当前位置:文档之家› 提高三坐标测量机测量螺纹孔位置度精度的方法

提高三坐标测量机测量螺纹孔位置度精度的方法

提高三坐标测量机测量螺纹孔位置度精度的方法
提高三坐标测量机测量螺纹孔位置度精度的方法

提高三坐标测量机测量螺纹孔位置度精度的方法

史洋

【摘要】现有的三坐标测量机测量螺纹孔位置度的方法普遍存在测量不确定度较大的问题,如何通过改进三坐标测量螺纹孔的方法来降低螺纹孔位置度测量不确定度呢?本文探索了一种三坐标测量螺纹孔位置度的方法,可有效降低螺纹孔位置度的测量不确定度,通过检测实例与现有的测量方法比较,测量误差明显降低,这种测量螺纹孔位置度的新方法有一定的推广价值。

【关键词】螺纹孔位置度三坐标测量方法

1.问题的提出

三坐标测量螺纹孔位置度的准确性一直受到操作人员、维修人员、质量人员、工艺及产品设计人员的质疑,有许多机械制造企业已经完全不用三坐标测量螺纹孔位置度了,仅测量螺纹孔底孔(光孔)的位置度,或者用螺纹孔底孔(光孔)的位置度来代替螺纹孔位置度,这种处理的方法仅对加工刀具为丝锥且底孔已经经过了钻削加工的螺纹孔位置度控制有一定的效果,对车削、铣削、挤压成型的螺纹孔位置度的质量控制存在一定的风险,对直接在毛坯上攻丝的螺纹孔位置度测量就显得误差很大,虽然这种螺纹孔的位置度可采用螺纹芯轴来测量,但螺纹芯轴本身的误差以及配合误差带来的不确定度是无法消除和回避的。另外,三坐标测量螺纹孔位置度的准确性也让我们三坐标操作者感到一定的困惑,虽然我们在测量方法上做了一些改进,但每一次改进只能解决一类个性化的问题或者仅能在一定程度上降低测量误差,对于螺纹孔位置度要求较高的测量,仍然无法保证测量的重复性和一致性,这里固然有螺纹孔的加工不规则性原因,也有螺纹孔加工方法不同带来的原因,但三坐标测量螺纹孔位置度的方法还有待进一步的改进和完善,还有很多值得探索实践的地方。

2.三坐标测量螺纹孔位置度现有方法总结及误差分析

三坐标用户目前所采用的螺纹孔位置度的测量方法主要有以下三种:第一种方法同测量光孔一样在螺纹孔同一截面上采四个点测量一个圆,计算该圆心相对评价基准的位置度;第二种方法是在螺纹孔中加装螺纹芯轴,在芯轴上的同一截面上采4个点测量一个圆,计算该圆心相对评价基准的位置度;第三种方法是沿着螺纹孔中螺纹的旋转方向按1/4螺距步进采4个点测量一个圆,求该圆心相对评价基准的位置度。

三种测量方法误差分析:第一种测量方法:螺纹孔内同一截面上采点测量时,所采同一截面四个点构成的圆的圆心一定不在螺纹孔的轴线上,在评定螺纹孔位置度时,这个误差就带入到评定结果中,且同一孔不同截面、不同的孔所测圆的圆心偏离螺纹轴线的位置

有较大的差异,这就是造成螺纹孔位置度测量重复性差、散差大等测不准的主要原因。第二种测量方法是因为螺纹芯轴将螺纹孔轴线延长了,且螺纹配合误差的存在,螺纹芯轴本身的误差都是造成螺纹孔位置度测不准的原因。第三种方法是沿螺纹孔螺纹旋向方向步进采点,虽然保证了所采点构建圆的圆心理论上在螺纹孔轴线上,评定位置度结果较前两种测量方法误差较小,但由于采集的四个点不在同一截面上,轴线稍有倾斜就会带来较大的采点误差存在,这些误差都将带入到螺纹孔位置度的评价结果中。

以上三种螺纹孔位置度的三坐标测量方法广泛应用于汽车、发动机等机械加工制造行业。如果产品要求的螺纹孔位置度公差较大,如位置度公差大于0.2或者位置尺寸公差大于0.1,三种测量方法的测量结果也可以近似的反映出螺纹孔位置的加工质量,尤其当螺纹孔直径在M6左右及以下,螺距小于等于1时,测量误差还是可以接受的。尤其是第三种测量方法测量误差相对其它两种测量方法误差还是比较小的,而且也适合测量螺纹孔直径较大或者螺距较大的孔的位置度。但当螺纹孔位置度公差要求小于0.2,或者位置尺寸公差的要求小于0.1时,以上三种测量方法就显得测量误差较大,尤其不适合做设备能力值和工序能力值的测量。

3.螺纹孔位置度新的测量方法的探索

准确测量螺纹孔位置度的关键就是在构建螺纹孔轴线时要保证采点误差最小,以便能确保采点构建的轴线与螺纹孔加工的轴线重合,其次要保证评定螺纹孔位置度时,评定点要固定在同一截面上。

我们一直在探索和尝试一些新的测量方法来降低螺纹孔位置度的测量评价误差,保证测量结果的准确性。下面是我们最新应用的一种测量螺纹孔位置度的方法,测量误差明显小于沿着螺纹孔中螺纹的旋转方向按1/4螺距步进采四个点测量一个圆,评价该圆圆心相对基准的位置度的测量方法。

3.1 新的螺纹孔位置度的测量方法的测量原理简述

新的螺纹孔位置度的测量方法测量原理为直接触测螺纹孔内两个相距螺距整数倍的圆柱,用2个圆柱的质心点构建螺纹孔轴线。每个圆柱面采8个点,分两层,每层四个点,两层的间距为1/2螺距。用这种方法构建的螺纹孔轴线误差明显较第三种方法(沿着螺纹孔螺纹的旋转方向按1/4螺距步进采4个点测量一个圆)小,同时我们计算出这个螺纹孔轴线与攻丝孔端面的交点,求交点相对评价基准的位置度,这样就保证了评定螺纹孔位置度时,评定点固定在同一截面上。

3.2新的螺纹孔位置度的测量方法的测量与评定程序

新的螺纹孔位置度的测量方法的具体测量和构建评定过程如下:

如图1,测量螺纹孔端面的PL1面,把PL1面作为第一方向并找正,建立零件坐标系

A1:

在零件坐标系A1下,测量螺纹孔,测量方向始终沿着PL1面的法线正方向;在每个螺纹孔中测量2个圆柱面,一个靠近螺纹孔进口端,一个靠近螺纹孔出口端,两个圆柱面的间距为螺距的整数倍;每个圆柱面采8个点,分两层,每层4个点,两层的间距为1/2螺距。

4.螺纹孔位置度新的测量方法的应用实践

为了验证新的螺纹孔位置度的测量方法是否可靠,我们将这种测量方法应用在某零件螺纹孔的位置度的检测上。我们进行了两种测量方法的对比测量实验,根据两种测量方法原理编辑了两个三坐标测量程序,分别将同一个零件测量五次,每次测量重新装夹零件。其中4个螺纹孔的位置度的测量结果如表1、表2,其5次测量结果的分布图如图2、图3。

表1:按方法3的测量方法:1个零件4个孔5次测量结果统计表单位:mm

表2:按新的测量方法1个零件4个孔5次测量结果统计表单位:mm

分布图如下:

图2:按方法3的测量方法1个零件4个孔5次测量结果分布图

图3:按新的测量方法1个零件4个孔5次测量结果分布图

通过图2、图3的对比,我们可以发现下列规律:

①按新的测量方法测量的同一个孔的位置度,5次测量结果散差明显小于方法3的测

量结果;

②按新的测量方法测量同一个零件4个孔的位置度,测量结果的发散区间明显小于

方法3的测量结果。

5.结论

新的螺纹孔位置度的三坐标测量方法保证了螺纹孔轴线构建的准确性,保证了螺纹孔位置度的评定点始终在同一截面的固定性,该测量方法保证了螺纹孔位置度的测量总误差小于0.02,。同一个零件的同一个螺纹孔,位置度的测量重复性好;连续加工的不同零件,相同编号的螺纹孔位置度测量一致性好;同一把刀具加工的不同螺纹孔,位置度测量结果分散性小。

因此,新的螺纹孔位置度的测量方法测量结果可靠、误差较小。这种测量方法还可应用于螺纹孔位置尺寸、螺纹孔轴线的垂直度、平行度、倾斜度等螺纹孔所有位置公差的测量,也可推广应用于具有螺纹轴类零件等外螺纹轴线的垂直度、平行度、倾斜度等螺纹零件的位置公差的测量。

参考资料:

[1] 三坐标测量机 1999年8月张国雄

[2] 机械设计手册 2008年4月成大先

[3] 形位公差与检测技术 2009年1月陈山弟

同轴度测量方法[1]

同轴度测量方法 方法一:用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备:百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax 与最小读数Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax -Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图: 数据采集仪连接百分表测量同轴度误差示意图 优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差; 2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。 3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。

测量同轴度误差的方法

测量同轴度误差的方法

一、同轴度 同轴度用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 二、同轴度公差带 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如下图所示。?d孔轴线必须位于直径为公差值0.1mm,且与基准轴线同轴的圆柱面内。 三、任务:测量联动轴零件的同轴度误差 任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。

含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即 两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 四、测量方法 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如图 3-77 所示。

3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数 Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面 A 、B、C、D),取各截面测得的最大读数 Mimax 与最小读数 Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ=(Mmax - Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值, 然后由数据采集仪软件里的计算软件自动计算出所测产品的同轴度误差(Δ=(Mmax - Mmin )/2),最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度公差范围内,如果所测同轴度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。 测量效果示意图:

三坐标测量位置度的方法及注意事项

摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度;方法 一、位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。 ③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 二、三坐标测量位置度的注意事项

三坐标测量同轴度方法

三坐标测量同轴度方法 方法一同轴度测量方法 两个孔的公共轴心线是指两孔各自被测表面长度的中点连线;假使是三个或三个以上的圆柱表面,它们的公共轴心线应该在图样上另做规定。 - 几种测量机通常采用的同轴度测量方法: 一、应用系统功能法: 即测量机软件系统中自带的同轴度和同心度测量标准子程序,用户在测量时可方便地进行调用。 二、极坐标测量法: 这是一种类似于平台测量的检测方法,其基准元素可以通过圆柱、阶梯柱、直线以及圆/圆等测量后构造的直线获得。可以说,几乎所有用作基准元素的单一基准或组合基准都将包括在内,而被测要素则更为简单,通常情况只是圆的测量。 其操作步骤如下: 1、测量单一基准轴线或公共基准轴线并用其建立第一轴(同心度测量除外); 2、将基准轴线清零(即平移原点到基准中心); 3、在被测元素(孔或轴)上测若干截圆(通常测两端); 4、输出被测截圆极径(PR值); 5、取其输出较大PR值的2倍为所测同轴度误差。 三、求距法: 该方法的基本原理是通过计算圆心到基准轴线距离的方法求得同轴度误差。与极坐标测量方法不同的是,被选定的基准轴线无须清零,但评定同轴度误差时同样要取计算结果中最大距离乘以2。 - 关于两个相邻较远的短基准同轴度的测量: 这是一个比较典型困扰测量机用户的问题,事实上已经证明由此单从测量数据上来看将有相当一部分工件被视为“超差品”,而那些“超差品”经装配实验后证明大多数没有问题。这就不得不需要引起测量机操作员的注意。分析其原因,既不是机器精度太低,也不是系统软件计算错误,主要是图样标注不妥。 对此,可采用以下几种相应的测量方法: 1、当基准元素为孔时,可插入配合间隙较为合适的心棒,以延长基准轴线的实测长度; 2、采用建立公共基准的测量方法,模拟专用心棒进行检验的方法,分别测量两圆柱对公共轴心线的同轴度;(参看前面公共基准轴线的建立方法和极坐标测量法); 3、在基准圆柱表面内测量更多的点,(多用于连续扫描测头)以加大计算的信息量,使系统确定最大内接圆或最小外接圆时有充足的表面形状信息。

三坐标测量同轴度方法

浅析三坐标测量同轴度方法 同轴度检测是我们在测量工作中经常遇到的问题,用三坐标进行同轴度的检测不仅直观且又方便,其测量结果精度高,并且重复性好。辽宁曙光汽车集团零部件公司主要生产汽车零部件,有很多产品需要进行严格的同轴度检查,特别是出口产品的检查更加严密,如EATON差速器壳、AAM拨叉、主减速器壳等。因此能否准确地测量出此类零件的同轴度对以后的装配有着一定的影响。 1、影响同轴度的因素 在国标中同轴度公差带的定义是指直径公差为值t,且与基准轴线同轴的圆柱面内的区域。它有以下三种控制要素:①轴线与轴线;②轴线与公共轴线; ③圆心与圆心。 因此影响同轴度的主要因素有被测元素与基准元素的圆心位置和轴线方向,特别是轴线方向。如在基准圆柱上测量两个截面圆,用其连线作基准轴。在被测圆柱上也测量两个截面圆,构造一条直线,然后计算同轴度。假设基准上两个截面的距离为10 mm,基准第一截面与被测圆柱的第一截面的距离为100 mm,如果基准的第二截面圆的圆心位置与第一截面圆圆心有5μm的测量误差,那么基准轴线延伸到被测圆柱第一截面时已偏离50μm(5μmx100÷10),此时,即使被测圆柱与基准完全同轴,其结果也会有100μm的误差(同轴度公差值为直径,50μm是半径),测量原理图如图1所示。 2、用三坐标测量同轴度的方法 对于基准圆柱与被测圆柱(较短)距离较远时不能用测量软件直接求得,通常用公共轴线法、直线度法、求距法求得。 2.1 公共轴线法 在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。这条公共

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

同轴度测量方法

同轴度测量方法 方法一: 用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax-Mmin)/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

水泵机组同轴度的测量与校正

水泵机组同轴度的测量 与校正 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以

测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大的偏差,而且数值有时为正偏差有时为负偏差,即使后来用激光校正仪来测,在同一时间里多次测量的值都存在偏差,因测量值不准,就无法校正机泵的同轴度。经过分析发现:我厂的机泵联轴器是膜片式联轴器,在测量中时将联轴器转动180°时,水泵或电机有轴向窜动现象出现,每次测量时其轴向窜动量都是不同的,窜动量从几丝到几十丝的之间变化,所以机泵同轴度测量的误差主要是机泵的轴向窜动造成的,轴向窜动对径向偏差的测量影响微小,对轴向偏差的测量影响很大,为了消除轴向窜动对轴向偏差测量的误差,准确地测量出轴向偏差值,通过在CAD图形上进行模拟分析,发现如在测量轴向偏差是用两只相隔180°的百分表同时测量,就可以消除掉轴向窜动引起的测量误差,如下的图1就是模拟轴向窜动时测量轴向偏差的分析图形。 图1 三. 机泵同轴度的测量只要是测量径向偏差和轴向偏差,径向偏差和轴向偏差说明如下:

三坐标测量仪同轴度测量的方法

三坐标测量仪同轴度测量的方法 作者:admin 来源:未知时间:2014-03-20 08:38 查看:1640次 摘要:同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行测量,三坐 同轴度是表示零件的有关要素(轴与轴、孔与孔、轴与孔之间)要求同轴,即控制实际轴线与基准轴线的偏离程度。公司内部有三坐标测仪的,建议使用三坐标测量仪进行同轴度测量,三坐标是公认的测量空间形状误差较好的精密检测设备。 1、利用三坐标测量仪进行测量并直接评价出同轴度误差,有两种方法:一种是测量轴线与基准轴线直接评价法,而另一种是公共轴线法; 一些书中介绍的以一个孔建立一个基准轴线,而评价另个孔与基准的同轴度,由于测量孔和基准孔之间存在一定的距离,因此在评价时,测量误差就会被延长。通过三坐标测量验证,这种方法得出的数据是非常大的,而用这样的数据进行校对机床,反而产生了不良的效果,因此我们采用了用公共轴线法进行评价的方法,这种方法是比较适合生产现场和装配的实际情况的。 如用公共轴线法测量距离为L 的两个孔的同轴度,我们可以分别在两个孔测量两个截面圆,如果孔比较长的情况下,建议各孔均测出两个截面圆,用两个截面圆连线找出其中点即中间截面圆,两孔中间截面圆圆心连线建立公共轴线,把零点设在公共轴线上,这样公共基准就找好了,然后用刚刚测量的单个孔的两个截面圆连线,分别与公共轴线进行比较同轴度,取最大值为两孔同轴度的误差。如图 评价1、2 连线与公共轴线同轴度, 评价4、5 连线与公共轴线同轴度, 取最大差值为同轴度 如本例中就很按照图的规律用三坐标直接评价,在两个外圆上分别取截面圆,因其外 圆的长度很短,可直接取两端A、B 基准的一个截面圆心连线为公共轴线,在坐标系中并设 为零点,然后测量两端内孔后分别与公共轴线同轴度进行比较,测得 零件标记 1# 2# 3# 4# 5# 同轴度◎ 0.164 0.228 0.173 0.260 0.093 可以看出按客户0.15 的同轴度要求,只有5#合格(5#是由远离操作者那个轴加工的),1#、2#、3#、4#超差(靠近操作者的轴加工)。机床靠近操作者的轴应该调整。

量具测量位置度的方法及数据处理的三种方法

通用量具测量位置度的方法及数据处理分析 李全义1 冯文玉2 司登堂1 (1.北方股份公司质量保证部;2.内蒙古北方重工业集团有限公司网络信息公司,内蒙古包头014030) 摘 要:对位置度的测量一般有专用量具测量法、三坐标机测量法和通用量具测量法3种方法。第3种方法操作相对简便,对人员的要求也不高,使用的量具是通用的,成本低廉,但速度较慢,测量精度对操作人员的水平依赖性强。对生产规模中等,生产批量不大,生产品种较多的企业第3种方法比较适用。介绍了在实际中使用的通用量具测量位置度的方法及数据处理分析方法。 关键词:位置度;专用量具;通用量具;三坐标测量机 在机械加工行业数据测量方面,位置度测量相 对比较复杂,对人员和设备也要求较高。目前普遍 使用的有专用量具测量法、三坐标机测量法2种方 法。专用量具测量法操作简便,速度快,但适用范围 小,一种工件需一种量具,成本高;三坐标机测量法 测量速度快,准确,一机多用,但设备成本高,并要有 专门技术人员操作。还有一种通用量具测量法,与 前二者相比,可以扬长避短,但由于数据处理难度比 较大,往往拿着测量结果无法判定其结果是否合格, 也有出现误判的时候,使得此方法的使用受到极大的限制。 本文介绍在实际中使用的通用量具测量位置度的方法及数据处理分析方法。 1 测量方法 工件如图1所示。 图1 法兰盘示意图 测量过程与操作方法:将工件置于平台,进行调整,使基准A的轴线与平台面平行,顺序测量Ф100各孔的轴线位置并记录数据;将工件旋转90°,重复上述工序。测得的数据如表1。 表1 工件测量数据 坐标 孔序号 12345678910 X坐标值0-176.36-285.34-285.33-176.350.04176.35285.33285.33176.35 Y坐标值300.05242.7292.74-92.75-242.73-300.02-242.75-92.7592.74242.74位置度0.10.1020.0840.0940.0570.0890.0940.0940.0750.075 2 数据处理和计算方法 2.1 三角函数法 根据工件产品图的尺寸、位置公差要求,将在平台上的测量值在一定的几何图形中通过三角函数的计算得到实际位置度。 如图1所示工件,该件的公差是一个以圆心确定的Ф600圆周上以36°均布的理想位置为轴线,以Ф0.1为直径的10个圆柱形,如圆2所示,实际轴线 *收稿日期:2010-11-11 作者简介:李全义(1957-),男,包头人,北方重工集团工程师,主要从事机械加工方面的技术工作。计量检测:www.cqstyq.com 计量检测:www.cqstyq.com

长距离同轴度测量方法及实验

第18卷 第2期1997年4月 计 量 学 报ACTA METROLO GICA SIN ICA Vol.18,№2  April ,1997 长距离同轴度测量方法及实验 3 成相印 方仲彦 殷纯永 郭继华 (清华大学,北京 100084) 摘要 本文介绍了一种新型的自适应双频激光同轴度测量系统,该系统利用两个完全对称的渥拉斯顿棱镜,一个作为测量元件,另一个作为补偿元件。采用比相技术处理测量信号,因而测量元件可以暂时移出光路,能够进行同轴度的测量。系统的光学设计使激光光束的平漂和角漂不影响测量结果,对激光的漂移有自适应性。两束干涉光基本符合共光路原则,因而对大气湍流、空气扰动的影响具有更强的适应性,可用于长距离直线度、同轴度的测量。该系统与HP5528双频激光干涉仪在27m 的长导轨上进行了测量直线度的比对实验及挡光实验。比对实验结果表明,该系统在测量精度及稳定性上不低于HP5528。挡光实验表明,该系统挡光后,数据能够自动恢复,可用于同轴度的测量。 关键词: 直线度测量 同轴度测量 自适应系统 本文于1995-12-26收到,1996-10-16修改收到。3 国家自然科学基金资助项目 1 前言 激光在准直测量方面的应用十分广泛。利用双频激光干涉仪的直线度附件测直线度是其成功的范例,其光路如图1所示。该方案对于激光光束的平漂和角漂有自适应作用,测量精度 图1 双频激光测直线度原理图 高,工作稳定。传统的双频激光干涉仪在信号处理上采用锁相倍频计数技术,不允许光路信号中断,否则计数立即无效,因而HP5528等双频激光干涉仪不可能用于测量同轴度。 作者提出了一种新型的自适应双频激光准直系 统,该系统可以用于同轴度测量。本文介绍了该系统 的测量原理,并与HP5528测直线度系统进行了比对实验。 2 测量原理 同轴度测量系统原理如图2所示。双频激光头出射的正交线偏振光通过第一个渥拉斯顿棱镜W 1,分开一小角度,再通过第二个渥拉斯顿棱镜W 2后,变成两束平行光,经直角棱镜反射后,再依次通过W 2、W 1又变成一束光,经探测器D 2接收,形成测量信号。D 1输出的是参考

位置度测量方法

1.基准﹔ 2.理論位置值﹔ 3.位置度公差 三、位置度公差帶 位置度公差帶是一以理論位置為中心對稱的區域。

四、位置度的標注與測量方法

3﹑以中心线左边第二根端子为例﹐测出实际尺寸D1(0.82)﹑D2(1.02)﹐根据位置定义﹐ DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs[(0.85+1.00)/2-0.90}] =0.025<0.05 其中﹐DE表示实际偏差 abs表示绝对值 Da表示实际位置尺寸 Dt表示理论位置尺寸﹐对于不同的端子﹐它们的理论位置尺寸是不测量时测量者须自行计算 DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs{[(d1+Dt)+(Dt-d2)]/2-Dt)} =abs[(d1-d2)/2]

(二)﹑IDE44P垂直位置度的标注与测量 如图﹐IDE44P端子在垂直方向上具有以下特点﹕排数少(只有两排)﹐每排端多(达22PIN)﹐长度值为端子材厚值﹐对于不同的端子﹐其值差异极小﹐因此我们排端子和下排端子分别看成两个整体。下面以下排端子为例介绍其测量方法。 一、测出角柱垂直方向上Φ1.70的实际尺寸﹐然后置中归零﹔ 二、往下偏移2.00﹐然后归零﹔ 三、

为基准﹐用于控制端子锡脚与与PCB板的配合﹐现其位置度公差0.18﹔另一个是端子域的位置度﹐此位置度以KEY为基准﹐用于控制端子接触区域与对插件的配合﹐现其度公差0.3。对于第一个位置度﹐其标注方式已统一﹔对于第二个位置度﹐有如下两种式﹕

以上两种标注方式中﹐第一种直接对124根端子接触区域一一测量其位置度﹐由接触区域是包在主体内部﹐若采用这种方式﹐测量繁琐困难﹔对于第二种测量方式﹐子是下料成型﹐且插在主体插槽中﹐插槽控制了端子的平面度﹐因此只须控制KEY相POST的位置度与端子锡脚相对POST的位置度﹐相应地也就控制了端子接触区域相对 水平位置度Th和垂直位置度Tv后﹐須再驗証其是否滿足公式Th2+Tv2≦0.152。

孔位置度计算

位置度∮t :(每个)被测轴线必须位于直径为公差值∮t,由以对于基准的理论正确尺寸所确定的理想位置为轴线的圆柱面内。例法兰螺钉孔位置度:(1)用V型铁支承距离最远两端主轴颈(A-B),将螺纹检轴紧密旋入螺纹孔中,曲轴销孔中心旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺,将基准中心调整至等高(同时,将位置度检具某一平面调整水平后,固定)。分别测量各螺纹检轴中心线与基准中心线在X(水平)方向的误差值即:Fx。曲轴销孔中心旋转至Y(垂直)方向(同时位置度检具原垂直面为水平),此时测量各螺纹检轴中心线与基准中心线在Y方向的误差值即:Fy。位置度误差为:ΔF=2(Fx2+ fy2)1/2。(2)用V型铁支承距离最远两端主轴颈(A-B),将螺纹检轴紧密旋入螺纹孔中,曲轴连杆轴颈基准(C)旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺,将基准中心调整至等高(同时,将位置度检具某一平面调整水平后,固定)。分别测量各螺纹检轴中心线与基准中心线在X(水平)方向的误差值即:Fx;曲轴连杆轴颈基准(C)旋转至Y (垂直)方向(使位置度检具原垂直面为水平),此时测量各螺纹检轴中心线与基准中心线在Y(垂直)方向的误差值即:Fy。螺纹孔位置度误差为:ΔF =2(Fx2+ Fy2)1/2。取各螺纹检轴位置度误差最大值,作为评定的依据。例定位销孔位置度1、大柴:(1)销孔对基准平面的位置度(水平方向): 用V型铁支承距离最远的两个主轴颈(A-B)且调至等高,把检轴紧密插入销孔,慢慢调整曲轴,用带有杠杆百分表的高度游标卡尺将基准轴线调至等高后(同时,将位置度检具水平方向平面调整等高后,固定)。测量销孔中心与基准轴线高度差的二倍,即为销孔位置度误差。 (2) 销孔轴线对主轴颈轴线的位置度(垂直方向):用V型铁支承距离最远的两个主轴颈(A-B)且调至等高,把检轴紧密插入销孔,慢慢调整曲轴,连杆轴颈基准(C)调整至 Y (垂直)方向(即位置度检具原垂直面为水平),并用带有杠杆百分表的高度游标卡尺,测量销孔中心线到基准轴线的数值与理论正确尺寸之差的二倍。即为销孔位置度误差。2、上柴:(1)用V型铁支承距离最远两端主轴颈(A-B),将连杆轴颈基准(C)旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺将基准调整至等高(同时,将位置度检具水平方向平面调整等高后,固定)。分别测量销孔中心线与基准轴线在X(水平)方向的误差值即:Fx。曲轴连杆轴颈基准(C)旋转至Y(垂直)方向(即位置度检具原垂直面为水平),此时测量Y方向销孔中心线与基准的误差值即:Fy。销孔位置度误差为:f=2 。3、潍柴用V型铁支承距离最远两端主轴颈(A-B)且等高,将连杆轴颈基准(C)旋转至X(水平)方向,用带有杠杆百分表的高度游标卡尺将基准调整至等高(同时,将位置度检具水平方向平面调整等高后,固定)。分别测量销孔中心线与基准轴线在X(水平)方向的误差值即:Fx。曲轴连杆轴颈基准(C)旋转至Y(垂直)方向(即位置度检具原垂直面为水平),此时测量Y方向销孔中心线与基准的误差值即:Fy。销孔位置度误差为:f=2 。答案补充比如 " 位置度¢0.3 A B C" 中位置度公式"△X的平方+△Y的平方,再开根号.之后乘以2.

同轴度检测方法

同轴度检测是我们在测量工作中经常遇到的问题,用三坐标进行同轴度的检测不仅直观且又方便,其测量结果精度高,并且重复性好。汽车零部件生产企业,有很多产品需要进行严格的同轴度检查,特别是出口产品的检查更加严密,如EATON差速器壳、AAM拨叉、主减速器壳等。因此能否准确地测量出此类零件的同轴度对以后的装配有着一定的影响。 1、影响同轴度的因素 在国标中同轴度公差带的定义是指直径公差为值t,且与基准轴线同轴的圆柱面内的区域。它有以下三种控制要素:①轴线与轴线;②轴线与公共轴线;③圆心与圆心。 因此影响同轴度的主要因素有被测元素与基准元素的圆心位置和轴线方向,特别是轴线方向。如在基准圆柱上测量两个截面圆,用其连线作基准轴。在被测圆柱上也测量两个截面圆,构造一条直线,然后计算同轴度。假设基准上两个截面的距离为10 mm,基准第一截面与被测圆柱的第一截面的距离为100 mm,如果基准的第二截面圆的圆心位置与第一截面圆圆心有5μm的测量误差,那么基准轴线延伸到被测圆柱第一截面时已偏离50μm(5μmx100÷10),此时,即使被测圆柱与基准完全同轴,其结果也会有100μm的误差(同轴度公差值为直径,50μm是半径),测量原理图如图1所示。 2、用三坐标测量同轴度的方法 对于基准圆柱与被测圆柱(较短)距离较远时不能用测量软件直接求得,通常用公共轴线法、直线度法、求距法求得。 2.1 公共轴线法 在被测元素和基准元素上测量多个横截面的圆,再将这些圆的圆心构造一条3D直线,作为公共轴线,每个圆的直径可以不一致,然后分别计算基准圆柱和被测圆柱对公共轴线的同轴度,取其最大值作为该零件的同轴度。这条公共轴线近似于一个模拟心轴,因此这种方法接近零件的实际装配过程。 2.2 直线度法 在被测元素和基准元素上测量多个横截面的圆,然后选择这几个圆构造一条3D直线,同轴度近似为直线度的两倍。被收集的圆在测量时最好测量其整圆,如果是在一个扇形上测量,则测量软件计算出来的偏差可能很大。

各种测量方法

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度

镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或 刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

圆周孔系位置度的评价

圆周孔系位置度的评价 首先介绍一下圆周孔系。所谓圆周孔系是指一组在同一圆周上均匀分布的孔,相对于圆周的圆心组成的特征系统。(如图一) 我们公司的产品就是具有圆周孔系的回转体。并且主要对圆周上各小孔求其相对基准孔A的真实位置度。在进行检测评价过程中我们遇到的问题是:对回转体而言,在求其小孔的真实位置度时,只有一个中心孔A基准,在轴线上没有基准要求。我们只能任意在孔系中选一个小孔来确定零件坐标系的轴线。但与之产生的问题是,每次选择不同的小孔建坐标系,进行测量和评价时,各孔的真实位置度偏差结果不一致,有时甚至出现前后矛盾的结果。并且被选择建轴线的小孔的真实位置度只与其极径相关(因为被选小孔的极角偏差为0)但它却把极角偏差累计到了其它的各个小孔上去了,导致其它孔的真实位置度偏大。在这样一个坐标系下进行的尺寸评价无法真实反映整个圆周孔系的真实位置度。无法指导车间对工装进行调整与维修。 这一问题产生的主要原因:是在零件坐标系建立时没有考虑到圆周上各小孔的极角偏差,没有对零件坐标系进行修正。请看(图二)我们首先建立的坐标系是图中实线的坐标,即它是以孔系中任意一个孔来确定坐标轴线建立而成,但实际上就整个圆周孔系而言,它没有考虑到极角偏差量Δθ,而对于圆周孔系而言更客观精准的坐标系是综合考虑极角偏差值Δθ的虚线坐标系(X’OY’)。因为这个坐标系是综合考虑极角偏差值进行修正而来。所以在此坐标系下进行的真实位置度评价是客观、准确、稳定的。现在的问题是如何来确定这个极角偏差值Δθ来修正零件坐标系。 计算功能强大的PC-DMIS CA D软件就能解决这一测量难题。下面我就PC-DMIS CAD软件的应用来介绍两种解决这一问题的方法。

同轴度计算及测量

坐标测量机同轴度测量问题分析 前言 坐标测量机是采用坐标测量原理测量同轴度的,这样的方法能够严格按照定义计算评定同轴度的具体结果.然而在机械加工过程中往往采用打表的办法测量同轴度,由于实际所选用基准的差异,就会造成两种方法所得结果的差异,尤其当基准要素的长度相对被测要素离开基准要素的轴向距离较短时两种结果可能大相径庭.许多坐标测量机操作人员经常为此所困扰,本文从实用的角度出发,对坐标测量机测量同轴度的方法进行分析探讨. 一、同轴度的公差带与误差值的计算 1. 定义: 同轴度公差带是直径为公差值且与基准轴线同轴的圆柱面内的区域. 2. 误差值的计算 根据同轴度及其公差带的定义,同轴度误差的计算是非常简单的,即被测轴线到基准轴线(包含其延长线)的最大距离(空间距离)值的两倍. 二、造成问题的原因 由于同轴度的定义和计算都非常简单,所以坐标测量软件均不会出现计算评定方法上的错误,之所以在许多实际情况下会与打表测量的结果或人们的直觉出入很大,绝大多数都是由于基准的选择不同造成的.坐标测量软件会严格的依据操作者所选定的基准进行评定,只要基准不出问题,结果也不会出现问题;而打表时实际起基准作用的究竟是那个要素,对许多操作者来说往往是没有清晰概念的.例如在图一中,要求的基准应该是左侧直径为30mm,长度为40mm的一段圆柱轴线即A,打表时应根据这一段圆柱将工件找正(为避免母线直线度误差的影响,最好用在两端打跳动的办法找正),但实际情况是许多操作者会选择在整个工件上左端A和右端B打表的办法进行找正,从而使得实际的基准变成了A-B .

图二显示被测轴线的偏离量一定时,选用两种不同基准计算结果的差异. 当基准选为A即直径为30mm,长度为40mm的一段圆柱轴线时,右端直径为36m,长度为40mm的一段圆柱轴线的最大偏离量若为5,同轴度为10;当基准选为A-B即左右两端轴的共同轴线时, 右端直径为36m,长度为40mm的一段圆柱轴线的最大偏离量为1.67,同轴度为3.34. 在图三所示的情形中,基准选用的差异造成的同轴度评定结果差异更大: 左右两端圆柱的轴线不但有偏离,而且不平行.当基准选为A即直径为30mm,长度为40mm的一段圆柱轴线时,右端一段圆柱轴线的最大偏离量若为7,同轴度为14;当基准选为A-B即左右两端轴的共同轴线时, 右端圆柱轴线的最大偏离量为0.33,同轴度为0.66.

孔组位置度检具设计分析及其自身位置度超差时的判定

孔组位置度检具设计分析及其自身 位置度超差时的判定 伊顿液压系统(济宁)有限公司 刘军 功能量规是当最大实体要求应用于被测要素和(或)基准要素时,用来确定它们的实际轮廓是否超出边界(最大实体实效边界或最大实体边界)的全形量规。孔组位置度检具就是常见的一种功能量规,相比三坐标检测,它的检测效率比较高,使用比较方便,然而它的准确性却常常引起人们的质疑,另外其自身位置度超差时,我们该如何对其进行判定。下面我们对孔组位置度检具的的设计进行分析,以研究其位置度和尺寸公差对零件的影响。文中所有尺寸单位均为mm 。 图1 零件图 一、根据我国标准《GB/T 8069-1998 功能量规》,对图1中的零件设计一套整体型位置度检具,过程如下: d IB =D MV =12-0.2=11.8;T t =0.2+0.2=0.4 查表得:T I =W I =0.008;t I =0.012;F I =0.02 d I =(d IB +F I )0-TI =(11.8+0.02)0-0.008 =11.820 -0.008 d IW =(d IB +F I )-(T I +W I )=(11.8+0.02)-(0.008+0.008)=11.804 图2 检具图A 对于零件: 最大实体实效尺寸D MMVS =12-0.2=11.8 最小实体实效尺寸D LMVS =12.2+0.4=12.6 对于检具: 最大实体实效尺寸 d MMVS =11.82+0.012=11.832 最小实体实效尺寸d LMVS =11.82-0.008-0.012=11.8 检测销到达磨损极限时: 最大实体实效尺寸 d MMVS =11.804+0.012=11.816 最小实体实效尺寸= d LMVS =11.804-0.012=11.792 2×Φ1242 ?Φ0.2 M +0.2 0看 42 ? Φ0.012 2×Φ11.82E 看0看 -0.008 (磨损极限:11.804)

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 标签:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基準元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径

有关薄壁件孔位置度及面轮廓度的测量

有关薄壁件孔位置度及面轮廓度的测量 在当前的转包生产中,零件大部分都是薄壁件,而且这些零件都有一个共同特点,就是壁薄、形状复杂、弯曲大、加工精度高、测量部位难确定等,这给量具的设计增加了很大难度,因此如何在测量中,既能测量准确、定位可靠,又不破坏零件外型的完整性,是我们需要解决的主要难题。 标签:薄壁件;位置度;涨紧;分度 1 测具设计结构的确定 1.1 零件特点 零件的主要特点是:型面弯曲大,加工精度高,定位面小,壁厚仅1.12mm,要检查位置度的孔数量多达36个且不规则,定位基准直径和公差大。零件剖面形状如图1。 1.2 零件检测的项目 检查零件36个侧孔的位置度,以及零件弯曲部位的型面的面轮廓度。零件孔位置的俯视图如图2。 1.3 设计方案的确定 1.3.1 确定测量36个孔位置度要满足的条件。(1)减小定位基准孔公差大带来的测量误差。(2)不破坏零件的完整性,甚至不能对零件有轻微的碰、划伤。(3)检测准确,使用方便、快捷。(4)满足尽量多的工序的测量。(5)设计的测具重量越轻、体积越小、越方便搬运越好。 为了消除定位基准孔公差大带来的测量误差,测具采用了涨紧j结构,即涨紧基准B,支撑基准A,消除定位基准孔的尺寸误差,在涨紧的过程中,要保证不能影响测量孔位置度的测量。在设计涨紧结构时,因为要保证零件的装卸自如,因此采用四块圆柱面涨紧零件内基准,设计的滑动槽,便于涨紧块沿直线滑动。 对于36个孔位置度的检测,主要采用位置量规,位置量规不但可以检验零件孔的相互位置,而且能够保证零件的综合检验。位置量规的结构简单,检验方便,检查效率高,而且不影响零件的可装配性。位置量规是一种单极限的通过量规,它综合地限制了被检验表面的位置和尺寸的偏差,并允许被检验表面实际的极限位置偏差超过图纸上所给定的位置偏差,其超差值正好为被检验表面尺寸的实际偏差所补偿。因此只要位置量规能通过被检验部位,即标志该零件合格。在此零件中,只要位置量规能插入被测孔,即标志孔的位置合格。利用其中一个孔做为角向孔,用量规插入并固定,然后依次检查其他孔的位置。

相关主题
文本预览
相关文档 最新文档