当前位置:文档之家› 相似三角形一对一辅导讲义

相似三角形一对一辅导讲义

相似三角形一对一辅导讲义
相似三角形一对一辅导讲义

教学目标 1、相似三角形的判定定理

2、利用相似三角形的性质及判定解题 重点、难点 1、相似三角形的判定定理 2、平行线分线段成比例定理 考点及考试要求

1、相似三角形的性质及判定

2、利用相似三角形的性质及判定解题

教 学 内 容

第一课时 相似三角形知识梳理

⒈若AB=1m ,CD=25cm ,则AB ∶CD= ;若线段AB=m, CD=n ,则AB ∶CD= .

⒉若MN ∶PQ=4∶7,则PQ ∶MN= , MN= PQ ,PQ= MN 。

3.已知4x -5y=0,则(x +y )∶(x -y )的值为 .

4.若x ∶y ∶z=2∶7∶5,且x -2y +3z=6,则x= ,y= ,z= ;

5.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .

1预备定理

平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)

课前检测

知识梳理

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三

如果两个三角形的两组对应边成比例,并且相应的夹角相等,

那么这两个三角形相似。

如果两个三角形的三组对应边成比例,那么这两个三角形相似

五(定义)

对应角相等,对应边成比例的两个三角形叫做相似三角形

两三角形三边对应垂直,则两三角形相似。

两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。

由角度比转化为线段比:h1/h2=Sabc

九(易失误)

比值是一个具体的数字如:AB/EF=2

而比不是一个具体的数字如:AB/EF=2:1

2一定相似

1.两个全等的三角形

全等三角形是特殊的相似三角形,相似比为1:1

2.任意一个顶角或底角相等的两个等腰三角形

两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。

3.两个等边三角形

(两个等边三角形,三个内角都是60度,且边边相等,所以相似)

4.直角三角形中由斜边的高形成的三个三角形

3判定定理

基本判定

(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)

(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)

(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。

直角三角形判定

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成

比例,那么这两个直角三角形相似。

性质定理

(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

4定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

5性质

1.相似三角形对应角相等,对应边成比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方

6.若a/b =b/c,即b2=ac,b叫做a,c的比例中项

7.c/d=a/b 等同于ad=bc.

8.不必是在同一平面内的三角形里

(1)相似三角形对应角相等,对应边成比例.

(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

(3)相似三角形周长的比等于相似比

6全等三角形

(1).1.相似比为1:1 2.对应角相等 3.对应边相等 4.对应高相等 5.对应中线相等 6.对应角平分线相等7.周长相等 8.面积相等9完全重合(等角对等边)

(2).1.三边对应相等的两个三角形全等(简称SSS或“边边边”),这一条是三角形具有稳定性的原因。2.两边和它们的夹角对应相等的两个三角形全等(简称SAS或“边角边”)。3.两角和它们的夹边对应相等的两个三角形全等(简称ASA或“角边角”)。4.两个角和其中一个角的对边对应相等的两个三角形全等(简称AAS或“角角边”)。5.直角三角形全等条件有:斜边及一条直角边对应相等的两个直角三角形全等(简称HL或“斜边,直角边”)。SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理。

(3)全等与相似的比较:

三角形全等三角形相似

相似判定的预备定理

两角夹一边对应相等(ASA)

两角一对边对应相等(AAS)

两边及夹角对应相等(SAS)

三边对应相等(SSS)

直角三角形中一直角边与斜边对应相等(HL)

两角对应相等

两边对应成比例,且夹角相等

三边对应成比例

直角三角形中斜边与一直角边对应成比例

第二课时相似三角形典型例题

类型一、相似三角形的概念

例1.判断对错:

(1)两个直角三角形一定相似吗?为什么?

(2)两个等腰三角形一定相似吗?为什么?

(3)两个等腰直角三角形一定相似吗?为什么?

(4)两个等边三角形一定相似吗?为什么?

(5)两个全等三角形一定相似吗?为什么?

思路点拨:要说明两个三角形相似,要同时满足对应角相等,对应边成比例.要说明不相似,则只要否定其中的一个条件.

【变式1】两个相似比为1的相似三角形全等吗?

【变式2】下列能够相似的一组三角形为( )

A.所有的直角三角形

B.所有的等腰三角形

C.所有的等腰直角三角形

D.所有的一边和这边上的高相等的三角形

类型二、相似三角形的判定

例2.如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.

典型例题

思路点拨:由可知AB∥CD,AD∥BC,再根据平行线找相似三角形.

解:∵四边形ABCD是平行四边形,

∴ AB∥CD,AD∥BC,

∴△BEF∽△CDF,△BEF∽△AED.

∴△BEF∽△CDF∽△AED.

∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;

当△CDF∽△AED时,相似比.

例3.已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC和△EDF相似吗?为什么?

思路点拨:已知△ABC和△EDF都是直角三角形,且已知两边长,所以可利用勾股定理分别求出第三边AC和DE,再看三边是否对应成比例.

解:在Rt△ABC中,AB=10,BC=6,∠C=90°.

由勾股定理得.

在Rt△DEF中,DF=3,EF=4,∠F=90°.

由勾股定理,得.

在△ABC和△EDF中,,,,

∴,

∴△ABC∽△EDF(三边对应成比例,两三角形相似).

例4.如图所示,点D在△ABC的边AB上,满足怎样的条件时,△ACD与△ABC相似?试分别加以列举.

思路点拨:此题属于探索问题,由相似三角形的识别方法可知,△ACD与△ABC已有公共角∠A,

要使此两个三角形相似,可根据相似三角形的识别方法寻找一个条件即可.

解:当满足以下三个条件之一时,△ACD∽△ABC.

条件一:∠1=∠B.

条件二:∠2=∠ACB.

条件三:,即.

【变式1】已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.

求证:△ADQ∽△QCP.

思路点拨:因△ADQ与△QCP是直角三角形,虽有相等的直角,但不知AQ与PQ是否垂直,所以不能用两个角对应相等判定.而四边形ABCD是正方形,Q是CD中点,而BP=3PC,

所以可用对应边成比例夹角相等的方法来判定.具体证明过程如下:

【变式2】已知:如图,AD是△ABC的高,E、F分别是AB、AC的中点.

求证:△DFE∽△ABC.

思路点拨:EF为△ABC的中位线,EF=BC,又DE和DF都是直角三角形斜边上的中线,DE=AB,DF=AC.因此考虑用三边对应成比例的两个三角形相似.

师生小结

1.本节课我们学习了:

2.你学到了什么?

第三课时相似三角形课堂检测

课堂检测

1.(2010年广西桂林)如图X6-4-1,已知△ADE与△ABC的相似比为1∶2,则△ADE与△ABC的面积比为( )

A.1∶2 B.1∶4 C.2∶1 D.4∶1

2.若两个相似三角形的面积之比为1∶16,则它们的周长之比为( )

A.1∶2 B.1∶4 C.1∶5 D.1∶16

3.下列各组线段(单位:cm)中,是成比例线段的为( )

A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3

4.(2011年湖南怀化)如图1,在△ABC中,DE∥BC,AD=5,BD=10,AE=3,则CE的值为( ) A.9 B.6 C.3 D.4

5.若△ABC∽△DEF,它们的周长分别为6 cm和8 cm,那么下式中一定成立的是( ) A.3AB=4DE B.4AC=3DE

C.3∠A=4∠D D.4(AB+BC+AC)=3(DE+EF+DF) 图1 6.如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为( ) A.5∶3 B.3∶2 C.2∶3 D.3∶5

7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;

④所有的矩形都相似.其中说法正确的序号是________________.

8.如果两个相似三角形的相似比是3∶5,周长的差为4 cm,那么较小三角形的周长为________cm. 9.如图2,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线

MN交AC于点O.

(1)求证:△COM∽△CBA;

图2

(2)求线段OM的长度.

10.如图3,已知四边形ABCD是平行四边形.

(1)求证:△MEF∽△MBA;

(2)若AF,BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.

图3

11.已知如图4,在矩形ABCD中,E是BC上一点,F是BC的延长线上一点,且BE=CF,BD与AE相交于点G.

求证:(1)△ABE≌△DCF;

(2)CF·AE=BF·GE.

图4 12.如图5,已知在△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.

九年级培优圆与相似辅导专题训练含答案

九年级培优圆与相似辅导专题训练含答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

相似三角形全讲义(教师版)

相似三角形全讲义(教师版)

————————————————————————————————作者:————————————————————————————————日期:

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

中考数学备考之圆与相似压轴突破训练∶培优 易错 难题篇含答案

中考数学备考之圆与相似压轴突破训练∶培优易错难题篇含答案 一、相似 1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC. (1)求证:BD是⊙O的切线; (2)求证:CE2=EH?EA; (3)若⊙O的半径为,sinA= ,求BH的长. 【答案】(1)证明:如图, ∵∠ODB=∠AEC,∠AEC=∠ABC, ∴∠ODB=∠ABC, ∵OF⊥BC, ∴∠BFD=90°, ∴∠ODB+∠DBF=90°, ∴∠ABC+∠DBF=90°, 即∠OBD=90°, ∴BD⊥OB, ∴BD是⊙O的切线 (2)证明:连接AC,如图2所示: ∵OF⊥BC, ∴, ∴∠CAE=∠ECB, ∵∠CEA=∠HEC,

∴△CEH∽△AEC, ∴, ∴CE2=EH?EA (3)解:连接BE,如图3所示: ∵AB是⊙O的直径, ∴∠AEB=90°, ∵⊙O的半径为,sin∠BAE= , ∴AB=5,BE=AB?sin∠BAE=5× =3, ∴EA= =4, ∵, ∴BE=CE=3, ∵CE2=EH?EA, ∴EH= , ∴在Rt△BEH中,BH= . 【解析】【分析】(1)要证BD是⊙O的切线,只需证∠OBD=90°,因为∠OBC+∠BOD=90°,所以只须证∠ODB=∠OBC即可。由圆周角定理和已知条件易得∠ODB=∠ABC,则∠OBC+∠BOD=90°=∠ODB+∠BOD,由三角形内角和定理即可得∠OBD=90°; (2)连接AC,要证CE2=EH?EA;只需证△CEH∽△AEC,已有公共角∠AEC,再根据圆周角定理可得∠CAE=∠ECB,即可证△CEH∽△AEC,可得比例式求解; (3)连接BE,解直角三角形AEB和直角三角形BEH即可求解。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

初中数学相似三角形的运用~~讲义、练习

C B A 相似三角形运用 班级________姓名___________ 【基础练习】: 1.如图所示,若点C 是AB 的黄金分割点,AB =1,则A C=___ ,BC=_____ ; 2.如图,在等腰三角形ABC 中,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的角平分线,BD 、CE 相交于点O,则图中的黄金三角形有______个。 3.某校数学兴趣小组为测量学校旗杆AC 的高度,在点F 处竖立一根长为1.5米的标杆DF , 如图(1)所示,量出DF 的影子EF 的长度为1米,再量出旗杆AC 的影子BC 的长度为6米,那么旗杆AC 的高度为 ____ 4.如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米. 【典型例题】: 例1.(1)如图,以A 为位似中心,将四边形ABCD 放大为原来的2倍. (2)以O 为位似中心,将四边形ABCD 按位似比1:2缩小。 例2.(1)如图的五角星中, AC AB 与BC AC 的关系是( ) A 、相等 B 、AC AB >BC AC C 、AC AB

初中数学相似三角形练习题附参考答案

经典练习题相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD 的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC.

求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=_________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论.

8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的 (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似若存在,求t的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.

九年级数学上册相似三角形的判定-讲义

编号:76854125658544289374459234 学校:麻阳市青水河镇刚强学校* 教师:国敏* 班级:云云伍班* 学科:数学 专题:相似三角形的判定 重难点易错点解析 判断三角形是否相似,要注意思维的完整性. 题一 题面:如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对. 金题精讲 题一 题面:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想, (1)求证:AC2=AD·AB;BC2=BD·BA; (2)求证:CD2=AD·AD; (3)求证:AC·BC=AB·CD. 三角形相似

题二 题面:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC. 圆周角定理、相似三角形 满分冲刺 题一 题面:如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少? 相似多边形、二次函数 题二 题面:已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.

利用平行线构造相似三角形 题三 题面:如图13-2,点P是边长为4的正方形ABCD内一点,PB=3,BF⊥BP于点B,试在射线BF上找一点M,使得以点B,M,C为顶点的三角形与△ABP相似,作图并指出相似比k的值. 图13-2 相似三角形的判定

讲义参考答案 重难点易错点解析 题一 答案:6对. 金题精讲 题一 答案:利用三角形相似证明. 题二 答案:提示:连结AE 、ED ,证△ABE ∽△ECD . 满分冲刺 题一 答案:25= x 时,S 的最大值为252. 题二 答案:12 AF FB =. 题三 答案:如图13-3. 图13-3 ∵AB ⊥BC ,PB ⊥BF , ∴∠ABP =∠CBF .

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲 (何老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质:b c a d d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2 1 5-AB ≈0.618AB , (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = , = , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: n m b a =

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

(完整版)相似三角形专题

【一】知识梳理 【1】比例 ①定义:四个量a,b,c,d中,其中两个量的比等于另两个量的比,那么这四个量成比例 ②形式:a:b=c:d, ③ 性质:基本性质: d c b a = ac=bd 4,比例中项: b c c a =ab c= 2 【2】黄金分割 定义:如图点C是AB上一点,若BC AB AC? = 2,则点C是AB的黄金分割点,一条线段的黄金分割点有两个 AC AC BC AB AB BC AB AB AC 618 .0 2 1 5 382 .0 2 5 3 618 .0 2 1 5 ≈ - = ≈ - = ≈ - = 注意:如图△ABC,∠A=36°,AB=AC,这是一个黄金三角 形, 【3】平行线推比例 AB AB BC618 .0 2 1 5 ≈ - = d c b a = 注:比例式有顺序性的,比例线段没有负的,比例数有正有负 1、可以把比例式与等积式互化。 2、可以验证四个量是否成比例 上比全=上比全,下比全=下比全,上比下=上比下,左比右=左比右 全比上=全比上,全比下=全比下下比上=下比上

【4】相似三角形 1、相似三角形的判定 ①AA 相似:∵∠A=∠D, ∠B=∠E ∴△ABC ∽△DEF ②‘S A S ’ E B EF BC DE AB ∠=∠=,Θ ∴△ABC ∽△DEF ③‘S S S ’EF BC DF AC DE AB = Θ ∴△ABC ∽△DEF ④平行相似: ∵DE ∥BC ∴△ADE ∽△ABC 2、相似三角形的性质 ①相似三角形的对应角相等,对应边成比例 ②相似三角形的对应高的比、对应中线的比、对应角平分线的比、对应周长的比都等于相似比 ③相似三角形的面积比等于相似比的平方 3、相似三角形的常见图形 ‘A 型图’ ‘ X 型图’ ‘K 型图’ ‘母子图’ ‘一般母子图’ AC 2 =AD ?AB 母子图中的射影定理

相似三角形详细讲义

知识梳理 相似三角形的概念 对应角相等,对应边成比例的三角形,叫做相似三角形. 相似用符号“∽”表示,读作“相似于”. 相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 注意: ①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易 找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对 应边成比例. 相似三角形的基本定理 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原 三角形相似. 定理的基本图形: 用数学语言表述是:

BC DE // , ADE ∽ABC . 相似三角形的等价关系 (1)反身性:对于任一ABC 有ABC ∽ABC . (2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC . (3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法 1、定义法:对应角相等,对应边成比例的两个三角形相似. 2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似. 3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似. 4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似) 6、判定直角三角形相似的方法: (1)以上各种判定均适用. (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. (3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 公式 如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下: (1)(AD )2=BD ·DC , (2)(AB )2=BD ·BC , (3)(AC )2=CD ·BC 。 证明:在 △BAD 与△ACD 中,∠B+∠C=90°,∠DAC+∠C=90°,∴∠B=∠DAC ,又∵∠ BDA=∠ADC=90°,∴△BAD ∽△ACD 相似,∴ AD/BD =CD/AD ,即 (AD )2=BD ·DC 。其余类似可证。 注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得: (AB )2+(AC )2=BD ·BC+CD ·BC =(BD+CD)·BC=(BC )2, 即 (AB )2+(AC )2=(BC )2。 这就是勾股定理的结论。 判断相似三角形的几条思路: 1 条件中若有平行线,可采用相似三角形的基本定理 2 条件中如果有一对等角,可再找一对等角(用判定1)或再找夹边成比例。(用判定2)3条件中若有两边对应成比例,可找夹角相等(直角可以直接得出相似)4条件中若有一对直角,可考虑在找一对等角或证明斜边,直角边对应成比例。5条件中若

2020-2021九年级培优相似辅导专题训练及详细答案

2020-2021九年级培优相似辅导专题训练及详细答案 一、相似 1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t, ∴DF=AD=2t, ∴OF=4﹣4t, ∴D(2t﹣4,0), ∵直线AC的解析式为:,∴E(2t﹣4,t), ∵△EFC为直角三角形,分三种情况讨论: ①当∠EFC=90°,则△DEF∽△OFC, ∴,即,解得:t= ; ②当∠FEC=90°,

∴∠AEF=90°, ∴△AEF是等腰直角三角形, ∴DE= AF,即t=2t, ∴t=0,(舍去), ③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或; (3)解:∵B(1,0),C(0,2), ∴直线BC的解析式为:y=﹣2x+2, 当D在y轴的左侧时,S= (DE+OC)?OD= (t+2)?(4﹣2t)=﹣t2+4 (0<t<2); 当D在y轴的右侧时,如图2, ∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)?OD= (﹣8t+10+2)?(4t﹣4),即 (2<t<). 综上所述: 【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。 (2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可; ②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。 (3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。 2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点

九上学生相似三角形讲义全

第1讲相似图形与成比例线段 【学习目标】 1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。 2、了解成比例线段的概念,会确定线段的比。 【学习重点】相似图形的概念与成比例线段的概念。 【学习难点】成比例线段概念。 【学习过程】 知识点一:比例线段 定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两 条线段的比,如果a c b d ,那么就说这四条线段a、b、c、d叫做成比例线 段,简称比例线段。 例:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例? 解: 练习一: 1、如图所示:(1)求线段比AB BC、 CD DE、 AC BE、 AC CD (2)试指出图中成比例线段 2、线段a、b、c、d的长度分别是30mm、2cm、0.8cm、12mm判断这四条线段是否成比例? 3、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例? 4、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的

比是___________ 5、已知线段a= 12、 b =2+c=2若a c b x =,则x =_________若()0b y y y c =>, 则y =__________ 6、下列四组线段中,不成比例的是 ( ) A a=3 b=6 c=2 d=4 C a=4 b=6 c=5 d=10 知识点二:比例线段的性质 比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果 a c b d =,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形 b d a c =、a b c d =、c d a b = (2) 合比性质:如果 a c b d =,那么a b c d b d ±±= (3) 等比性质:如果 a c e m b d f n ====()0b d f n ++++≠,那么 a c e m a b d f n b ++++=+++ + 例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -= 练习二: 1、已知35a b =,求a b a b +- 2、若 234a b c ==,则23a b c a ++=_________ 3、已知mx ny =,则下列各式中不正确的是( ) A m x n y = B m n y x = C y m x n = D x y n m = 4、已知570x y -=,则 x y =_______

相似三角形一对一辅导讲义

教学目标 1、相似三角形的判定定理 2、利用相似三角形的性质及判定解题 重点、难点 1、相似三角形的判定定理 2、平行线分线段成比例定理 考点及考试要求 1、相似三角形的性质及判定 2、利用相似三角形的性质及判定解题 教 学 内 容 第一课时 相似三角形知识梳理 ⒈若AB=1m ,CD=25cm ,则AB ∶CD= ;若线段AB=m, CD=n ,则AB ∶CD= . ⒉若MN ∶PQ=4∶7,则PQ ∶MN= , MN= PQ ,PQ= MN 。 3.已知4x -5y=0,则(x +y )∶(x -y )的值为 . 4.若x ∶y ∶z=2∶7∶5,且x -2y +3z=6,则x= ,y= ,z= ; 5.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 1预备定理 一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明) 二 课前检测 知识梳理

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三 如果两个三角形的两组对应边成比例,并且相应的夹角相等, 那么这两个三角形相似。 四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 六 两三角形三边对应垂直,则两三角形相似。 七 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。 八 由角度比转化为线段比:h1/h2=Sabc 九(易失误) 比值是一个具体的数字如:AB/EF=2 而比不是一个具体的数字如:AB/EF=2:1 2一定相似 1.两个全等的三角形 全等三角形是特殊的相似三角形,相似比为1:1

九上学生相似三角形讲义

第1讲 相似图形与成比例线段 【学习目标】 1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。 2、了解成比例线段的概念,会确定线段的比。 【学习重点】相似图形的概念与成比例线段的概念。 【学习难点】成比例线段概念。 【学习过程】 知识点一:比例线段 定义:对于四条线段a 、b 、c 、d ,如果其中 两条线段的比(即它们长度的比)与另外两条线段的比 ,如果 a c b d = ,那么就说这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。 例:如四条线段的长度分别是4cm 、8cm 、3cm 、6cm 判断这四条线段是否成比例? 解: 练习一: 1、如图所示:(1)求线段比AB BC 、CD DE 、AC BE 、AC CD (2)试指出图中成比例线段 2、线段a 、b 、c 、d 的长度分别是30mm 、2cm 、0.8cm 、12mm 判断这四条线段是否成比例? 3、线段a 、b 、c 、d 的长度分别是 2 4、已知A 、B 两地的实际距离是250m 若画在图上的距离是5cm ,则图上距离与实际距离的比是___________ 5、已知线段a= 12、 b =2+、c=2-a c b x =,则x =_________若()0b y y y c =>,则 y =__________ 6、下列四组线段中,不成比例的是 ( ) A a=3 b=6 c=2 d=4 d= C a=4 b=6 c=5 d=10 D 知识点二:比例线段的性质 比例性质是根据等式的性质得到的,推理过程如下: (1) 基本性质:如果 a c b d =,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形 b d a c =、a b c d =、c d a b = (2) 合比性质:如果 a c b d =,那么a b c d b d ±±=

相似三角形知识点梳理

相似三角形知识点汇总 重点、难点分析: 1、相似三角形的判定性质是本节的重点也是难点. 2、利用相似三角形性质判定解决实际应用的问题是难点。 一、重要定理 (比例的有关性质): 二、有关知识点: 1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。 2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理: 6.直角三角形相似: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。 8. 相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2 反比性质:c d a b = 更比性质:d b c a a c b d ==或 合比性质:d d c b b a ±=± ?=?=bc a d d c b a (比例基本定理)

相似三角形判定的基本模型 A字型 X字型反A字型反8字型母子型旋转型双垂直三垂直相似三角形判定的变化模型 C B E D A

(完整版)相似三角形最全讲义(教师版)

相似三角形基本知识 知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段 的比是a :b =m :n (或 n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如 d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例d c b a = (或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例d c b a = (或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为 a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

相似三角形培优训练(含答案)之令狐文艳创作

相似三角形分类提高训练 令狐文艳 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC 交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的 面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D 在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q 从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x 为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB 边从A开始向点B以2cm/s的速度移动;点Q沿DA边从 点D开始向点A以1cm/s的速度移动.如果P、Q同时出 发,用t(s)表示移动的时间(0<t<6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t 为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

相关主题
文本预览
相关文档 最新文档