当前位置:文档之家› 研究生数值分析试题

研究生数值分析试题

研究生数值分析试题
研究生数值分析试题

昆明理工大学2010级硕士研究生考试试卷

(注:考试时间150分钟;所有答案,包括填空题答案一律答在答题纸上,否则不予记分。)

一、 填空(每空2分,共24分)

1.近似数490.00的有效数字有 位,其相对误差限为 。

2.设7

4

()431f x x x x =+++,则017[2,2,......2]f = ,018

[2,2,......2]f = 。 3.设4()2,[1,1]f x x x =∈-,()f x 的三次最佳一致逼近多项式为 。

4.1234A ??=??-??,1A = ,A ∞= ,2A = 。

5.210121012A -????=-????-??

,其条件数2()Cond A = 。 6.2101202A a a ????=??????

,为使分解T

A L L =?成立(L 是对角线元素为正的下三角阵),a 的取

值范围应是 。

7.给定方程组121

122

,x ax b a ax x b -=??

-+=?为实数。当a 满足 且02ω 时,SOR 迭代法收敛。

8.对于初值问题/

2

100()2,(0)1y y x x y =--+=,要使用欧拉法求解的数值计算稳定,应限定步长h 的范围是 。

二、 推导计算

(15分)

(小数点后至少保留5位)。(15分)

3.确定高斯型求积公式

01

1010

()()(),(0,1)f x d x

A f x A f x x x ≈+

∈?

的节点01,x x 及积分系数01,A A 。(15分)

三、 证明

1. 在线性方程组AX b =中,111a a A a a a a ??

??=??????

。证明当112a - 时高斯-塞德尔法

收敛,而雅可比法只在11

22

a - 时才收敛。

(10分) 2. 给定初值02

0,

x a

≠以及迭代公式 1(2)

,(0,1,2....,

0)

k k k x x a x k a +=-=≠ 证明该迭代公式是二阶收敛的。(7分)

3. 试证明线性二步法

212(1)[(3)(31)]4

n n n n n h

y b y by b f b f ++++--=+++

当1b ≠-时,方法是二阶,当1b =-时,方法是三阶的。(14分)

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、设,0,1,2,3i x i =是插值基点,,0,1,2,3i l i =是对应的三次Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A cond 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用 Newton 插值法求ln0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

数值分析模拟试题

数值分析模拟试题 一、填空题(每小题3分,共30分) 1、已知近似值* 2.4560x =是由真值x 经四舍五入得到,则相对误差限为 。 2 、为减少舍入误差的影响,应将10改写成 。 3、设(1,1,2,3)T x =-,则12_______,_______,_______x x x ∞===。 4、设1123A -??=????,则1________,________F A A ==,A 的谱半径()A ρ=。 5、用Gauss-Seidel 迭代法解方程组1212423 x ax ax x +=??+=-?,其中a 为实数,则该方法收敛的充要 条件是a 满足 。 6、迭代法12213k k k x x x +=+收敛于*x =,此迭代格式是 阶收敛的。 7、设01(),(),,()n l x l x l x 是以01,, ,n x x x 为节点的Lagrange 插值基函数,则0()n i i l x ==∑。 8、设3()321f x x x =++,则差商[0,1,2,3]_____,[0,1,2,3,4]_____f f ==。 9、数值积分的辛普森公式为()b a f x dx ≈?。 10、数值积分公式0()()n b k k a k f x dx A f x =≈∑?中,0n k k A ==∑。 二、设函数2()(3)x x a x ?=+-,由迭代公式1()k k x x ?+=产生的序列为{}k x ,试讨论 ⑴当a 为何值时,序列{}k x 收敛; ⑵当a 取何值时,收敛速度最快,并指出迭代法收敛的阶。(12分) 三、设4()[0,2]f x C ∈,且(0)2,(1)1,(2)0,'(1)0f f f f ==-==,试求函数()f x 的三次 插值多项式()P x ,并求余项表达式。(14分) 四、用矩阵的直接三角分解法(即LU 分解)解方程组Ax b =,其中

最新数值分析历年考题

数值分析A 试题 2007.1 第一部分:填空题10?5 1.设3112A ?? = ??? ,则A ∞=___________ 2()cond A =___________ 2.将4111A ??= ??? 分解成T A LL =,则对角元为正的下三角阵L =___________ ,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________ 4.方程13 cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法 113 cos 244 k k x x π+=-的收敛阶是 5.解方程2 210x x -+=的Newton 迭代方法为___________,其收敛阶为___________ 6.设()s x = 323 2 323,[0,1]31,[1,2] ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7.要想求积公式: 1 121 ()(()f x dx A f f x -≈+? 的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________ 8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设 ,0,f y μμ=?其绝对稳定性空间是___________ 9.用线性多步法 2121()n n n n n y ay by h f f ++++-+=-来求解初值问题 00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________

电子科技大学数值分析研究生期末考试习题一

习 题 请尽可能提供程序 1.用二分法求方程012=--x x 的正根,要求误差05.0<。 2. 为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式: 1)2/11x x +=,迭代公式21/11k k x x +=+;2)231x x +=,迭代公式3211k k x x +=+; 3)1 12-=x x ,迭代公式1/11-=+k k x x ;4)132-=x x ,迭代公式131-=+k k x x 。 试分析每种迭代公式的收敛性。 3. 给定函数)(x f ,设对一切x ,)(x f '存在且M x f m ≤'≤<)(0,证明对于范围M /20<<λ内的任意定数λ,迭代过程)(1k k k x f x x λ-=+均收敛于)(x f 的根*x 。 4.设a 为正整数,试建立一个求 a 1的牛顿迭代公式,要求在迭代公式中不含有除法运算,并考虑公式的收敛性。请提供程序。 5.用Gauss 消去法求解方程组: ???? ? ??-=????? ??????? ??----50312131 2111321x x x (请提供程序) 用列主元Gauss 消去法求解下列方程组: (1)???? ? ??=????? ??????? ??13814142210321321x x x (请提供程序) 6.用追赶法解三对角方程组b Ax =,其中 ????????????????--------=210001 2100012100012100012A ,??????? ?????????=00001b 。 7.设n n R P ?∈且非奇异,又设x 为n R 上一向量范数,定义Px x p =。试证明p x 是n R 上向量的一种范数。 8.用平方根法(Cholesky 分解)求解方程组:

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

2019年云南昆明理工大学数值分析考研真题

2019年云南昆明理工大学数值分析考研真题 一、判断题:(10题,每题2分,合计20分) 1. 有一种广为流传的观点认为,现代计算机是无所不能的,数学家们已经摆脱了与问题的数值解有关的麻烦,研究新的求解方法已经不再重要了。 ( ) 2. 问题求解的方法越多,越难从中作出合适的选择。 ( ) 3. 我国南宋数学家秦九韶提出的多项式嵌套算法比西方早500多年,该算法能大大减少运算次数。 ( ) 4. 误差的定量分析是一个困难的问题。 ( ) 5. 无论问题是否病态,只要算法稳定都得到好的近似值。 ( ) 6. 高斯求积公式系数都是正数,故计算总是稳定的。 ( ) 7. 求Ax =b 的最速下降法是收敛最快的方法。 ( ) 8. 非线性方程(或方程组)的解通常不唯一。 ( ) 9. 牛顿法是不动点迭代的一个特例。 ( ) 10. 实矩阵的特征值一定是实的。 ( ) 二、填空题:(10题,每题4分,合计40分) 1. 对于定积分105n n x I dx x = +?,采用递推关系115n n I I n -=-对数值稳定性而言是 。 2. 用二分法求方程()55 4.2720f x x x ≡-+=在区间[1 , 1.3]上的根,要使误差不超过10 - 5,二分次数k 至少为 。 3. 已知方程()x x ?=中的函数()x ?满足()31x ?'-<,利用()x ?递推关系构造一个收敛的简单迭代函数()x φ= ,使迭代格式()1k k x x φ+=(k = 0 , 1 , …)收敛。 4. 设序列{}k x 收敛于*x ,*k k e x x =-,当12 lim 0k k k e c e +→∞=≠时,该序列是 收敛的。

2012研究生数值分析课期末考试复习题及答案

一、填空 1. 设 2.3149541...x * =,取5位有效数字,则所得的近似值x= 2.3150 . 2.设一阶差商 ()()()21122114 ,321f x f x f x x x x --= = =---, ()()()322332 615 ,422f x f x f x x x x --= = =-- 则二阶差商 ()123,,______ f x x x =11/6 3. 设(2,3,1)T X =--, 则2||||X = 14 ,=∞||||X 3 。p49 4. 4.求方程 2 1.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01 x =, 那么 1______x =。 1.5 5.解初始值问题 00 '(,)()y f x y y x y =?? =?近似解的梯形公式是 1______k y +≈。 ()()[]11,,2 ++++k k k k k y x f y x f h y 6、 1151A ??= ? -??,则A 的谱半径 = 6 。 7、设 2()35, , 0,1,2,... , k f x x x kh k =+== ,则 []12,,n n n f x x x ++= —————— ————3 和 []123,,,n n n n f x x x x +++= _______________0_____ 。 8、 若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 收敛 。 9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为_______O(h ) ___。

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析考题

李津 2004.6.21 1、给定2阶RK基本公式,求相容阶数,判断是否收敛,考虑稳定性后对h的要求 yn+1=yn+h/2*(k1+k2) k1=f(tn,yn) k2=f(tn+3/5*h,yn+3/5*h*k1) 2、给定一个分段函数,求全函数为1区间[0,2]的最佳二次平方逼近 3、给定对称正定矩阵(3*3),判断SOR收敛性(w=1.2)、给定初值算一步、估计5次迭代误差 4、给定求积表达式,要求有最大的代数精度,确定参数和代数精度 f(x)从0积到2= r1*f(x1)+r2*f(x2) 5、给定两个矩阵A、A1(均为3*3),将A变化为三对角阵,用QR方法对A1算一步求A2 6、(1)以前试题的变形,设B奇异,证明(||A-B||/||A||)〉=1/(||inv(A)||||A||),其中|| 为算子范数 (2)证明最佳n次平方逼近函数奇偶性与f(x)相同 别的题目记不太清了 第一题有些错误,正确的题目好像是: Y(n+1)=Y(n)+h*(k1+5*k2)/6 k1=f(tn,Y(n)) k2=f(tn+3/5*h,y(n)+3/5*k1) 偶算出来的是二阶相容 第四题的矩阵A好像是: [10 -1 -2;-1 10 -2;0 -2 10] 2002.12 1.三点高斯-勒让得积分公式 最佳平方逼近,f(x)=|x|,(-1,1)分别在span{1,x^2}和span{x,x^3}中求 2.书上P236第31题第2小问原题,只是没告诉α的范围,要你求 3.书上P257原题 加了两问,证明收敛,再算一步 4.householder变换 Givens做QR分解 5.Y(n+2)=Y(n)+h(fn+f(n+2)) 求局部TE,相容,根条件,绝对稳定区间 6.定理1.12和推论,以及P167式3.4的应用 ||A-B||<1/||inv(A)|| 要证B可逆,||inv(B)||<=||inv(A)||/(1-||A-B||*||inv(A)||) ||inv(A)-inv(B)||<=(||inv(A)||)^2*||A-B||/(1-||A-B||*||inv(A)||) ft,没做完,第4题的矩阵太难算了

数值计算原理部分试题

标题: 还是出个回忆版吧,师弟师妹小心了(高数分,小白的) 发信站: 水木社区(Tue Jan 10 17:46:47 2006), 站内 唔,后天还要考门数学,释放一下内存,不然等会就忘光了. 小题很一般了: 1.(1,1/2;1/2,1)求2范数和cond2 2.上题的QR分解 后面是几题判断题,要求写出对错和原因.题不记得了,但不难,与往年差不多(本来准备做完后将题录下来的,可是实在没时间了:() 以下的小题顺序不一定对: du/dt=(u-u+)(u-u-) u+>u-,问哪个是稳态的哪个不是. 矩阵如果可以相似对角化,就一定可以求解特征值,其条件数等于求矩阵解的条件数cond (判断) 多重网格是解椭圆方程的最优方案,其特点是用粗网格消去高频分量,细网格消去低频分量.(判断) f (x) = f(x1,x2,x3)=x1x2-x2x3-x3^2-x2-x3临界点\临界值\正则点\正则值 不完全LU分解用于用Gauss消去法求解稀疏阵.(判断) 就记得这么多了. 大题: 1.(4,1,1;1,2,1;1,1,3)用初值q1=(1/3,2/3,2/3)进行lanczos分解.(数据是回忆的,不一定对)2.一个函数F(x),表达示不记得了.问(1)证明x=(...,...)'是其解(送分的,代入就行)(2)写出Newton法迭代式(很容易写)(3)写出当x0=(...,...)'时用newton法的x1.(总体很常规,不难) 3.A=(4,1;1,1;1,2)问(1)svd分解(2)求A+(3)求r(A),(送分的) 4.证明题:zm属于krylov空间Km(r0,Ar0,A^2r0....),Lm=AKm(Ar0,A^2r0,A^3r0...), 证明(r0-Azm,v)=0,v属于Lm<==>||r0-Azm||=min||r0-Az||其中z属于Km. (比较简单,书上有的.) 5.一题变分的,要求证明两个问题等价,好像是d4u/dx4=f(x),变分为一个边值和一阶边值为零的问题.具体记不清了,因为没时间,只看了看,但也不是太难.可用分部积分算算.应该可以做出来. 【在armroe (光明使徒(鐵甲無敵阿姆羅高達第一)) 的大作中提到: 】 : 题量大,计算难.光lanczos和svd分解就计算一个多小时.最后十分钟才证明了倒数第二题.最后一道简单的证明题看着做不了.svd还没全算出来,一共才做了80多分的题,唉. 小结: 考试时间基本不够用,至少没有人能提前交卷.一些计算技巧可以节省时间. 如第一小题,对于对称阵的2范数不必算A'A,因为A'=A所以A'A的特征值是A特征值平方.如此题为3/2和1/2,所以2范数就是sqrt(p(A'A))=3/2,A-1的2范数就是A特征值的倒数的P,这里为1/2的倒数,所以是2。cond2=2*3/2=3。也就是只求A的特征值就够解两个问题了。 QR分解在这二阶情况下用Givens要比Household容易。 对于一般分解如lanczos和svd,假设参数后代入原始方程计算,往往能从数据的比较中快速求解若干参数,对解题有很大好处。不一定按部就班按书上推的公式做,那是给老实又死板机器做的,人要聪明一些^_^.

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析模拟试题

1、 方程组中,,则求解方程组的Jacobi 迭代与Gauss-Seidel 迭代均收敛的a 的范围是___________。 2、,则A 的LDL T 分解中,。 3、,则__________,_______________. 4、已 知,则用复合梯形公式计算求 得,用三点式求得____________. 5、,则_________ ,三点高斯求积公式______________. 6设* 2.40315x =是真值 2.40194x =的近似值,则* x 有________位有效数字。 7 3()1,[0,1,2,3]f x x x f =+-=设 则差商(均差)_____________,[0,1,2,3,4]f =________________。 8 求方程()x f x =根的牛顿迭代格式是__________________。 9.梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。 10.牛顿—柯特斯求积公式的系数和()0n n k k C ==∑__________________。 11.用二次拉格朗日插值多项式2()sin0.34L x 计算的值。插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。 12.用二分法求方程3()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限 210ε-=。 13.用列主元消去法解线性方程组 1231231 232346,3525,433032.x x x x x x x x x ++=??++=??++=? 14. 确定求积公式

012()()(0)()h h f x dx A f h A f A f h -≈-++? 。 中待定参数i A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积公式的代数精度。 15、 试求使求积公式的代数精度 尽量高,并求其代数精度。 16.证明区间[a,b]上带权()x ρ的正交多项式(),1,2,n P x n = 的n 个根都是单根,且位于区间(a,b)内。 17.设()()[,],max ()n n a x b f x C a b M f x ≤≤∈=,若取 21cos ,1,2,,222k a b a b k x k n n +--=+= 作节点,证明Lagrange 插值余项有估计式21()max ()!2n n n a x b M b a R x n -≤≤-≤ 18用n=10的复化梯形公式计算时, (1)试用余项估计其误差 (2)用n=10的复化梯形公式计算出该积分的近似值。 19已知方程组AX =f,其中 (1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。 (2)求出Jacobi 迭代矩阵的谱半径,SOR 迭代法的最佳松弛参数 和SOR 法 的谱半径(可直接用现有结论) 20试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少? 21证明方程=)(x f x 2-x -3=0在区间(2,3)内有且仅有一个根,并用迭代法求方程在区间(2,3)内的根,精确到小数点后4位。 22设f (1)=2,f (3)=4,f (4)=6,用拉格朗日插值法求f (x )的二次插值多项式P 2(x ),并求f (2)的近似值。

武汉大学硕士2014级数值分析期末考题

武 汉 大 学 2014~2015学年第一学期硕士研究生期末考试试题 科目名称:数值分析 学生所在院: 学号: 姓名: 一、(12分)已知方程0410=-+x e x 在]4.0,0[内有唯一根。 (1)迭代格式A :)104ln(1n n x x -=+;迭代格式B :)4(10 11n x n e x -=+ 试分析这两个迭代格式的收敛性; (2)写出求解此方程的牛顿迭代格式。 二、(12分)用Doolittle 分解法求线性方程组Ax b =的解,并求行列式A 。 其中 244378112A ?? ?= ? ???, 386018b ?? ?= ? ??? 三、(14分)设方程组 11223300a c x d c b a x d a c x d 轾轾轾犏犏犏犏犏犏=犏犏犏犏犏犏臌臌臌 , 且0abc 1 (1) 分别写出Jacobi 迭代格式及Gauss-Seidel 迭代格式; (2) 导出Gauss-Seidel 迭代格式收敛的充分必要条件。 四、(12分)已知 )(x f y = 的数据如下: 求)(x f 的Hermite 插值多项式)(3x H 及其余项。 五、(12

求常数a , b , 使 3 220[]min i i i i ax bx y =+-=? 六、(12分)确定常数 a ,b 的值,使积分 1 20()x I a bx e dx =+-ò 取得最小值。 七、(14分)设)(x f 在],[b a 上二阶导数连续。将],[b a n 等分,分点为 b x x x a n =<<<= 10,步长n a b h -= (1)证明中矩形公式 11()()2i i x i i x x x f x dx hf --+?ò ………………(*) 的误差为: 311()[,]24i i i i R h f x x h h -ⅱ= ? (2)公式(*)是否为高斯型求积公式? (3)写出求 ?b a dx x f )( 的复化中矩形公式及其误差。 八、(12分)对于下面求解常微分方程初值问题 ?????==0 0)(),(y x y y x f dx dy 的改进欧拉法: 112121()2(,)(,)n n n n n n h y y k k k f x y k f x h y hk +ì??=++????=í???=++???? (1)确定此方法的绝对稳定域; (2)用此方法求解如下初值问题: 22(0)1 y x y y ì¢?=+?í?=?? ]1,0[∈x 。(取步长5.0=h )

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。(即Gauss 型求积公式) 2. 已知数值求积公式为3 11 ()[(1)4(2)(3)]3 f x dx f f f ≈++? , 则其代数精度为______。 3. 数值积分公式1 '12 ()[(1)8(0)(1)]9 f x dx f f f -≈-++?的代数 精度为_________。 4. 要使求积公式1 110 1 ()(0)()4 f x dx f A f x ≈ +?具有2次代数精度,则1x =___,1A =___。 5. 在Newton-Cotes 求积公式:() ()()()n b n i i a i f x dx b a C f x =≈-∑? 中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。 ()8()7()10()6A n B n C n D n ≥≥≥≥ 6. 若用复化梯形公式计算1 0x e dx ?,要求误差不超过6 10-,利 用余项公式估计,至少用______个求积节点。 7. 对于Gauss 型求积公式3 1 ()()()b k k a k f x x dx A f x ρ=≈∑?,其中 ()x ρ为权函数,下列说法错误的是_________。

(A )该求积公式一定是稳定的; (B )3 1()k k k A f x b a ==-∑; (C )该求积公式的代数精度为5; (D )2 (35)()()0b a x x x x dx ωρ-=? ,其中3 1 ()()k k x x x ω==∏-。 8. 0{()}k k x ?∞ =是区间[0,1]上权函数 ()x x ρ=的最高系数为1的正交多项式族,其中0()1x ?=,则1 40()_______x x dx ?=?。 9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度: 1 010 1 ()()(1)2 xf x dx A f A f ≈+? 10. 数值积分公式形如 1 ()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++? (1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4 ()[0,1]f x C ∈,推导余项公式1 0()()()R x xf x dx S x =-?, 并估计误差。 11. 用8n =的复化梯形公式和复化Simpson 公式计算 1 x e d x -? 时, (1)试用余项估计其误差; (2)计算积分的近似值。

相关主题
文本预览
相关文档 最新文档