先回到函数的局部线性近似这个概念。举个栗子,例如函数,当自变量有变化时,即,自变量y会变化,带入到函数里面就有

当时,上式的后两项是的高阶无穷小舍去的话上式就变成了

也就是说当自变量x足够小的时候,也就是在某点的很小的邻域内,是可以表示成的线性函数的。

线性函数计算起来,求导起来会很方便。对于一般函数,当在某点很小领域内我们也可以写成类似上面的这种自变量和因变量之间线性关系,

变化一下形式, ,

在代入上式就有,,移项有

这个式子是不是很面熟?这个就是在点邻域内舍掉高阶无穷小项以后得到的局部线性近似公式了。为了提高近似的精确度,于是把上面的一次近似多项式修正为二次多项式(利用洛必达法则和二阶导数定义,为了理解推导忽略),在进一步,二次修正为三次。。。一直下去就得到了n阶泰勒多项式了。所谓更精确的近似也就是有了更高的密切程度,这种程度是通过导数来体现的。例如只做了一

次近似的话,近似的多项式和原始函数是通过同一点的。若进

行二次近似,近似的多项式和原始函数既过同一点,而且在同一点的导数相同,也就是多项式表达的函数在点的切线也相同。类似进行三次近似的话,不仅经过同一点,切线相同,弯曲程度也相同了。一直下去。。。。这样近似相关程度多大,近似的也就越精确了。

泰勒公式可以用(无限或者有限)若干项连加式(-级数)来表示一个函数,这些相加的项由函数在某一点(或者加上在临近的一个点的次导数)的导数求得。

对于正整数n,若函数在闭区间上阶连续可导,且在上阶可导。任取

时的一个定点,则对任意成立下式:

其中,表示的n阶导数,多项式称为函数在a处的泰勒展开式,剩余的

是泰勒公式的余项,是的高阶无穷小。

常见函数的泰勒展式

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?) -f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处 可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就 说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 3.几种常见函数的导数: ①0;C '= ② ()1 ; n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

最新高中数学导数知识点归纳总结

高中导数知识点归纳 1 一、基本概念 2 1. 导数的定义: 3 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也4 引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 5 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数6 )(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 7 ()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=) ()(lim )(00000 8 2 导数的几何意义:(求函数在某点处的切线方程) 9 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的10 斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为11 ).)((0'0x x x f y y -=- 12 3.基本常见函数的导数: 13 ①0;C '=(C 为常数) ②()1;n n x nx -'= 14 ③(sin )cos x x '=; ④(cos )sin x x '=-; 15 ⑤();x x e e '= ⑥()ln x x a a a '=; 16 ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 17 二、导数的运算 18 1.导数的四则运算: 19

高二数学导数知识点总结及习题练习

高三专题复习——导数在解题中常用的有关结论(需要熟记): (1)曲线yf(x)在x x处的切线的斜率等于f(x0),切线方程为 0 y f(x)(xx)f(x) 000 (2)若可导函数yf(x)在xx0处取得极值,则f x。反之,不成立。 ()0 (3)对于可导函数f(x),不等式f(x)0(0)的解集决定函数f(x)的递增(减)区间。 (4)函数f(x)在区间I上递增(减)的充要条件是:xIf(x)0(0)恒成立 (5)函数f(x)在区间I上不单调等价于f(x)在区间I上有极值,则可等价转化为方程 fx在区间I上有实根且为非二重根。(若f(x)为二次函数且I=R,则有0)。 ()0 (6)f(x)在区间I上无极值等价于f(x)在区间在上是单调函数,进而得到f(x)0或 fx0在I上恒成立 () (7)若xI,f(x)0恒成立,则f x0;若xI,f(x)0恒成立,则 () min f(x)0 max (8)若x0I,使得f(x)0,则f(x)max0;若x0I,使得 0 f x0,则f(x)min0. () (9)设f(x)与g(x)的定义域的交集为D若xDf(x)g(x)恒成立则有f(x)g(x)0 min (10)若对x1I1、x I, 22 f(x)g(x)恒成立,则 12 f xgx. ()() minmax 若对x1I1,x2I2,使得f xgx,则 ()() 12 f xgx. ()() minmin 若对xI,x 2I2,使得 11 f xgx,则f(x)max g(x)max. ()() 12 (11)已知f(x)在区间I上的值域为A,,g(x)在区间 1 I上值域为B,2 若对x I, 11 x I,使得f(x1)= 22 g(x)成立,则AB。 2 (12)若三次函数f(x)有三个零点,则方程f(x)0有两个不等实根x1、x2,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: x ①lnxx1(x0)②ln(x+1)x(x1)③e1x x ④e1x⑤ln1(1) xx x x12 ⑥l nx11 22 x22x (x0) 考点一:导数几何意义:角度一求切线方程 1.(2014·洛阳统考)已知函数f(x)=3x+cos2x+sin2x,a=f′3 过曲线y=x 上一点P(a,b)的切线方程为() π ,f′(x)是f(x)的导函数,则4

高考复习文科导数知识点总结

导数知识点 一.考纲要求 考试内容8 要求层次 A B C 导数及其应用 导数概念及其几何意义 导数的概念 √ △ 导数的几何意义 √ 导数的运算 根据导数定义求函数y c =,y x =, 2 y x =, 1y x = 的导数 √ 导数的四则运算 √ 导数公式表◇ √ 导数在研究函数中的应 用 利用导数研究函数的单调性(其中多项式函数不超过三次) ☆ √ 函数的极值、最值(其中多项式函数不超过三次) ☆ √ 利用导数解决某些实际问题 √ 二.知识点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2.、几种常见函数的导数 ①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 3.导数的运算法则 (1)'''()u v u v ±=±. (2)''' ()uv u v uv =+. (3)'' ' 2 ()(0)u u v uv v v v -=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的 极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高中数学导数知识点归纳总结

导 数 知识要点 1. 导数(导函数的简称)的定义:即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f (x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义: 就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2''' ≠-= ?? ? ??v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+ =,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

导数知识点归纳及应用 文科辅导

导数知识点归纳及应用 一、相关概念 1.导数的概念 略 二、导数的运算 1.基本函数的导数公式: ①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '= ; ⑧()1l g log a a o x e x '=. 例1:下列求导运算正确的是 ( ) A .(x+2 11)1 x x +=' B .(log 2x)′=2ln 1x C .(3x )′=3x log 3e D . (x 2cosx)′=-2xsinx 2.导数的运算法则 法则1:(.)' ''v u v u ±=± 法则2:.)('''uv v u uv += 若C 为常数,则.)(''Cu Cu = 法则3:='?? ? ??v u 2''v uv v u -(v ≠0)。 3.复合函数求导 三、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。 相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。 例:曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)--

四、导数的应用 1.函数的单调性与导数 (1)如果' f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(

高中数学总结导数知识梳理

导数 一、导数的概念 1.导数的背景 (1)切线的斜率;(2)瞬时速度;(3)边际成本。 如一物体的运动方程是,其中的单位是米,的单位是秒,那么物体在 时的瞬时速度为_____(答:5米/秒) 2.导数的定义 如果函数在开区间(a,b)内可导,对于开区间(a,b)内的每一个,都对应着一个导数,这样在开区间(a,b)内构成一个新的函数,这一新的函数叫做 在开区间(a,b)内的导函数,记作,导函数也简称为导数。 3、求在处的导数的步骤: (1)求函数的改变量; (2)求平均变化率; (3)取极限,得导数。 4、导数的几何意义: 函数在点处的导数的几何意义,就是曲线在点处的切线的斜率,即曲线在点处的切线的斜率是,相应地切线的 方程是。 特别提醒: (1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某 点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条; (2)在求过某一点的切线方程时,要首先判断此点是在曲线上,还是不在曲线上,只 有当此点在曲线上时,此点处的切线的斜率才是。 比如:

(1)P 在曲线上移动,在点P 处的切线的倾斜角为α,则α的取值范围是 ______(答:); (2)直线是曲线的一条切线,则实数的值为_______(答:-3 或1); (3)已知函数(为常数)图像上处的切线与的夹角为,则点的横坐标为_____(答:0 或); (4)曲线在点处的切线方程是______________(答:);(5)已知函数,又导函数的图象与轴交于。①求的值;②求过点的曲线的切线方程 (答:①1;②或)。[1] 二、相关背景 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产 生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理 论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇” 中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之 弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。 归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求 即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最 小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一 个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的 研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普 勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家ㄈ牛顿和德国数学家莱布尼茨分 别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们

高考文科导数考点汇总(2020年整理).doc

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

高考文科导数考点汇总

高考导数文科考点 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

高中数学导数知识点归纳总结

导 数 主要内容 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值00()()f x x f x y x x +?-?=??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率:00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋近与一个常数A ,则 0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-; (7 )'; (8)1()ααx αx -'=(α为常数);

相关主题
文本预览
相关文档 最新文档