当前位置:文档之家› 电压测量练习题

电压测量练习题

电压测量练习题
电压测量练习题

电压测量

一、填空题

1、用一只0.5 级50V的电压表测量直流电压,产生的绝对误差≤__伏。

答案:0.25

2、用峰值电压表测量某一电压,若读数为1V,则该电压的峰值为____伏。

答案: 1.41

3、采用某电压表(正弦有效值刻度)测量峰值相等(Vp=5V)的正弦波、方波、三角波,发现读数相同,则该表为____检波方式,读数____。

答案:峰值3.53V

4、.峰值电压表的基本组成形式为________式。

答案:检波—放大

7、某数字电压表的最大计数容量为19999,通常称该表为________位数字电压表;若其最小量程为0.2V,则其分辨力为________ 。

答案:(或四位半) , 10μV

9. 四位半的DVM测量15V的稳压电源电压为15.125V,取四位有效数字时其值为。答案:15.12V

二、判断题:

2、数字电压表的固有误差由两项组成,其中仅与被测电压大小有关的误差叫读数误差,与选用量程有关的误差叫满度误差。()√

5、有效值电压表适应于非正弦波的电压测量,其电压刻度与被测电压波形无关。()×

6、双斜式DVM中,其平均特性可以抑制共模干扰影响。()√

7、双积分式DVM中变换结果与积分器积分元件RC有关,但其积分器线性不好也不会引起测量误差。()×

8、对于双积分式DVM,对输入信号积分的时间只有等于工频(50Hz)的周期时,才能抑制工频干扰。()×

9. 一台四位半的DVM,基本量程为2V,则其具有超量程能力。( ) ×

四位半的DVM 显示为19999,若基本量程为2V ,则不能再超过此值。 三、选择题:

1、交流电压的波峰因素Kp 定义为____。( C )

A:峰值/平均值 B:有效值/平均值 C:峰值/有效值 D:平均值/峰值

2、波形因素为______。( B )

A:平均值与有效值之比 B:有效值与平均值之比 C:峰值与平均值之比 D:峰值与有效值之比

5、交流电压V(t)的有效值的表达式为_____。( D )

A: ?T

dt t v T

)(1 B: ?T

dt t v T 0

2

)(1

C:

?T

dt t v T 0)(1

D: ?T

dt t v T 0

2

)(1

6、一台5位DVM ,其基本量程为10V ,则其刻度系数(即每个字代表的电压值)为_____mv/字。( B )

A:0.01 B:0.1 C:1 D:10

7、一台5位半DVM ,其基本量程为2V ,则其刻度系数(即每个字代表的电压值)为_____mV/字。( A )

A:0.01 B:0.1 C:1 D:10

9、根据dB 及dBm 的定义,当负载阻抗为____时,dB=dBm 。( D ) A:75Ω B:150Ω C:300Ω D:600Ω

10、在双斜式积分DVM 中,积分过程可简述为____。( B )

A: 对被测信号定斜率正向积分,对基准电压 定时反向积分 B: 对被测信号定时正向积分,对基准电压 定斜率反向积分 C: 对被测信号定时正向积分,对基准电压 定时反向积分 D: 对被测信号定斜率正向积分,对基准电压 定斜率反向积分

11、一台421

位DVM ,因有误差为±(0.01%读数+1字),则在2V 量程上的满度误差为

( C )。

A:±1mV B:±2mV C:±0.1mV D:±0.2mV

基本量程为10.000V 的四位斜坡电压式DVM 中,若斜坡电压的斜率为10V/40ms ,问时钟频率应为多少?当被测直流电压Ux=9.256V 时,门控时间及累计脉冲数各为多少?

★ 设一台基于单斜A/D 转换器的4位DVM ,基本量程为10V ,斜波发生器的斜率为10V/100ms ,试计算时钟信号频率。若计数值N=5123,则被测电压值是多少?P203

[解] 4位DVM 即具有4位数字显示,亦即计数器的最大值为9999。 满量程10V (即A/D 转换器允许输入的最大电压为10V ), 又,斜波发生器的斜率为10V/100ms ,则

在满量程10V 时,所需的A/D 转换时间即门控时间为100ms 。即在100ms 内计数器的脉冲计数个数为10000(最大计数值为9999)。于是,时钟信号频率为

010000

100Hz 100f k ms =

=

若计数值N=5123,则门控时间为

005123

51.23ms 100kHz N T NT f ==

==

又由斜率k=10V/100ms ,即可得被测电压为 V x =kT =10V/100ms ×51.23ms =5.123V 显然,计数值即表示了被测电压的数值,而显示的小数点位置与选用的量程有关。

双斜积分式DVM 基准电压Vr=10V ,第一次积分时间T1=100ms ,时钟频率f0=100kHz ,问:(1)该DVM 为多少位的电压表?(2)该DVM 的分辨力为多少?(3)DVM 显示出T2时间内的计数值N2=5600,问被测电压Vx=? 解: (1)

,故DVM 为四位

(2)分辨力

(3)

5-23 甲、乙两台DVM ,显示的最大值为:甲9999 ;乙19999 ;问:⑴它们各是几位的数字电压表?⑵乙的最小误差为0.2V ,其分辩力是多少?⑶工作误差为V ?=±(

n V x +%02.0),分别用2V 和20V 量程,测量的电压,求绝对误差和相对误差?

★下面给出四种数字电压表的最大计数容量 word19 ⑴ 9999 ; ⑵ 19999 ; ⑶ 5999; ⑷19999 。

试说明它们分别是几位的数字电压表?其中第⑵种的最小误差为0.2V ,问它的分辩力是多少?

解(1)4位;(2)214

位;(3)433 位(也可以说4位);(4)213

位位,

其中第二种的最小量程为0.2V ,它的分辨率是10μV 。

★★数字电压表的固有误差ΔU =±(0.001%读数+0.002%满度),求用2V 量程测量1.8V 和0.18V 电压时产生的绝对误差和相对误差。 解:用2V 量程档,测1.8V 电压的误差为 ΔV =±(0.001%Vx +0.002%Vm )

=±(0.001%×1.8+0.002%×2.0)=±5.8×10-5V

相对误差=6

102.328.158-?=V V

μ

用2V 量程档,测0.18V 电压的误差为 ΔV =±(0.001%Vx +0.002%Vm )

=±(0.001%×0.18+0.002%×2.0)=±4.18×10-5V

相对误差

6102.2318.08.41-?±=±=?=

V

V

V V x μγ

[例] 一台3位半的DVM 给出的精度为:±(0.1%读数+1字),如用该DVM 的0~20V DC 的基本量程分别测量5.00V 和15.00V 的电源电压,试计算DVM 测量的固有误差。 [解] 首先,计算出“1字”对应的满度误差。 在0~20V 量程上,3位半的DVM 对应的刻度系数为0.01V/字,因而满度误差“1字”相当于0.01V 。

当Vx=5.00V 时,固有误差和相对误差分别为:

ΔVx =±(0.1%×5.00V +0.01V)=±0.015V

0.015

100%100%0.3%5.00x x x V V γ?±=

?=?=±

当Vx=15.00V 时,固有误差和相对误差分别为:

ΔVx =±(0.1%×15.00V +0.01V)=±0.025V

0.025

100%100%0.17%15.00x x x V V γ?±=

?=?=±

可见,被测电压愈接近满度电压,测量的(相对)误差愈小(这也是在使用DVM 时应

注意的)。

用一只四位DVM 的5V 量程分别测量5V 和0.1V 电压,已知该仪表的准确度为±0.01Ux ±1个字,求由仪表的固有误差引起的测量误差的大小。 ⑴ 测量5V 电压时的误差

因为该仪表是四位的,用5V 量程时,±1个字相当于±0.001V ,所以绝对误差 ΔU =±0.01%×5±1个字

=±0.0005±0.001=±0.0015(V )

示值相对误差为

%03.0%1005

0015

.0%100±=?±=??=

x U U U γ

⑵ 测量0.1V 电压时的误差

绝对误差为 ΔU =±0.01%×0.1±1个字

=±0.0001±0.001≈±0.001(V )

示值相对误差为

%1%1001

.0001.0%100±=?±=??=

x U U γ

可见当不在接近满量程显示时,误差是很大的,为此,当测量小电压时,应当用较小的量程。又可看出“±1个字”的误差对测量结果的影响也是较大的,不可忽视。 试述电压测量的基本原理、方法和分类。

被测电压按对象可以分为直流电压和交流电压,按技术可以分为模拟测量和数字测量。测量方法不同,所用的测量仪器有所不同。 ⑴. 交流电压的模拟测量方法

方法:交流电压(有效值、峰值和平均值)——〉转换为直流电流——〉驱动表头——〉指示。

模拟式电压表是指针式的,用磁电式电流表作为指示器,并在电流表表盘上以电压(或dB )刻度。根据功能分为:直流电压表 交流电压表、脉冲电压表和多用途电压表;根据使用频率范围分为:超低频电压表,低频(音频)电压表、高频电压表超高频电压表和选频电压表。 根据测量目的的不同,可以选用不同特性的检波器,有峰值检波、平均值检波与有效值检波三种。 ——有效值、峰值和平均值电压表,电平表等。 ⑵.数字化直流电压测量方法

数字式电压表首先将模拟量通过模/数(A/D )变换器变成数字量,然后用电子计数器计数,并以十进制数字显示被测电压值。

模拟直流电压→A/D 转换器→数字量→数字显示(直观)。 ——数字电压表(DVM ),数字多用表(DMM )。 ⑶.交流电压的数字化测量

交流电压(有效值、峰值和平均值)→直流电压→A/D 转换器→数字量→数字显示。 ——DVM (DMM )的扩展功能。 ⑷.基于采样的交流电压测量方法

交流电压→A/D 转换器→瞬时采样值u (k) →计算。 如根据∑=≈

N k k u N V 1

2

)(1, N 为u (t)的一个周期内的采样点数可计算得到有效值。 ⑸.示波测量方法

交流电压→模拟或数字示波器→显示波形→读出结果。

5. 表征交流电压的基本参量有那些?简述各参量的意义。

交流电压可以用峰值、平均值、有效值、波形系数及波峰系数来表征。

⑴峰值——以零电平为参考的最大电压幅值(用Vp 表示)。以直流分量为参考的最大电压幅值则称为振幅,通常用U m 表示 ⑵平均值——交流电压测量中,平均值通常指经过全波或半波整流后的波形(一般若无特指,

均为全波整流),数学上定义为: ?=T

dt t u T U 0

)(1, T 为u (t)的周期。相当于交流电压u (t)

的直流分量。

对理想的正弦交流电压u (t)= V p sin(ωt),若ω=2π/T

[]A A t T A tdt A T

U T T o

637.02cos 2sin 1

22

/02

/===

?

=?π

ωωω

⑶有效值——交流电压u (t)在一个周期T 内,通过某纯电阻负载R 所产生的热量,与一个直流电压V 在同一负载上产生的热量相等时,则该直流电压V 的数值就表示了交流电压u (t)的有效值。

对理想的正弦交流电压u (t)= V p sin(ωt),若ω=2π/T 21

~=

U V p =0.707 V p ⑷波峰因数——峰值与有效值的比值,用Kp 表示。有效值

峰值

=

=

V

V K p P

对理想的正弦交流电压u (t)= V p sin(ωt),若ω=2π/T ,有 22

/==

p p p V V K ≈1.414

⑸波形因数——有效值与平均值的比值,用K F 表示。平均值

有效值==V V K F 对理想的正弦交流电压u (t)= V p sin(ωt),若ω=2π/T ,有

11.12

2)/2()2/1(V V ≈===

ππP P F V V K 6. 如何由峰值电压表和平均值电压表的读数换算得到被测电压的有效值。

峰值电压表的增益可以做得很高,而且噪声和零点漂移都很小,灵敏度可高达几十μV ,故常称超高频毫伏表。峰值响应,即:u (t)→ 峰值检波→ 放大→ 驱动表头

原理:由二极管峰值检波电路完成。通过二极管正向快速充电达到输入电压的峰值,而二极管反向截止时“保持”该峰值。有二极管串联和并联两种形式。从波形图可以看出,峰值检波电路的输出存在较小的波动,其平均值略小于实际峰值。 ●表头刻度按(纯)正弦波有效值刻度。

因此:当输入u (t)为正弦波时,读数α即为u (t)的有效值V (而不是该纯正弦波的峰值Vp )。

对于非正弦波的任意波形,读数α没有直接意义(既不等于其峰值Vp 也不等于其有

效值V )。但可由读数α换算出峰值和有效值。 ㈠ 刻度特性

峰值电压表是按正弦有效值来刻度的,即

~

~p p K V V =

式中 α――电压表读数; V ~――正弦电压有效值; K P ――正弦波的波峰因数。

●由读数α换算出峰值和有效值的换算步骤如下:

第一步,把读数α想象为有效值等于α的纯正弦波输入时的读数,即V ~ =α 第二步,将V~转换为该纯正弦波的峰值,即V p ~ =2V ~=2α 第三步,假设峰值等于V p ~的被测波形(任意波)输入 ,即 V p 任意 =V p ~ =2α

注:“对于峰值电压表,(任意波形的)峰值相等,则读数相等”。 第四步,由V p 任意,再根据该波形的波峰因数(查表可得),其有效值

p p p V V K K =

=

任意任意任意

任意

(5-17a)

上述过程可统一推导如下:

~~~~,p p p p p p p p p V V K V K V k k K K K K K α=

=

=

==

=

任意任意任意

任意

任意

任意

任意

(5-17b)

该式表明:对任意波形,欲从读数α得到有效值,需将α乘以因子k 。(若式中的任意波为正弦波,则k=1,读数α即为正弦波的有效值)。

综上所述,对于任意波形而言,峰值电压表的读数α没有直接意义,由读数α到峰值和有效值需进行换算,换算关系归纳如下:

1.411.41p p K αα??

==????==??

??p (任意波)峰值V (任意波)有效值V

式中,α为峰值电压表读数,K p 为波峰因数。 若将读数α直接作为有效值,产生的误差为

1

p

K K K αγ--=

=

=

上式称为峰值电压表的波形误差,它反映了读数值与实际有效值之间的差异。

[例] 用具有正弦有效值刻度的峰值电压表测量一个方波电压,读数为1.0V ,问如何从该读数得到方波电压的有效值?

[解] 根据上述峰值电压表的刻度特性,由读数α=1.0V , 第一步,假设电压表有一正弦波输入,其有效值=1.0V ; 第二步,该正弦波的峰值=1.4V ;

第三步,将方波电压引入电压表输入,其峰值Vp=1.4V ;

第四步,查表可知,方波的波峰因数Kp=1,则该方波的有效值为: V=Vp/Kp=1.4V 。

波形误差为:

1 1.4

100%29%1.4γ-=

?≈-

★★平均值检波 ——放大-检波式电子电压表,即先放大后检波,在均值电压表中,检波对被测电平的平均值产生响应,一般都采用二极管全波或桥式整流作为检波器,一般所谓“宽频毫伏表”基本上属于这种类型。典型的频率范围为20Hz -10MHz ,故又视为“视频毫伏表”。 由二极管桥式整流(全波整流和半波整流)电路完成。整流电路输出直流电流I 0,其平均值与被测输入电压u (t)的平均值成正比(与u (t)的波形无关)。于是,I 0的平均值0I 与u (t)的平均值)(t u 成正比。

刻度特性和波形误差:均值电压表的表头偏转正比于被测电压的平均值

平均值在数学上定义为 ?=T

dt t v T V 0

)(1

对于纯粹的交流电压来说,比如正弦波电压,V =0。?=T

dt t v T V 0

)(1

均值电压表虽然是均值响应,但是,仍以正弦有效值刻度。定义一个信号电压的有效值与平均值之比为波形因数,即

K F =

U

U 由读数α换算出均值和有效值的换算步骤如下:

第一步,把读数α想象为有效值等于α的纯正弦波输入时的读数,即V ~ =α 第二步,由V ~ 计算该纯正弦波均值

~~~0.91.11F V V V K α

απ=

===~

第三步,假设均值等于~V 的被测波形(任意波)输入,即 V 任意

=~V =0.9α

注:“对于均值电压表,(任意波形的)均值相等,则读数相等”。 第四步,由V

任意

,再根据该波形的波形因数(查表可得),其有效值

0.9F F V K V K α

==?任意任意任意任意 (5-20a)

上述过程可统一推导如下:

~

~~~,0.91.11

F F F F F F F F K K V V K V K V K k k K K K α=======任意任意任意任意任意任意任意

任意

上式表明,对任意波形,欲从均值电压表读数α得到有效值,需将α乘以因子k 。(若式中的任意波为正弦波,则k=1,读数α即为正弦波的有效值)。

综上所述,对于任意波形而言,均值电压表的读数α没有直接意义,由读数α到峰值和有效值需进行换算,换算关系归纳如下:

0.90.9F K αα??=??

??=?????(任意波)均值V (任意波)有效值V (5-21)

式中,α为均值电压表读数,K F 为波形因数。

若将读数α直接作为有效值,产生的误差为(均值电压表的波形误差)

0.910.9 1.11

1

0.90.9F F F F F

K K K K K ααγα-?-?=

==-??

[例] 用具有正弦有效值刻度的均值电压表测量一个方波电压,读数为1.0V ,问该方波电压的有效值为多少?

[解] 根据上述均值电压表的刻度特性,由读数α=1.0V , 第一步,假设电压表有一正弦波输入,其有效值~V α

==1.0V ;

第二步,该正弦波的均值~V =0.9α=0.9V ;

第三步,将方波电压引入电压表输入,其均值

~V V ==0.9V ;

第四步,查表可知,方波的波形因数

F K 方波

=1,则该方波的有效值为:

F V K V ==

方波0.9V 。

波形误差为:

10.9

100%11%0.9γ-=

?≈

8. 简述双积分式AD 转换原理及特点。

基本原理:通过两次积分过程(“对被测电压的定时积分和对参考电压的定值积分”)的比较,得到被测电压值。包括积分器、过零比较器、计数器及逻辑控制电路。

★双积分式ADC 特点:

一次测量包括3个连续过程,所需时间为T 0+ T 1+ T 2,其中,T 0、T 1是固定的,T 2则与被测电压V x 有关,V x 愈大T 2愈大。一般转换时间在几十ms~几百ms ,(转换速度为几次/秒~几十次/秒),其速度是较低的,常用于高精度慢速测量的场合。

1)积分器的R 、C 元件对A/D 转换结果不会产生影响,因而对元件参数的精度和稳定性要求不高。

2)参考电压V r 的精度和稳定性对A/D 转换结果有影响,一般需采用精密基准电压源。

例如,一个16bit 的A/D 转换器,其分辨率1LSB=1/216=1/65536≈15×10-6

,那么,要求基准电压源的稳定性(主要为温度漂移)优于15ppm (即百万分之15)。

3)比较器要求具有较高的电压分辨力(灵敏度)和时间分辨力(响应带宽)。

如一个6位的A/D 转换器,若满度时积分器输出电压为10V ,则ADC 的1LSB=10V/106

=10uV ,则要求比较器的灵敏度优于10uV 。响应带宽则决定了比较器及时响应积分器输出信号快速(斜率较陡峭)过零时的能力。 4)积分器响应的是输入电压的平均值,因而具有较好的抗干扰能力。如输入电压v x = V x + v sm ,则T 1阶段结束时积分器的输出为

2

1111()t sm om x sm x t T T V V v dt V v RC RC RC =-

+=--?

DVM 的最大干扰来自于电网50Hz 工频电压(周期为20ms ),因此,只要选择T 1时间为20ms

的整倍数,则干扰信号v sm 的平均值为零。

若采用有正弦波有效值刻度的平均电压值表分别测量三种波形(正弦波、方波、三角波)交流电压进行测量,指示值均为1V ,问各种波形有效值分别是多少?(波形因数分别为正弦波1.11,方波1,三角波1.15)

图5-15 双积分式ADC 的原理框图

设上题中,若采用有正弦波有效值刻度的峰值电压值表,三种波形(正弦波、方波、三角波)的有效值分别是多少?(波峰因数分别为正弦波1.414,方波1,三角波1.73)

试述电压测量的基本原理、方法和分类。

被测电压按对象可以分为直流电压和交流电压,按技术可以分为模拟测量和数字测量。测量方法不同,所用的测量仪器有所不同。

基本量程为10.000V 的四位斜坡电压式DVM 中,若斜坡电压的斜率为10V/40ms ,问时钟频率应为多少?当被测直流电压Ux=9.256V 时,门控时间及累计脉冲数各为多少?

基本量程为10.000V 的四位斜坡电压式DVM 中,若斜坡电压的斜率为10V/40ms ,问时钟频率应为多少?当被测直流电压Vx =9.256V 时,门控时间及累计脉冲数各为多少?

答案:时钟脉冲频率为:

kHz ms

f 250401000==

个脉冲

若被测电压V x =9.256V 门控时间 ms ms V

T 024.374010256

.9=?=

累计脉冲数N =37.024ms ×250kHz=9256个脉冲

★ 设一台基于单斜A/D 转换器的4位DVM ,基本量程为10V ,斜波发生器的斜率为10V/100ms ,试计算时钟信号频率。若计数值N=5123,则被测电压值是多少?P203

若斜坡电压的斜率为10V/50ms ,要求4位数字读出,则时钟脉冲频率应为

kHz ms

f 2005010000

==

若被测电压V x =9.163V 门控时间T =

ms ms V

V

815.455010163.9= 累计脉冲数=45.85ms ×200kHz=9163个脉冲通过确定小数点位置,可显示出9.163V 。

用斜坡电压技术所能达到的测量准确度,取决于斜坡电压的线性及其绝对斜率稳定性,以及时间测量的准确度。此外,比较器的稳定性也是影响测量误差的重要因素。

双斜积分式DVM 基准电压Vr=10V ,第一次积分时间T1=100ms ,时钟频率f0=100kHz ,问:(1)该DVM 为多少位的电压表?(2)该DVM 的分辨力为多少?(3)DVM 显示出T2时间内的计数值N2=5600,问被测电压Vx=?

双斜积分式DVM 基准电压Vr=10V ,第一次积分时间T1=100ms ,时钟频率f0=100kHz ,问:(1)该DVM 为多少位的电压表?(2)该DVM 的分辨力为多少?(3)DVM 显示出T2时间内的计数值N2=5600,问被测电压Vx=?

解:(1)

,故DVM 为四位

(2)分辨力

(3)

甲、乙两台DVM ,显示的最大值为:甲9999 ;乙19999 ;问:⑴它们各是几位的数字电压表?⑵乙的最小误差为0.2V ,其分辩力是多少?⑶工作误差为V ?=±(字

n V x +%02`0),

分别用2V 和20V 量程,测量的电压,求绝对误差和相对误差? 5-24、一台DVM ,准确度为

,温度系数为,在室温为

28℃时用2V 量程档分别测量2V 和0.4V 两个电压,试求此时的示值相对误差。

[例] 一台3位半的DVM 给出的精度为:±(0.1%读数+1字),如用该DVM 的0~20V DC 的基本量程分别测量5.00V 和15.00V 的电源电压,试计算DVM 测量的固有误差。 [解] 首先,计算出“1字”对应的满度误差。 在0~20V 量程上,3位半的DVM 对应的刻度系数为0.01V/字,因而满度误差“1字”相当于0.01V 。 当Vx=5.00V 时,固有误差和相对误差分别为: ΔVx =±(0.1%×5.00V +0.01V)=±0.015V

0.015

100%100%0.3%5.00

x x x V V γ?±=

?=?=±

当Vx=15.00V 时,固有误差和相对误差分别为:

ΔVx =±(0.1%×15.00V +0.01V)=±0.025V

0.025

100%100%0.17%15.00

x x x V V γ?±=

?=?=±

可见,被测电压愈接近满度电压,测量的(相对)误差愈小(这也是在使用DVM 时应

注意的)。

[例] 一台DVM ,其输入等效电阻R i =1000M Ω, 输入零电流I 0=1nA ,被测信号源等效内阻R s =2k Ω,分别测量Vx=2V 和Vx=0.2V 两个电压,计算由R i 和I 0引入的附加误差极限值。 [解] 为计算由R i 和I 0引入的附加误差极限值,可将分别由R i 和I 0引入的附加误差进行代数和合成。即

(

)

01i

R I

s

i x I R R V γγγ??=±+=±+ ???

将R i =1000 M Ω, I 0=1nA ,Rs=2k Ω代入上式,计算得: 当Vx=2V 时,

936

6

11102103101000102γ--???=±+??=±? ????

当Vx=0.2V 时,

935

6

1110210 1.2101000100.2γ--???=±+??=±? ????

可见,当测量小电压时I 0的影响较大。

相关主题
文本预览
相关文档 最新文档