当前位置:文档之家› 燃气燃烧方法(正式)

燃气燃烧方法(正式)

燃气燃烧方法(正式)
燃气燃烧方法(正式)

编订:__________________

单位:__________________

时间:__________________

燃气燃烧方法(正式)

Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-6024-92 燃气燃烧方法(正式)

使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种:

1.扩散式燃烧法

将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。

2.完全预混式燃烧法

按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。

3.部分预混式燃烧法

在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。

从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段:

(1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间;

(2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热;

(3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。

所以,燃气燃烧过程所需的时间,包括氧化剂与燃气混合预热所需的时间τph和进行化学反应所需的时间τch,即:

τ=τPh+τch

按燃烧阶段所需时间不同,也可区别出以上不同

类型的燃烧方法。

如果τph远大于τch,则τ≈τph,燃烧在扩散区进行,物理因素是影响燃烧全过程的主要因素:反之,τph远小于τch,则τ≈τch燃烧在动力区进行,化学动力学因素是影响燃烧全过程的主要因素;若τph≈τch。燃烧在中间区进行。

请在这里输入公司或组织的名字

Enter The Name Of The Company Or Organization Here

低热值燃气燃烧技术的应用与分析

低热值燃气燃烧技术的应用与分析 摘要:本文主要针对低热值燃气燃烧技术的应用与分析展开了探讨,详细阐述 了低热值燃气的燃烧特性,并对低热值燃气的稳燃技术和低热值燃气的低氮燃烧 技术作了系统的分析,以期能为有关方面的需要提供参考借鉴。 关键词:低热值燃气;燃烧技术;应用 所谓的低热值燃气,是指煤或焦炭等固体燃料气化所得热值较低的气体燃料。在当前节能降耗的大社会背景下,低热值燃气的应用将会具有着极佳的经济效益 和社会意义,因此,我们需要对低热值燃气的燃烧技术进行有效的分析,从而为 推广其的应用带来极大的帮助。 1 低热值燃气燃烧特性 低热值气体燃料并没有明确的概念,通常根据气体燃料自身发热量可将气体 燃料分为高热值燃料(Q>15.07MJ/m3)、中热值燃料(6.28MJ/m3<Q< 15.07MJ/m3)及低热值燃料(Q<6.28MJ/m3),工业中常见的低热值气体燃料 主要有化工过程低热值尾气、高炉煤气、石油化工行业冶炼尾气、煤矿低浓度瓦 斯气等。其中,高炉煤气、煤层气等热值介于3.0~6.28MJ/m3的低热值燃料的研究应用已逐步展开,但在工业生产中还存在一些工业废气,含有少量的可燃成分,热值非常低,甚至远低于3.0MJ/m3,这种超低热值燃气种类很多,比如某些煤层气、生物质气化气、垃圾掩埋坑气、炭黑尾气、一些工艺废气等。超低热值燃气 比低热值燃气点火、稳燃更困难,能量密度低,长距离输送不经济,在当地没有 合适的热用户时只能直接放散,既浪费能源又污染环境。 低热值燃气燃烧特性主要包括以下几个方面: (1)燃气中可燃成分少,热值低,着火温度高,火焰传播速度慢,难以点火及稳定燃烧; (2)燃气压力低且波动范围大,压力过低、速度过慢时容易回火; (3)低热值燃气多为化工生产线的尾气,需对多条生产线进行汇总综合利用,燃气的流量变化大; (4)化工工艺过程的操作对尾气的成分及热值影响较大,尾气的燃烧工艺如配风系数需及时匹配调整,否则容易熄火。 2 低热值燃气的稳燃技术 根据燃烧理论,为保证低热值燃气的稳定燃烧,主要的稳燃措施包括优化着 火条件、提高火焰温度以及优化燃烧场分布等。 (1)优化着火条件 低热值气体燃料的着火极限高,着火比较困难,燃烧温度也较低。为此,需 要提高燃气热值,降低燃料着火下限。如掺烧高热值燃料,提高混合燃气的热值,降低着火温度;燃料和空气预热提高初始温度。 (2)提高火焰温度 燃烧温度的提髙可强化炉内辐射换热并改善炉内的燃烧状况。而实际火焰温 度与装置类型、燃烧效率、燃料种类、空气/燃气预热温度等有关。如:强化燃料和空气的混合,降低不完全燃烧损失;合理设计炉膛结构,进行绝热燃烧,减少 系统散热量;降低空气过剩系数或采用纯氧/富氧燃烧。 (3)优化燃烧场分布 燃烧场的分布包括燃气、空间以及烟气在燃烧空间的分布,燃烧场特别是温 度场的优化分布来源于高温烟气对新鲜燃气、空气的加热,进而促进空气与烟气

天然气燃烧产生污染物计算方法(实用!推荐)

天然气燃烧产生污染物计算方法(非常实用)天然气燃烧产生污染物计算方法为保护环境,建设生态文明,国家鼓励使用天然气代替燃煤,但使用天然气仍会排放污染物,应当征收排污费。本文循着“污染物排放量=废气量×污染物浓度”这一计算公式,来探讨如何征收天然气锅炉的排污费。 一、废气量 根据《排污申报登记实用手册》231页举例计算,1m3天然气完全燃烧产生的废气量为10.89m3。 实际天然气燃烧时产生的废气,与天然气成分,完全燃烧的比例等都有关系,但通常认为废气量为天然气量的10-11倍。取10倍最好计算,但取10.5倍似乎更为合理。 例:1万m3天然气,燃烧后的废气量即为10.5万m3。 二、主要污染物 (一)二氧化硫 天然气中含有硫化氢(H2S),国家规定其出厂含量不能超过0.01%。天然气中硫化氢燃烧时,会生成等体积二氧化硫(SO2)。 《排污申报登记实用手册》231页举例计算,当硫化氢含量为0.0052%时,每万m3天然气产生二氧化硫为1.5kg。 李先瑞、韩有朋、赵振农合著《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化硫约为1.0kg。

天然气燃烧产生的二氧化硫,与天然气中所含硫化氢比例关系最大,在没有检测数据支撑时,二氧化硫浓度为确定为10-15mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为100mg/m3。 (二)氮氧化物 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化氮约为6.3kg。 按这一数据,氮氧化物浓度约为60mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为400mg/m3。 (三)烟尘 天然气是清洁能源,烟尘产生量少,但也不能说没有。 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生烟尘约为2.4kg。 按这一数据,烟尘浓度约为20-25mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为50mg/m3。 (四)其他污染物 经过计算,天然气燃烧后产生的其他污染物排放当量都更低,本文不再论证。按照《排污收费征收管理条例》,这些污染因子不予征收排污费。 三、征收标准 将上述三个污染因子按低限代入《排污费征收核定表》,则每万立方

燃气燃烧器回火现象及其预防措施

a 不可选取过 在化工生产中, 很多工艺加热炉以气体燃料燃烧作为热源, 可燃气体燃烧需要很多空气, 如: 人工煤气需1.2~4.0 ( m 3 /m 3 ),天然气和液化石油气则需 10~25 (m 3/m 3 )。可见欲使燃气充 分燃烧须有大量空气与之混合方可。 因此,燃气与空气的混合方式, 对燃烧情况有很大影响, 也关系到燃烧系统能否正常安全运行。 燃烧系统运行时, 如果产生回火现象将烧坏燃烧器或 发生安全事故。 1 燃气的燃烧方法及特点 根据燃气与空气混合情况不同将燃烧分为三种方式, 即扩散式燃烧、 预混部分空气燃烧 (大 气式燃烧)和无焰燃烧。燃烧过程处于哪一类是根据一次空气系数 a (—次空气量与燃烧 理论空气量之比)来判断的。 1 . 1 扩散式燃烧 燃气未预先和空气混合而进行的燃烧称为扩散式燃烧,其 a =0。扩散式燃烧的燃烧速度 与燃烧完全程度主要取决于燃气与空气分子间的扩散速度和完全程度。 扩散式燃烧的特点: ( 1) 燃烧稳定、在燃气系统不产生负压、空气不被吸入的情况下,不会回火,燃烧器工 作稳定。 ( 2) 过剩空气多, 燃烧速度慢, 火焰温度低。 对燃烧碳氢化合物含量较高的可燃气体时, 在高温下由于火焰面内氧气供应不足, 碳氢化合物分解出碳粒、 氢和重碳氢化合物。 碳粒和 重碳氢化合物很难燃烧, 结果造成化学不完全燃烧。 一般说来, 对天然气不宜采用扩散燃烧 法。 ( 3) 燃烧强度低,在工业炉上为提高燃烧强度多采用机械鼓风方式的燃烧器。 1 . 2 预混部分空气燃烧 其O v 1。在这种情况下,由于可燃混合物中空气量较小,因此,部分燃烧按纯动力 学方法燃烧,其余燃气则按扩散燃烧方法进行燃烧。 预混部分空气燃烧的特点: (1 ) 在绝大多数情况下能保证燃烧设备以任何比例的燃气与空气进行工作。因此, 设备 热负荷的调节范围大。 ( 2) 由于先吸入部分空气,所以克服了扩散燃烧的一些缺点,提高了燃烧速度,降低了 不完全燃烧程度。 (3) 当一次空气系数 a i 合适时,此种燃烧方法有一定的稳定范围。 (4) —次空气系数 a i 越大,燃烧稳定范围就越小,因此,一次空气系数 大。 1. 3无焰燃烧

天然气燃烧特性

天然气燃烧特性 天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的城市必选燃气气源。 城市燃气应按燃气类别及其燃烧特性指数(华白数W 和燃烧势CP )分类,并应控制其波动范围。 华白数W 按式(1)计算: d Q W g = (1) 式中:W —华白数,MJ/m 3(kcal/m 3);Q g —燃气高热值,MJ/m 3/(kcal/m 3);d —燃气相对密度(空气相对密度为1)。 燃烧势CP 按式2计算: ()d CH CO H C H K CP n m 423.06.00.1+++?= (2) 220054.01O K ?+= (3) 式中:CP ——燃烧势; H 2——燃气中氢含量,%(体积); C m H n ——燃气中除甲烷以外的碳氢化合物含量,%(体积); CO ——燃气中一氧化碳含量,%(体积); CH 4——燃气中甲烷含量,%(体积); d ——燃气相对密度(空气相对密度为1); K ——燃气中氧含量修正系数; O 2——燃气中氧含量,%(体积)。 城市燃气的分类应符合表的规定。 城市燃气的分类(干,0℃,101.3kPa )表

燃气热值的单位定义及换算 燃气热值的单位有两个单位系列: 一是“焦耳”系列:J(焦耳)/ Nm3、KJ(千焦)/Nm3、MJ(兆焦)/Nm3; 换算关系是:1MJ(兆焦)=1000KJ(千焦)、1KJ(千焦)=1000J(焦耳); 二是“卡”系列:cal(卡)/ Nm3、Kcal(千卡)/Nm3;换算关系是:1Kcal (千卡)=1000cal(卡); 两个单位系列的换算关系是:1cal(卡)=4.1868 J(焦耳);1KJ(千焦)=238.85 cal(卡);1MJ(兆焦)=238.85 Kcal(千卡)。 纯天然气的组分 纯天然气的组分是CH4:98%;C2H6:0.3%;C3H8:0.3%;CmHn: 0.4%;N2:1%。

燃气燃烧与应用-知识点

第一章燃气的燃烧计算 燃烧:气体燃料中的可燃成分(H2、 C m H n、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、具备反应时间 热值:1Nm3燃气完全燃烧所放出的热量称为该燃气的热值,单位是kJ/Nm3。对于液化石油气也可用kJ/kg。 高热值是指1m3燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 低热值是指1m3燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为16000—17000KJ/m3 天然气的低热值是36000—46000 KJ/m3 液化石油气的低热值是88000—120000KJ/m3 按1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为3800—4060KCal/m3 天然气的低热值是8600—11000KCal/m3 液化石油气的低热值是21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算: 理论空气需要量 每立方米(或公斤)燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为m3/m3或m3/kg。它是燃气 完全燃烧所需的最小空气量。 过剩空气系数:实际供给的空气量v与理论空气需要量 v0之比称为过剩空气系数。 α值的确定 α值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。 工业设备α——1.05-1.20 民用燃具α——1.30-1.80 α值对热效率的影响 α过大,炉膛温度降低,排烟热损失增加, 热效率降低; α过小,燃料的化学热不能够充分发挥, 热效率降低。 应该保证完全燃烧的条件下α接近于1. 烟气量含有1m3干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定 计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。 在检测燃气燃烧设备的烟气中的有害物质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为1的有害物含量。 根据烟气中O2含量计算过剩空气系数 O2′---烟气样中的氧的容积成分 (2)根据烟气中CO2含量计算过剩空气系数 2 ' 2 m CO a CO = CO2m——当=1时,干燃烧产物中CO2含量,%; CO2′——实际干燃烧产物中CO2含量,%。 1.4个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧, 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量(燃气和空气的热焓);其二是燃气的化 学热量(热值)。如果燃烧过程在绝热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即t a=t g=o,并假设a=1.则所得的烟气 温度称为燃烧热量温度。 理论燃烧温度:将由CO2HO2在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度t th 实际燃烧温度: 2.影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l的增 大而增大. 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。 3.烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从0℃加热到t℃所需的热量,单位为千焦每标 准立方米。 空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从0℃加热到t(℃)所需的热量,单位为千焦 每标准立方米。 第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。 在工业与民用燃烧器设计时如何使用高低热值进行计 算 在燃烧器设计与燃烧设备运行管理中如何选择过剩空 气系数 运行中烟气中CO含量和过剩空气系数对设计与运行管 理的指导作用 燃烧温度的影响因素及其提高措施。 第二章燃气燃烧反应动力学 ' 2 20.9 20.9 a O = -

1.燃气的燃烧计算

【例】已知天然气的容积成分如下:CH4 92.1% ; C2H6 3% ; C3H8 1.5% ; i-C4H io 0.05% ; n- C4H io 0.05% ; CO2 2% ; N2 1% ; O2 0.3%。天然气与空气的温度t g t a 20 C;空气 的含湿量d a 10 g/m 3干空气,天然气的含湿量不计。 试求: (一)高热值及低热值; (二)燃烧所需理论空气量; (三)完全燃烧时的烟气量(1和1.2时); 【解】查表得各组分参数如下: 根据混合法则,按式(1-2 )求得 H h H h1 r1 H h 2r2 H h n r n 39842 0.921 70351 0.03 101270 0.015 113048 0.0005 133885 0.0005 40448(kJ/m3) H l H l" H72 H lnh 35906 0.921 64397 0.03 93244 0.015 122857 0.0005 123649 0.0005 36523(kJ/m3) (二)求理论空气需要量 由所含组分计算,按式(1-3 )求得 1 V0[0.5H2 0.5CO 21 1 4 6 -[(1 -)92.1 (2 -)3(3 21 4 4 9.65 (m n)C m H n 1.5H2S O2] 4 8 10 -)1.5 (4 ) 0.1 0.3] 4 4

(三)求完全燃烧时的烟气量 1 .理论烟气量(1时) 三原子气体体积按式(1-5 )求得 V R°2V C°2V S°20.01(CO2CO mC m H n H2S) 0.01 (2 1 92.1 2 3 3 1.5 4 0.1) 1.05 (m3/m3干燃气)水蒸气体积,按式(1-6 )求得 o n V H2O0.01[H2 H2S -C m H n 120(d g V°d a)] 2 4 6 8 10 0.01 [ 92.1 3 1.5 0.1 120 (0 9.65 0.01)] 2 2 2 2 2.11(m3/m3干燃气) 氮气体积,按式(1-7)求得 V0N20.79V00.01N2 0.79 9.65 0.01 1 7.63(m3/m3干燃气) 理论烟气总体积,按式(1-8 )求得 V0V RO2V;2°V N°2 1.05 2.11 7.63 10.79 (m3/m3干燃气) 2.实际烟气量( 1.2时), ①由其组分计算: 三原子气体体积,仍按公式(1-5)求得 V R O2 1.03 (m3/m3干燃气) 水蒸气体积,按式(1-9 )求得 V H2O0.01 [H2 H2S fC m H n 120(d g V0 d a)] 4 6 8 10 0.01 [- 92.1 3 1.5 0.1 120 (0 1.2 9.65 0.01)] 2 2 2 2 2.14 (m3/m3干燃气) 氮气体积,按式(1-10 )求得 V N20.79 V0 0.01N2 0.79 1.2 9.65 0.01 1 9.16 (m3/m3干燃气) 过剩氧体积,按式(1-11)求得 V°2 0.21(1)V。 0.21 (1.2 1) 9.65 0.41 (m3/m3干燃气)

燃气燃烧与应用题库

2012最新试题 1、燃烧热量温度:在热平衡方程是中,令ta=tg=0,且ɑ=1,则在绝热条件下烟 气所能达到的温度,成为燃烧热量温度。 2、低热值:1Nm3燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气认为蒸汽状态时所放出的热量称为该燃气的低热值。 3、熄火距离:在电极间距从大往小减小过程中,当该间距小到无论多大的火花放电能量都不能使可燃混合物点燃时,这时的间距就叫熄火距离。 4、射程:在射流轴线上定出一点,使该点的轴速度在x方向的分速度vx为射流出口速度v2的5%,该点至喷嘴出口平面的相对垂直距离x1/d,定义为射程。 5、火焰传播浓度极限:火焰传播浓度上、下限范围,称“火焰传播极限”,又称着火爆炸极限。 6、大气式燃烧燃气在从管口喷出之前,首先混合一部分燃烧用氧化剂(即0<α’<1),燃烧所需的剩余氧气依靠扩散作用从周围大气获得,这种燃烧方式称为“部分预混式燃烧”。 7、脱火:当燃烧强度不断加大,气流速度v↑,使得v=S的点更加靠近管口,点火环变窄,最后使之消失,火焰脱离燃烧器出口,在一定距离以外燃烧,若气流速度再增大,火焰被吹熄,称为脱火 8、燃气互换性:设某一燃具以a燃气为基准进行设计和调整,由于某种原因要以s燃气置换a燃气,如果燃烧器此时不加任何调整而能保证燃具正常工作,则表示s燃气可以置换a燃气,或称s燃气对a燃气而言具有“互换性” 燃烧:气体燃料中的可燃成分在一定条件下与氧发生激烈的氧化作用,并产生大量的和光的物理化学反应过程称为燃烧 热量计温度:如果燃烧过程在绝热环境下进行,由燃气、空气带入的物理热量和燃气的化学热量全部用于加热烟气本身,则烟气所能达到的温度称为** 理论燃烧温度:如果热平衡方程式中将由于化学不完全燃烧而损失的热量考虑在内,则所求得的烟气温度称为** 支链反应,直链反应:如果每一链环中有两个或者多个活化中心可以引出新链环的反应,这种称为支链反应,如果每一链环只产生一个新的活化中心,那么这种链反应称为** 着火:由稳定的氧化反应转变为不稳定的氧化反应而引起燃烧的一瞬间称为着火支链着火:在一定条件下,由于活化中心浓度迅速增加而引起反应加速从而使反应由稳定的氧化反应转变为不稳定氧化反应的过程,称为** 热力着火:由于系统中热量的积聚,使温度急剧上升而引起的,称为** 点火:当一微小热源放入可燃混合物时,则贴近热源周围的一层混合物被迅速加热,并开始燃烧产生火焰,然后向其他部分传播,使可燃混合物逐步着火,这种现象称为** 最小点火能:要形成初始火焰中心,放电能量必须具有一最小极值,即** 熄火距离:当点燃可燃混合物所需的能量与电极间距d小到无论多大的火花能量都不能使可燃混合物点燃时,d就是** 流体动力参数 绝对穿透深度相对穿透深度射程法向火焰传播速度小尺度紊流 火焰大尺度紊流火焰

燃气燃烧方法——部分预混式燃烧实用版

YF-ED-J8353 可按资料类型定义编号 燃气燃烧方法——部分预混式燃烧实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

燃气燃烧方法——部分预混式燃 烧实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 燃气燃烧时,一次空气过剩系数α′在0~ 1之间,预先混入了一部分燃烧所需空气,这种 燃烧方法称为部分预混式燃烧或大气式燃烧。 一、部分预混层流火焰 产生部分预混层流火焰的典型装置就是本 生灯。如图3—4—6,燃气从本生灯下部小口喷 出,井引射入一次空气,在管内预先混合,预 混后的气体自灯口喷出燃烧,产生圆锥形的火

焰,周围大气亦供给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。 这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。 蓝色的预混火焰锥体出现是有条件的。若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。若混合物中燃气的浓

燃气燃烧方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 燃气燃烧方法(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6024-92 燃气燃烧方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种: 1.扩散式燃烧法 将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。 2.完全预混式燃烧法 按一定比例将燃气、空气均匀混合,再经燃烧器喷口喷出,进行燃烧。由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。

3.部分预混式燃烧法 在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。 从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段: (1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间; (2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热; (3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。 所以,燃气燃烧过程所需的时间,包括氧化剂与燃气混合预热所需的时间τph和进行化学反应所需的时间τch,即: τ=τPh+τch 按燃烧阶段所需时间不同,也可区别出以上不同

燃气燃烧与设备设计

目录 1设计原始资料 (1) 1.1气源 (1) 1.2设计热负荷 (1) 2燃气燃烧计算 (1) 2.1燃气的热值 (1) 2.2华白数 (2) 2.3理论空气量 (4) 2.4过剩空气系数 (4) 2.5实际空气量 (5) 2.6烟气量 (5) 3大气式燃烧器 (7) 3.1大气式燃烧器的工作原理 (7) 3.2设计计算 (7) 3.3火焰高度 (12) 总结 (14) 参考资料 (14)

1设计原始资料 1.1气源 天然气3T0成分见表1-1 表1-1 燃气成分 类别体积分数 (%) 相对密 度 热值 /(3 m MJ) 华白数 /(3 m MJ) 燃烧势 p c 理论干烟 气中 2 CO 体积分数 (%) 1 H h H 1 W h W 3T0 CH4=32.5 空气=67.5 0.88511.0612.2811.9513.2822.011.74 1.2设计热负荷 本设计热负荷为:4.2kW燃气压力:2000Pa 2燃气燃烧计算 2.1燃气的热值 气体中的可燃成分在一定条件下与氧气发生氧化作用,并产生大量的热和光的物理化学反应过程成为燃烧。 3T0燃气完全燃烧所放出的热量称为该燃气的热值,单位为千焦每标准立方米。 热值可以分为高热值和低热值。高热值是指3T0燃气完全燃烧后其烟气被冷至原始温度,而其中的水蒸气以凝结水状态排出时所放出的热量;低热值是指3T0燃气完全燃烧后其烟气被冷至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量。

实际使用的燃气是含有多种组分的混合气体,混合气体的热值可以直接用热量计测定,也可以有各单一气体的热值根据混合法则按下时进行计算: n n 2211r ......r r H H H H +++= (2-1) 式中:H —燃气(混合气体)的高热值或低热值(() 3m N kJ ?); n H —燃气中各燃组分的高热值或低热值(() 3m N kJ ?) ,由《燃气燃烧与应用》附录2查得; r n —燃气中各可燃组分的容积成分。 查附录得该燃气组分热值见表2-1: 表2-1 各个组分的热值 燃气组分 甲烷 空气 高热值(()3m N kJ ?) 95998 126915 低热值(( ) 3m N kJ ?) 88390 117212 则该设计的热值分别为: 高热值为:h H =0.325×95998+0.675×126915= 116866.975() 3m N kJ ? 低热值为:1H =0.325×88390+0.675×117212=107844.85() 3m N kJ ? 2.2华白数 当以一种燃气置换另一种燃气时,首先应保证燃具热负荷(kW )在互换前后不发生大的改变。以民用燃具为例,如果热负荷减少太多,就达不到烧煮食物的工艺要求,烧煮时间也要加长;如果热负荷增加太多,就会使燃烧工况恶化。 当燃烧器喷嘴前压力不变时,燃具热负荷Q 与燃气热值H 成正比,与燃气相对密度的平方根成反比,而称为华白数: S H W = (2-2) 式中:W —华白数,或称热负荷指数; H —燃气热值;

燃气燃烧方法标准版本

文件编号:RHD-QB-K6363 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 燃气燃烧方法标准版本

燃气燃烧方法标准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 燃烧方法,是燃烧装置热工性能最直接和最重要的影响因素之一。燃气燃烧在不同物态燃料中是一种最理想的燃烧方式,一般是将燃气通过燃烧器喷向空气中进行。根据燃气与空气在燃烧前的混合情况,可将燃气燃烧方法分为三种: 1.扩散式燃烧法 将燃气、空气分别从相邻的喷口喷出,或者燃气直接喷人空气中,两者在接触面上边混合边燃烧,也称有焰燃烧法。 2.完全预混式燃烧法 按一定比例将燃气、空气均匀混合,再经燃烧器

喷口喷出,进行燃烧。由于预先均匀混合,可燃混合气一到达燃烧区就能在瞬间燃烧完毕,燃烧火焰很短,甚至看不见火焰,故电称为无焰燃烧法。 3.部分预混式燃烧法 在燃气中预先混入部分空气(通常,一次空气系数α′=0.45~0.75),然后经燃烧器喷入空气中燃烧,也称为半无焰燃烧法。 从本质上看燃气的燃烧过程,与其它种类燃料一样,也包括以下三个阶段: (1)燃气与空气的混合,属物理过程,需要消耗一定的能量和时间; (2)混合气的加热和达到着火,也屑物理过程,依靠可燃混合气本身燃烧反应产生的热量来预热; (3)完成燃烧化学反应,属化学过程,反应速度受化学动力学因素控制。

所以,燃气燃烧过程所需的时间,包括氧化剂与燃气混合预热所需的时间τph和进行化学反应所需的时间τch,即: τ=τPh+τch 按燃烧阶段所需时间不同,也可区别出以上不同类型的燃烧方法。 如果τph远大于τch,则τ≈τph,燃烧在扩散区进行,物理因素是影响燃烧全过程的主要因素:反之,τph远小于τch,则τ≈τch燃烧在动力区进行,化学动力学因素是影响燃烧全过程的主要因素;若τph≈τch。燃烧在中间区进行。 这里写地址或者组织名称 Write Your Company Address Or Phone Number Here

天然气利用技术及其应用

序言 为缓解资源短缺带来的能源供需不平衡,以及近些年来我国环境的持续恶化,急需一种新的、清洁能源来解决这两个严峻的问题,因此天然气应运而生了。天然气具有经济,环保,安全等多种性能,通过多年对天然气应用技术的研究和实践终于使天然气在很多行业得到了理想的推广和利用。文章重点论述了天然气在发电,汽车等各种领域中应用现状及其相关的新技术,希望能使大家了解目前天然气的各种应用技术。 第1章天然气的分类、组成及性质 1.1天然气的分类 按产状分类天然气可分为:游离气、溶解气、吸附气及固体气; 按经济价值分类天然气可分为:常规天然气和非常规天然气; 按来源分类天然气可分为:有机来源和无机来源; 按烃类组成分为:干、湿气(富气、贫气),烃类按组成分类天然气可分为:气、非烃类气; 按酸气含量分为:净气、酸气 我国习惯分法:伴生气、气藏气和凝析气 伴生气:系产自油藏(含油储集层)的气,也称油田气。指在地下储集层中伴随原油共生,或呈溶解气形式溶解在原油中,或呈自由气形式在含油储集层上部游离存在的天然气。伴生气一般多为富气。 气藏气:系产自气藏(含气储集层)的气,也称气田气。指在地下储集层中均一气相存在,采出地面仍为气相的天然气。气藏气多为贫气。 凝析气:系产自具有反凝析特征气藏的气。指在地下储集层中呈均一气相存在,在开采过程中当气体温度、压力降至露点状态以下时会发生反凝析现象而析出凝析油的天然气。 1.2天然气的组成 天然气是由烃类和非烃类组成的复杂混合物。大多数天然气的主要成分是气体烃类,此外还含有少量非烃类气体。天然气中的烃类基本上是烷烃(C10~C60),非烃类气体,一般为少量的N2,O2,H2,CO2,H2O, H2S及惰性气体。 1.3天然气基本物理性质 由于天然气是由互不发生化学反应的多种单一组分气体混合而成,其组分和组成无定值。只能假设成具有平均参数的某一物质,故它的基本物性参数可由单一组分气体的性质按混合法则求得。 天然气的物理性质指其平均分子量、密度、蒸汽压、粘度、粘度、烃露点等等。

燃气燃烧课程设计

《燃气燃烧》课程设计 题目:燃气燃烧课程设计 学院:建筑工程学院 专业:建筑环境与能源应用工程 姓名:张冷 学号: 20130130370 指导教师:王伟 2016年 12 月 26 日 目录

1设计概述 (1) 2设计依据 (1) 2.1原始数据 (1) 2.2燃气基本参数的计算 (1) 2.2.1热值的计算 (1) 2.2.2燃气密度计算 (2) 2.2.3燃气相对密度计算 (2) 2.2.4理论空气需要量的计算 (2) 2.3头部计算 (3) 2.3.1计算火孔总面积 (3) 2.3.2计算火孔数目 (3) 2.3.3计算火孔间距 (4) 2.3.4计算火孔深度 (4) 2.3.5计算头部截面 (4) 2.3.6计算头部截面直径 (4) 2.3.7计算火孔阻力系数 (5) 2.3.8计算头部能量损失系数 (5) 2.4引射器计算 (5) 2.4.1计算引射器系数 (5) 2.4.2计算引射器形式 (5) 2.4.3计算燃气流量 (6) 2.4.4计算喷嘴直径 (6) 2.4.5计算喷嘴截面积 (6) 2.4.6计算最佳燃烧器参数 (6) 2.4.7计算A值 (7) 2.4.8计算X值 (7) 2.4.9计算引射器喉部面积 (7) 2.4.10计算引射器喉部直径 (8) 2.4.11引射器其他尺寸计算方式如附图1: (8)

2.5火焰高度计算 (8) 2.5.1火焰内锥高度 (8) 2.5.2火焰外锥高度 (8) 2.6火孔排列 (9) 2.6.1确定火孔个数 (9) 2.6.2火孔分布直径的计算 (9) 3设计方案计算 (9) 3.1已知计算参数 (9) 3.2详细计算步骤 (10) 3.2.1头部计算 (10) 3.2.2引射器计算 (11) 3.2.3火焰高度计算及加热对象的设置高度 (12) 总结 (12) 参考文献 (13)

《燃气燃烧与应用》课程设计

题目《燃气燃烧与应用》课程设计 说明书 学生姓名陈明友学号1008020130 教学院系土木工程与建筑学院 专业年级建筑环境与设备工程2010级 指导教师张鹏 2013年11月

目录 第一章设计原始资料 (1) 1.1气源 (1) 1.2设计热负荷 (1) 第二章燃气燃烧计算 (1) 2.1燃气的热值 (1) 2.2华白数 (2) 2.3理论空气量 (3) 2.4过剩空气系数 (4) 2.5实际空气量 (4) 2.6烟气量 (5) 第三章大气式燃烧器 (6) 3.1大气式燃烧器的工作原理 (6) 3.2设计计算 (7) 3.3火焰高度 (10) 心得体会 (11) 参考资料: (11)

第一章 设计原始资料 1.1气源 表1 燃气成分 燃气种类 氢气 甲烷 氮气 丙烷 丁烷 20Y 75 25 1.2设计热负荷 本设计热负荷为:4.55 kW 、空气含湿量:10g/Nm 3干空气 第二章 燃气燃烧计算 2.1燃气的热值 气体中的可燃成分在一定条件下与氧气发生氧化作用,并产生大量的热和光的物理化学反应过程成为燃烧。 20Y 燃气完全燃烧所放出的热量称为该燃气的热值,单位为千焦每标准立方米。由于本设计燃料为液化石油气,热值单位也可以用千焦每公斤来表示。 热值可以分为高热值和低热值。高热值是指20Y 燃气完全燃烧后其烟气被冷至原始温度,而其中的水蒸气以凝结水状态排出时所放出的热量;低热值是指20Y 燃气完全燃烧后其烟气被冷至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量。 实际使用的燃气是含有多种组分的混合气体,混合气体的热值可以直接用热量计测定,也可以有各单一气体的热值根据混合法则按下时进行计算: n n 2211r ......r r H H H H +++= 式中:H —燃气(混合气体)的高热值或低热值(KJ/Nm 3); H n —燃气中各燃组分的高热值或低热值(KJ/Nm 3),由《燃气燃烧与

燃气燃烧方法——部分预混式燃烧(正式版)

文件编号:TP-AR-L5207 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 燃气燃烧方法——部分 预混式燃烧(正式版)

燃气燃烧方法——部分预混式燃烧 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 燃气燃烧时,一次空气过剩系数α′在0~1之 间,预先混入了一部分燃烧所需空气,这种燃烧方法 称为部分预混式燃烧或大气式燃烧。 一、部分预混层流火焰 产生部分预混层流火焰的典型装置就是本生灯。 如图3—4—6,燃气从本生灯下部小口喷出,井引射 入一次空气,在管内预先混合,预混后的气体自灯口 喷出燃烧,产生圆锥形的火焰,周围大气亦供给部分

空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混合燃烧。 这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由燃气与一次空气预混合后燃烧而产生。为圆锥形,呈蓝绿色,强而有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。 蓝色的预混火焰锥体出现是有条件的。若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合

燃气燃烧方法部分预混式燃烧

燃气燃烧方法——部分预混式燃烧燃气燃烧时,一次空气过剩系数α′在0~1之间,预先混入了一 部分燃烧所需空气,这种燃烧方法称为部分预混式燃烧或大气式燃烧。 一、部分预混层流火焰 产生部分预混层流火焰的典型装置就是本生灯。如图3—4—6,燃气从本生灯下部小口喷出,井引射入一次空气,在管内预先混合,预混后的气体自灯口喷出燃烧,产生圆锥形的火焰,周围大气亦供 给部分空气,称为二次空气,通过扩散与一次空气未燃尽的燃气混 合燃烧。 这样,在正常燃烧时形成两个稳定的火焰面:内火焰面,即由 燃气与一次空气预混合后燃烧而产生。为圆锥形,呈蓝绿色,强而 有力,温度亦商,为部分预混火焰,也称为蓝色锥体;外火焰面,

是二次空气与一次空气未燃尽的燃气进行的扩散混合燃烧,其形状也近似圆锥形,呈黄色,软弱无力,温度较低,这是扩散火焰。 蓝色的预混火焰锥体出现是有条件的。若燃气/空气混合物的浓度大于着火浓度上限,火焰就不可能向中心传播,蓝色锥体就不会出现,而成为扩散式燃烧。若混合物中燃气的浓度低于着火浓度下限,则该混合气根本不可能燃烧。氢气燃烧火焰出现蓝色锥体的一次空气系数范围相当大,而甲烷和其它碳氢化合物的燃烧火焰出现蓝色锥体的一次空气系数范围则相当窄。 蓝色锥体的实际形状,如图3—5—5,可用管道中气流速度的分布和火焰传播速度的变化来解释。 层流时,沿管道截面上气体的流速按抛物线分布,喷口中心气流速度最大,至管壁处降为零。 静止的蓝色锥体焰面说明了锥面上各点的正常火焰传播速度 sn(其方向指向锥体内部)与该点气流的法向分速度vn相平衡,也即对于预混火焰锥面上的每一点都存在以下关系式,通常称为米赫尔松余弦定律:

燃气应用技术复习要点及答案

燃气应用技术 第1章燃气燃烧(24) 1、燃烧、热值、着火概念 燃烧:气体中可燃组分在一定条件下与氧发生剧烈的、产生大量热、光的物理化学反应过程。热值:是指标准单位体积的燃气在完全燃烧时所放出的全部热量,单位为 kJ/Nm3。 着火温度:定义:可燃气体在空气中能引起自燃的最低温度。 2、燃烧必备的条件 一定的氧气——提供燃烧所需充足氧气,并与燃料充分混合接触 一定的温度——有点火源、具有维持燃烧的条件、保证一个高温环境外 将燃烧产物——烟气和灰及时排走。 一定的时间——混合、燃烧时间 3、燃烧计算内容 4、燃烧所需空气量的两种计算方法 5、燃烧产生烟气量的两种计算方法 ①按燃气组分计算②按发热量近似计算 6、燃烧温度、理论燃烧温度、实际燃烧温度概念 燃烧温度是燃气燃烧时放出的热量加热烟气,使之能达到的温度,也称烟气温度。 7、了解焓温图 8、燃烧反应机理

9、火焰传播速度的定义、影响因素 法向火焰传播速度Sn(燃烧速度)单位时间、单位火焰面积上所燃烧的可燃混合物体积 ①可燃混合物的性质: 导热系数——越大-Sn也越大 分子结构——越是不饱和的碳氢化合物-Sn越大 ②燃气浓度: Sn随燃气浓度的变化均呈“”形。 ③初始温度:升高——Sn显著增大。 ④压力:压力增大——CmHn与空气混合物的Sn减小 ⑤添加剂:可以增大或减小火焰传播速度。 ⑥孔口直径d:d越小,Sn越小;当d<dc,熄火。 10、火焰传播极限的定义、影响因素 定义:能使火焰持续不断传播所必需的最高、最低燃气浓度,称为火焰传播浓度上、下限。上下限之间的范围就是火焰传播浓度极限。 燃气所在环境组分:在纯氧中:极限范围扩大,加入惰气:极限范围缩小,含尘、水蒸气:极限范围改变。 混合物的温度、压力:提高,则极限范围扩大 燃烧空间大小、形状、壁面材料:极限范围改变 11、强化燃烧的方法 ,从而提高燃烧温度、方法:烟气余热预热空气、部预热燃气和空气、可以提高S n 分高温烟气重新引回燃气、空气入口处 加强气流紊动 燃烧反应速度>>分子间的扩散混合速度——提高混合速度——极大提高燃烧速度。 方法:旋转气流——使气流切向进入主通道;在管道中设置导流叶片。 12、燃气燃烧方法分类及其定义; 1、扩散式燃烧(有焰燃烧):燃烧所需的氧气完全依靠扩散作用从周围大气获得,燃气与空气在接触面处边混合、边燃烧的燃烧方式。α′=0 2、部分预混式燃烧:在燃烧前预先混入部分空气,其余所需空气以扩散方式从周围获得。α′=0 .2—0.8 3、完全预混式燃烧(无焰燃烧):按比例先将燃气和空气均匀混合,再经燃烧器火孔喷出 进行燃烧。α′=1.05~1.10 13、扩散式燃烧中的多相燃烧产生原因。 原因:高温、缺氧——固体碳粒 14、部分预混式燃烧:内焰存在条件、影响层流燃烧稳定的因素及方法、影响紊流燃烧稳定的因素及方法。 内焰存在条件:α′=0 .2—0.8燃气浓度在着火浓度上、下限之间;浓度>着火上限:无内焰—扩散式燃烧;浓度<着火上限:不能燃烧

燃气燃烧器风气比调节(20200524194419)

燃气燃烧器风气比调节 关于伺服电机 理论上,待机的时候风门与气门都是全关的,气门上面有一条小槽指示。调整凸轮的时候,点火位一般在10~15度之间,尽量小。如果打了,可能会放炮,严重会回火,刚开始的时候小,一点一点调。要有耐心, 大火位凸轮位置一般在60~70度之间。如果炉子以前经常冒黑烟,则可能烟道不畅。大小火位一定要接近,慢慢调。(很惨痛的教训,我曾将锅炉点爆) 关于减压阀 先泄压,再调,否则会憋压,往小调不显示。 燃烧起在工作的时候,如果感觉风门往外吐气,则说明烟道不畅,已经接近放炮点,需要清烟道。 有比例仪的燃烧器,大火指示灯闪,是伺服电机在一点一点的走。 电磁阀一般都是两个阀座,一个是快开快闭,一个是慢开快闭,有类似于限位螺钉的装置,用于调节流量。(调节气压 试点火前应注意: 1.在没有正式点火前要确认燃料供应阀处于关闭位置。 2.对于燃气燃烧器,检查燃气管路连接是否正确。正确的连接顺序是:燃料管→手阀→过滤器→双电磁阀→燃烧器。每一个元件上均有方向箭头标示,可以进行校对。同时确认燃气供应压力是否符合要求。 3.对于燃油燃烧器,检查进回油管安装是否正确,同时检查回油管上是否装有止回阀,球阀或其他装置。如果有建议用户最好去掉,以免损 伤油泵。

4.对于未经燃气部门验收的燃气管路(如自建液化气站或压缩气站),在条件允许的情况下,检查一下燃气管路是否有泄漏。 5.点火前应检查所有的电气连接。根据所用机型的电气接线图进行校对,同时确认电源是否存在异常情况(如电压偏高或电压偏低,三相电 源不均衡),并且对三相电机必须确认正反转,严禁反转运行。 6.检查燃烧器内部的相关部件(如点火变压器.控制盒.伺服机.风压开关.油泵和火检装置)的外形,安装和连接是否存在异常情况。如有应 先弄清情况排除隐患,然后再进行后续工作。 7.对于燃气燃烧器,在点火前应先对燃气管路进行排空。必须用已有的燃气排空管进行排空。如果没有排空管时,最好用软管将燃气管路上 的排放口引在室外进行排空。从管路排放口到燃气电磁阀之间可能仍存 在一定的少量空气无法直接排放,此时可以卸开电磁阀侧面的丝堵进行 排空,同时检查是否有燃气味出现,一旦出现应立即封上丝堵停止排空, 并且开启室内通风装置进行通风。

相关主题
文本预览
相关文档 最新文档