当前位置:文档之家› 高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义---排列组合与概率
高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率

一、基础知识

1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)=

)!

(!

m n n -,其中m,n ∈N,m ≤n,

注:一般地0n A =1,0!=1,n n A =n!。

4.N 个不同元素的圆周排列数为n

A n

n =(n-1)!。

5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示:

.)!

(!!

!)1()1(m n m n m m n n n C m n -=+--=

6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n

m n m n C C C ;(3)k

n k n C C k

n =--11;(4)n n

k k

n n n

n n C C C C 20

10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。

7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。

[证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。

推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r

r n C -+

推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+

8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---222110.其中第r+1项T r+1=r

n r r n r n C b a C ,-叫二项式系数。

9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。在大量重复进行同一

试验时,事件A 发生的频率n

m

总是接近于某个常数,在它附近摆动,这个常数叫做事件A 发

生的概率,记作p(A),0≤p(A)≤1.

10.等可能事件的概率,如果一次试验中共有n 种等可能出现的结果,其中事件A 包含的结果

有m 种,那么事件A 的概率为p(A)=.n

m

11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。如果事件A 1,A 2,…,A n 彼此互斥,那么A 1,A 2,…,A n 中至少有一个发生的概率为 p(A 1+A 2+…+A n )= p(A 1)+p(A 2)+…+p(A n ).

12.对立事件:事件A ,B 为互斥事件,且必有一个发生,则A ,B 叫对立事件,记A 的对立事件为A 。由定义知p(A)+p(A )=1.

13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。即p(A ?B)=p(A)?p(B).若事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率为p(A 1?A 2? … ?A n )=p(A 1)?p(A 2)? … ?p(A n ).

15.独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的.

16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为p n (k)=k n C ?p k (1-p)n-k .

17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。

一般地,设离散型随机变量ξ可能取的值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i=1,2,…)的概

1122n n 平均值、均值、简称期望,称D ξ=(x 1-E ξ)2?p 1+(x 2-E ξ)2?p 2+…+(x n -E ξ)2p n +…为ξ的均方差,简称方差。ξD 叫随机变量ξ的标准差。

18.二项分布:如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中,这

个事件恰好发生k 次的概率为p(ξ=k)=k n k k

n

q p C -, ξ的分布列为

此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则E ξ=np,D ξ=npq,以上q=1-p.

19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p ,则p(ξ=k)=q k-1p(k=1,2,…),ξ的分布服从几何分布,E ξ=

p 1,D ξ=2p

q

(q=1-p). 二、方法与例题

1.乘法原理。

例1 有2n 个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式? [解] 将整个结对过程分n 步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n 步恰好结n 对,由乘法原理,不同的结对方式有 (2n-1)×(2n-3)×…×3×1=

.)

!(2)!

2(n n n

? 2.加法原理。

例2 图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?

[解] 断路共分4类:1)一个电阻断路,有1种可能,只能是R 4;2)有2个电阻断路,有2

4C -1=5种可能;3)3个电阻断路,有34C =4种;4)有4个电阻断路,有1种。从而一共有1+5+4+1=11

种可能。 3.插空法。

例3 10个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?

[解] 先将6个演唱节目任意排成一列有66A 种排法,再从演唱节目之间和前后一共7个位置

中选出4个安排舞蹈有47A 种方法,故共有476

6

A A ?=604800种方式。 4.映射法。

例4 如果从1,2,…,14中,按从小到大的顺序取出a 1,a 2,a 3使同时满足:a 2-a 1≥3,a 3-a 2≥3,那么所有符合要求的不同取法有多少种?

[解] 设S={1,2,…,14},'S ={1,2,…,10};T={(a 1,a 2,a 3)| a 1,a 2,a 3∈S,a 2-a 1≥3,a 3-a 2

≥3},'T ={('

3'2'1,,a a a )∈'3'2'1'3'2'1,',,|'a a a S a a a S <<∈},若'),,('3'2

'1T a a a ∈,令4,2,'

33'22'11+=+==a a a a a a ,则(a 1,a 2,a 3)∈T,这样就建立了从'T 到T 的映射,它显然是单射,其次若(a 1,a 2,a 3)∈T,令4,2,'33'2

2'11-=-==a a a a a a ,则'),,('

3'2'1T a a a ∈,从而此映射也是满射,因此是一一映射,所以|T|=3

10|'|C T ==120,所以不同取法有120种。

5.贡献法。

例5 已知集合A={1,2,3,…,10},求A 的所有非空子集的元素个数之和。

[解] 设所求的和为x ,因为A 的每个元素a ,含a 的A 的子集有29个,所以a 对x 的贡献为29,又|A|=10。所以x=10×29.

[另解] A 的k 元子集共有k

C 10个,k=1,2,…,10,因此,A 的子集的元素个数之和为=+++=+++)(101029919091010210110C C C C C C 10×29。

6.容斥原理。

例6 由数字1,2,3组成n 位数(n ≥3),且在n 位数中,1,2,3每一个至少出现1次,问:这样的n 位数有多少个?

[解] 用I 表示由1,2,3组成的n 位数集合,则|I|=3n ,用A 1,A 2,A 3分别表示不含1,不

含2,不含3的由1,2,3组成的n 位数的集合,则|A 1|=|A 2|=|A 3|=2n

,|A 1 A 2|=|A 2 A 3|=|A 1 A 3|=1。|A 1 A 2 A 3|=0。

所以由容斥原理|A 1 A 2 A 3|=||||||3213

1

A A A A A A j

i j i i i +-∑∑≠==3×2n -3.所以满足条件

的n 位数有|I|-|A 1 A 2 A 3|=3n -3×2n +3个。

7.递推方法。

例7 用1,2,3三个数字来构造n 位数,但不允许有两个紧挨着的1出现在n 位数中,问:能构造出多少个这样的n 位数?

[解] 设能构造a n 个符合要求的n 位数,则a 1=3,由乘法原理知a 2=3×3-1=8.当n ≥3时:1)如果n 位数的第一个数字是2或3,那么这样的n 位数有2a n-1;2)如果n 位数的第一个数字是1,那么第二位只能是2或3,这样的n 位数有2a n-2,所以a n =2(a n-1+a n-2)(n ≥3).这里数列{a n }的特征方程为x 2=2x+2,它的两根为x 1=1+3,x 2=1-3,故a n =c 1(1+3)n + c 2(1+3)n ,由a 1=3,a 2=8得3

223,3

23221-=

+=c c ,所以].)31()31[(3

4122++--+=

n n n a

8.算两次。

例8 m,n,r ∈N +,证明:.0

22110m r n r m n r m

n r m n r C C C C C C C C C m n ++++=--+ ① [证明] 从n 位太太与m 位先生中选出r 位的方法有r m n C +种;另一方面,从这n+m 人中选出k 位太太与r-k 位先生的方法有k

r m k n C C -种,k=0,1,…,r 。所以从这n+m 人中选出r 位的方法有0

110m r n r m n r m n C C C C C C +++- 种。综合两个方面,即得①式。

9.母函数。

例9 一副三色牌共有32张,红、黄、蓝各10张,编号为1,2,…,10,另有大、小王各一张,编号均为0。从这副牌中任取若干张牌,按如下规则计算分值:每张编号为k 的牌计为2k 分,若它们的分值之和为2004,则称这些牌为一个“好牌”组,求好牌组的个数。

[解] 对于n ∈{1,2,…,2004},用a n 表示分值之和为n 的牌组的数目,则a n 等于函数f(x)=(1+02x )2?(1+12x )3????…?(1+10

2x )3的展开式中x n 的系数(约定|x|<1),由于

f(x)=x +11[ (1+02x )(1+12x )?…?(1+102x )]3=)1()1)(1(111

23x x x --+3=)1()1)(1(111

22

2x x x ---3。 而0≤2004<211,所以a n 等于

2

2)

1)(1(1x x --的展开式中x n

的系数, 又由于

22)1)(1(1x x --=211x -?2

)1(1x -=(1+x 2+x 4+…+x 2k +…)[1+2x+3x 2+…+(2k+1)x 2k

+…],

所以x 2k

在展开式中的系数为a 2k =1+3+5++(2k+1)=(k+1)2

,k=1,2,…,从而,所求的“好牌”组的个数为a 2004=10032=1006009. 10.组合数k n C 的性质。

例10 证明:k

m

C 1

2-是奇数(k ≥1). [证明] k m C

1

2-=

?-??-?-=???+----k

k

k k m m m m m m 222211221)112()22)(12( 令i=i t 2?p i (1≤i ≤k),p i 为奇数,则i i t m i

t i t m p p p p m i i i i i -=-=--22222,它的分子、分母均为奇数,因k

m C 12-是整数,所以它只能是若干奇数的积,即为奇数。

例11 对n ≥2,证明:.422n n n n C <<

[证明] 1)当n=2时,22<24C =6<42;2)假设n=k 时,有2k

.1

)12(2!)!1()!12(2)!1()!1()]!1(2[21)1(2k

k k k C k k k k k k k k C ?++=?++?=+++=

++

又1

)12(22++<

k k <4,所以2k+1<1

21)1(22442+++<<

例12 若n ∈N, n ≥2,求证:.3112

?

??+

n

[证明] 首先,2111112210>?++?+?+=??? ??+n n

n n n n n

n C n C n C C n 其次因为

)2(111)1(1!1!)1()1(1≥--=-≤

k k

n ,所以=??

?

??+n

n 11 2+.3131113121211121122

<-=--++-+-+

n n n n C n C n

n

n

n 得证。 例13 证明:).(1

10

n m h C C C m n h k n

k h m k n ≤≤=?++=--∑

[证明] 首先,对于每个确定的k ,等式左边的每一项都是两个组合数的乘积,其中h m k n C --是

(1+x)n-k 的展开式中x m-h 的系数。h k C 是(1+y)k 的展开式中y k 的系数。从而h m k n C --?h

k

C 就是(1+x)n-k ?(1+y)k 的展开式中x m-h y h 的系数。 于是,h k

n

k h

m k

n C C

?∑=--0就是∑=-++n

k k k n y x 0

)1()1(展开式中x m-h

y h

的系数。

另一方面,∑=-++n

k k

k

n y x 0

)1()

1(=

y

x y C x C

y x y x n k k

k n n k k

k n n n --=+-++-+∑∑+=++=+++1

11

1

1

1)

1()1()1()1(=

∑+=+1

01

n k k

k n x C ?y x y x k k --=∑+=+10

1n k k n C (x k-1+x k-2y+…+y k-1),上式中,x m-h y h 项的系数恰为1

1++m n C 。

所以.1

10++=--=?∑m n n

k h k h m k n C C C

12.概率问题的解法。

例14 如果某批产品中有a 件次品和b 件正品,采用有放回的抽样方式从中抽取n 件产品,问:恰好有k 件是次品的概率是多少?

[解] 把k 件产品进行编号,有放回抽n 次,把可能的重复排列作为基本事件,总数为(a+b)n (即所有的可能结果)。设事件A 表示取出的n 件产品中恰好有k 件是次品,则事件A 所包

含的基本事件总数为k n

C ?a k b n-k

,故所求的概率为p(A)=.)

(n

k n k k n b a b

a C +- 例15 将一枚硬币掷5次,正面朝上恰好一次的概率不为0,而且与正面朝上恰好两次的概率相同,求恰好三次正面朝上的概率。

[解] 设每次抛硬币正面朝上的概率为p ,则掷5次恰好有k 次正面朝上的概率为

k k p C 5(1-p)5-k (k=0,1,2,…,5),由题设41

5

3225)1()1(p p C p p C -=-,且0

1=p ,所以恰好有3次正面朝上的概率为.3434032312

3

35=

??

? ?????? ??C

例16 甲、乙两个乒乓球运动员进行乒乓球比赛,已知每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问:在哪一种比赛制度下,甲获胜的可能性大?

[解] (1)如果采用三局两胜制,则甲在下列两种情况下获胜:A 1—2:0(甲净胜二局),

A 2—2:1(前二局甲一胜一负,第三局甲胜). p(A 1)=0.6×0.6=0.36,p(A 2)=1

2C ×0.6×0.4×

0.6=0.288.

因为A 1与A 2互斥,所以甲胜概率为p(A 1+A 2)=0.648.

(2)如果采用五局三胜制,则甲在下列三种情况下获胜:B 1—3:0(甲净胜3局),B 2—3:1(前3局甲2胜1负,第四局甲胜),B 3—3:2(前四局各胜2局,第五局甲胜)。因为B 1,

B 2,B 2互斥,所以甲胜概率为p(B 1+B 2+B 3)=p(B 1)+p(B 2)+p(B 3)=0.63+23

C ×0.62×0.4×0.6+2

4C ×

0.62×0.42

×0.6=0.68256.

由(1),(2)可知在五局三胜制下,甲获胜的可能性大。

例17 有A ,B 两个口袋,A 袋中有6张卡片,其中1张写有0,2张写有1,3张写有2;B 袋中有7张卡片,其中4张写有0,1张写有1,2张写有2。从A 袋中取出1张卡片,B 袋中取2张卡片,共3张卡片。求:(1)取出3张卡片都写0的概率;(2)取出的3张卡片数字之积是4的概率;(3)取出的3张卡片数字之积的数学期望。

[解](1)21127162

411=??=C C C C p ;(2)634

2

7

161211132212=???+?=C C C C C C C p ;(3)记ξ为取出的3张卡

所以.63

3242186344632242370=?+?+?+?

=ξE 三、基础训练题

1.三边长均为整数且最大边长为11的三角形有_________个。

2.在正2006边形中,当所有边均不平行的对角线的条数为_________。

3.用1,2,3,…,9这九个数字可组成_________个数字不重复且8和9不相邻的七位数。 4.10个人参加乒乓球赛,分五组,每组两个人有_________种分组方法。 5.以长方体的顶点为顶点的三棱锥的个数是_________。 6.今天是星期二,再过101000天是星期_________。

7.由1003)23(+x 展开式所得的x 的多项式中,系数为有理数的共有_________项。 8.如果凸n 边形(n ≥4)的任意三条对角线不共点,那么这些对角线在凸n 边形内共有_________个交点。

9.袋中有a 个黑球与b 个白球,随机地每次从中取出一球(不放回),第k(1≤k ≤a+b)次取到黑球的概率为_________。

10.一个箱子里有9张卡片,分别标号为1,2,…,9,从中任取2张,其中至少有一个为奇数的概率是_________。

11.某人拿着5把钥匙去开门,有2把能打开。他逐个试,试三次之内打开房门的概率是_________。

12.马路上有编号为1,2,3,…,10的十盏路灯,要将其中三盏关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,则满足条件的关灯方法种数是_________。 13.a,b,c,d,e 五个人安排在一个圆桌周围就坐,若a,b 不相邻有_________种安排方式。

14.已知i,m,n 是正整数,且1(1+n)m .

15.一项“过关游戏”规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所得到的点数之

和大于2n ,则算过关。问:(1)某人在这项游戏中最多能过几关?(2)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体) 四、高考水平训练题

1.若n ∈{1,2,…,100}且n 是其各位数字和的倍数,则这种n 有__________个。

2.从{-3,-2,-1,0,1,2,3,4}中任取3个不同元素作为二次函数y=ax 2

+bx+c 的系数,能组成过原点,且顶点在第一或第三象限的抛物线有___________条。 3.四面体的顶点和各棱的中点共10个点,在其中任取4个不共面的点,有_________种取法。 4.三个人传球,从甲开始发球,每次接球后将球传给另外两人中的任意一个,经5次传球后,球仍回到甲手中的传法有_________种。

5.一条铁路原有m 个车站(含起点,终点),新增加n 个车站(n>1),客运车票相应地增加了58种,原有车站有_________个。

6.将二项式n

x x ???? ??+4

21的展开式按降幂排列,若前三项系数成等差数列,则该展开式中x 的幂指数是整数的项有_________个。

7.从1到9这九个自然数中任取两个分别作为对数的真数和底数,共可得到_________种不同的对数值。 8.二项式(x-2)5的展开式中系数最大的项为第_________项,系数最小的项为第_________项。 9.有一批规格相同的均匀圆棒,每根被划分成长度相同的5节,每节用红、黄、蓝三色之一涂色,可以有_________种颜色不同的圆棒?(颠倒后相同的算同一种)

10.在1,2,…,2006中随机选取3个数,能构成递增等差数列的概率是_________。

11.投掷一次骰子,出现点数1,2,3,…,6的概率均为6

1

,连续掷6次,出现的点数之和

为35的概率为_________。

12.某列火车有n 节旅客车厢,进站后站台上有m(m ≥n)名旅客候车,每位旅客随意选择车厢上车,则每节车厢都有旅客上车的概率是_________。

13.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=

耕地面积

总产量

五、联赛一试水平训练题 1.若0

3.已知A={0,1,2,3,4,5,6,7},映射f:A →A 满足:(1)若i ≠j ,则f(i)≠f(j);(2)若i+j=7,则f(i)+f(j)=7,这样的映射的个数为_________。

4.1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5具有性质:对于1≤i ≤4,a 1,a 2,…,a i 不构成1,2,…,i 的某个排列,这种排列的个数是_________。

5.骰子的六个面标有1,2,…,6这六个数字,相邻两个面上的数字之差的绝对值叫变差,变差的总和叫全变差V ,则全变差V 的最大值为_________,最小值为_________。

6.某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛2场之后就退出了,这样,全部比赛只进行50场,上述三名选手之间比赛场数为_________。

7.如果a,b,c,d 都属于{1,2,3,4}且a ≠b,b ≠c,c ≠d, d ≠a ;且a 是a,b,c,d 中的最小值,则不同的四位数abcd 的个数为_________。

8.如果自然数a 各位数字之和等于7,那么称a 为“吉祥数”,将所有的吉祥数从小到大排成一列a 1,a 2,a 3,…,若a n =2005,则a n =_________。 9.求值:k

n

n k k C k

n 21

211

)1(--∑-=-=_________。 10.投掷一次骰子,出现点数1,2,…,6的概率均为

6

1

,连续掷10次,出现的点数之和是30的概率为_________。

11.将编号为1,2,…,9这九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球,设周围上所有相邻两球的号码之差的绝对值之和为S ,求S 达到最小值的放法的概率(注:如果某种放法经旋转或镜面反射后可与另一放法重合,则认为是相同的放法)。 12.甲、乙两人轮流向同一目标射击,第一次甲射击,以后轮流射击,甲每次击中的概率为p(0

13.设m,n ∈N ,0

六、联赛二试水平训练题

1.100张卡片上分别写有数字1到100,一位魔术师把这100张卡片放入颜色分别是红色、白色、蓝色的三个盒子里,每个盒子里至少放入一张卡片。

一位观众从三个盒子中挑出两个,并从中各选取一张卡片,然后宣布这两张卡片上的两个数的和数,魔术师知道这个和数之后,便能够指出哪一个是没有被观众取出卡片的盒子。问:共有多少种放卡片的方法,使得这个魔术师总能够成功?(如果至少有一张卡片被放入不同颜色的盒子,两种方法被认为是不同的)

2.设S={1,2,…,10},A 1,A 2,…,A k 是S 的k 个子集合,满足:(1)|A i |=5,i=1,2,…,k;(2)|A i A j |≤2,1≤i

3.求从集合{1,2,…,n}中任取满足下列条件的k 个数{j 1,j 2,…,j k }的组合数;(1)1≤j 11为固定的正整数;(3)存在h 0,1≤h 0≤k-1,使得0

01

h h

j j --≥m+1.

4.设m S S S n 222

21

+++= ,其中S 1,S 2,…,S m 都是正整数且S 1

n n n n C C C ,,,11 中奇数的个数等于2m 。

5.2

)1(+n n 个不同的数随机排成图13-2所示的三角形阵,设M k 是从上往下第k 行中的最大数,

求M 1

6.证明:.111

1

1+++-=--=∑r n r n k r k n C kC

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学讲义微专题80 排列组合中的常见模型

微专题80 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只 需将剩下的元素全排列即可,所以排法总数为44496N A =?=种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。 3310785N C C =-=(种) 3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步: 确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。所以共有 213433108C C A =种方案 (二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

(完整)高中数学排列组合专题复习

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置.

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

高中数学竞赛讲义

高中数学竞赛讲义(十五) ──复数 一、基础知识 1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。 2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsin θ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isinθ,则z=re iθ,称为复数的指数形式。 3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数围一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2),则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ2), 5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ). 6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。 7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-). 8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。 9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0). 10.代数基本定理:在复数围,一元n次方程至少有一个根。 11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则=a-bi也是一个根。 12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac<0时方程的根为 二、方法与例题 1.模的应用。 例1 求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。 [证明] 若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。 例2 设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。

文本预览
相关文档 最新文档