当前位置:文档之家› 插值法

插值法

第四章数值积分与数值微分

:

本章主要内容Newton Cotes Romberg Gauss ?插值型的求积公式

公式

算法

公式

定理1.

0()().

n

b k k a k f x dx A f x n =≈∑∫求积公式至少有次代数精度的充要条件是它是插值型的0

2. 偶阶求积公式的代数精度

3. 几种低阶求积公式的余项

积分第二复习中值定理:

3

()()12

b a f η?′′?

f b ()]

复化求积公式的余项:

3

?

()

b a

f(x) x

于是例.

插值与数据拟合模型

第二讲 插值与数据拟合模型 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。 在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。 一、插值方法简介 插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。也可以未知。 求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。 1.拉格朗日多项式插值 插值多项式 从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作 0111)(a x a x a x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有 n j y x L j j n ,,2,1,0,)( == (2) 为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有 ???????=++++=++++=++++---n n n n n n n n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01110111110001010 (3) 记 T n T n n n n n n n n n n y y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111 100 ==?????? ? ??=---- 方程组(3)简写成 Y XA = (4) 注意X det 是Vandermonde 行列式,利用行列式性质可得 ∏≤<≤-= n k j j k x x X 0)(det 因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。 拉格朗日插值多项式 实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数: n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,) ())(()()())(()()(110110 =--------=+-+- (5) )(x l i 是n 次多项式,满足

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

插值法综述《计算方法》学习报告

插值法综述 一、插值法及其国内外研究进展 1.插值法简介 插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机广泛使用之后,由于航空、机械加工、自动控制等实际问题的需要,使插值法在实践和理论上都显得更为重要,并得到了空前的发展。 2.国内外研究进展 ●插值法在预测地基沉降的应用 ●插值法在不排水不可压缩条件下两相介质的两重网格算法的应用 ●拉格朗日插值法在地震动的模拟研究中的应用 ●插值法在结构抗震可靠性分析中的应用 ●插值法在应力集中应变分布规律实验分析中的应用 3.代表性文献 ●不等时距GM(1%2c1)模型预测地基沉降研究秦亚琼武汉理工大学学报 (交通科学与工程版) 2008.2 ●不排水不可压缩条件下两相介质的两重网格算法牛志伟岩土力学2008.3 ●基于拉格朗日插值法的地震动的模拟白可山西建筑2010.10 ●响应表面法用于结构抗震可靠性分析张文元世界地震工程1997 ●小议应力集中应变分布规律的实验方法查珑珑淮海工学院学报(自

然科学版)2004.6 二、插值法的原理 【原理】 设有n+1个互不相同的节点(i x ,i y ) (i=0,1,2,...n )则存在唯一的多项式: 2012()...(1)n n n L x a a x a x a x =++++ 使得()(0,1,2,...)(2) n j j L x y j n == 证明:构造方程组 201020002011211120 12......(3)...n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ??++++=? 令:0011111 n n n n n x x x x A x x ?????? =?? ?????? 01n a a X a ??????=?????? 01n y y Y y ?? ????=?????? 方程组的矩阵形式如下:(4)AX Y = 由于1 1 ()0n n i j i j A x x -===-≠∏∏所以方程组(4)有唯一解。 从而2012()...n n n L x a a x a x a x =++++唯一存在。 三、常用插值法 3.1 Lagrange 插值法 3.1.1 Lagrange 插值法的一般提法 给定))(,(i i x f x ),,1,0(n i =,多项式

线性插值法计算公式解析

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A.8.65 B.8.75 C.8.85 D.8.95 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目评 分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),

通过这个公式,我们可以进行多种推算,得出最终公式如下F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D)通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6.5 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

内插法计算公式

内插法计算公式 内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的

折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下: A表示租赁开始日租赁资产的公平价值; R表示每期租金数额; S表示租赁资产估计残值; n表示租期; r表示折现率。 通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

试验二 插值法与数据拟合

试验二 插值法 一、 实验目的 (1) 学会Lagrange 插值和牛顿插值等基本插值方法; (2) 讨论插值的Runge 现象,掌握分段线性插值方法 (3) 学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、 实验要求 (1) 按照题目要求完成实验内容; (2) 写出相应的Matlab 程序; (3) 给出实验结果(可以用表格展示实验结果); (4) 分析和讨论实验结果并提出可能的优化实验。 (5) 写出实验报告。 三、 实验步骤 1、用编好的Lagrange 插值法程序计算书本P66 的例1、用牛顿插值法计算P77的例1。 2、已知函数在下列各点的值为: 试用 4 次牛顿插值多项式4()P x 对数据进行插值,根据 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=} ,画出图形。 3、在区间[-1,1]上分别取10,2n =用两组等距节点对龙格函数 2 1 (),(11)125f x x x = -≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图 形。 4、下列数据点的插值 可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9个点作8次多项式插值 8() L x。

附:试验报告格式样本(正式报告这行可删除) 佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 插值法 专业班级 姓名 学号 指导教师 成 绩 日 期 月 日 一、实验目的 1、学会Lagrange 插值、牛顿插值和 分段线性插值等基本插值方法; 2、讨论插值的Runge 现象,掌握分段线性插值方法 3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。 二、实验原理 1、拉格朗日插值多项式 2、牛顿插值多项式 3、分段线性插值 三、实验步骤 1、用MA TLAB 编写独立的拉格朗日插值多项式函数 2、用MA TLAB 编写独立的牛顿插值多项式函数 3、利用编写好的函数计算本章P66例1、P77例1的结果并比较。 4、已知函数在下列各点的值为: 试用 4 次牛顿插值多项式4()P x 对数据进行插值,根据 {(,),0.20.08,0,1,2, ,10i i i x y x i i =+=} ,画出图形。

插值法与数据拟合法

第七讲插值方法与数据拟合 § 7.1 引言 在工程和科学实验中,常常需要从一组实验观测数据(x i , y i ) (i= 1, 2, …, n) 揭示自变量x与因变量y 之间的关系,一般可以用一个近似的函数关系式y = f (x) 来表示。函数f (x) 的产生办法因观测数据与要求的不同而异,通常可采用两种方法:插值与数据拟合。 § 7.1.1 插值方法 1.引例1 已经测得在北纬32.3?海洋不同深度处的温度如下表: 根据这些数据,我们希望能合理地估计出其它深度(如500米、600米、1000米…)处的水温。 解决这个问题,可以通过构造一个与给定数据相适应的函数来解决,这是一个被称为插值的问题。 2.插值问题的基本提法 对于给定的函数表 其中f (x) 在区间[a, b] 上连续,x0,x1,…,x n为[a, b] 上n + 1个互不相同的点,要求在一个性质优良、便于计算的函数类{P(x)} 中,选出一个使 P(x i ) = y i,i= 0, 1, …, n(7.1.1) 成立的函数P(x) 作为 f (x) 的近似,这就是最基本的插值问题(见图7.1.1)。 为便于叙述,通常称区间[a, b] 为插值区间,称点x0,x1,…,x n为插值节点,称函数类{P(x)} 为插值函数类,称式(7.1.1) 为插值条件,称函数P(x) 为插值函数,称f (x) 为被插函数。求插值函数P(x) 的方法称为插值法。 § 7.1.2 数据拟合 1.引例2 在某化学反应中,已知生成物的浓度与时间有关。今测得一组数据如下: 根据这些数据,我们希望寻找一个y = f (t) 的近似表达式(如建立浓度y与时间t之间的经验公式等)。从几何上看,就是希望根据给定的一组点(1, 4.00),…,(16, 10.60),求函数y = f (t) 的图象的一条拟合曲

计算方法简明教程插值法习题解析

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln 0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.9314 7(0.6) 5.10826( x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln 0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5 x x x x x x =-?--+---?--2(0.54)0.61531984 0. 615320L ∴=-≈- 3.给全cos ,090x x ≤≤ 的函数表,步长1(1/60),h '== 若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤ 时, 令()cos f x x = 取0110,( )606018010800 x h ππ===?= 令0,0,1,...,5400i x x ih i =+= 则5400902 x π = = 当[]1,k k x x x -∈时,线性插值多项式为

插值法计算实际利率

插值法计算实际利率 20×0年1月1日,XYZ公司支付价款l 000元(含交易费用)从活跃市场上购入某公司5 年期债券,面值1 250元,票面利率4.72%,按年支付利息(即每年59元),本金最后一次支付。合同约定,该债券的发行方在遇到特定情况时可以将债券赎回,且不需要为提前赎回支付额外款项。XYZ公司在购买该债券时,预计发行方不会提前赎回。XYZ公司将购入的该公司债券划分为持有至到期投资,且不考虑所得税、减值损失等因素。 XYZ公司在初始确认时首先应计算确定该债券的实际利率,设该债券的实际利率为r,则可列出如下等式: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+(59+1250)×(1+r)-5=1000(元)(1) 上式变形为: 59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+59×(1+r)-5+1250×(1+r)-5=1000(元)(2) 2式写作:59×(P/A,r,5)+1250×(P/F,r,5)=1000 (3) (P/A,r,5)是利率为r,期限为5的年金现值系数;(P/F,r,5)是利率为r,期限为5的复利现值系数。现值系数可通过查表求得。 当r=9%时,(P/A,9%,5)=3.8897,(P/F,9%,5)=0.6499 代入3式得到59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000 当r=12%时,(P/A,12%,5)=3.6048,(P/F,12%,5)=0.5674 代入3式得到59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000 采用插值法,计算r 按比例法原理: 1041.8673 9% 1000.0000 r 921.9332 12% (1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%) 解之得,r=10% 备注: 此处要用到两个表:《年金现值系数表》、《复利现值系数表》 题中的3.8897和3.6048是查《年金现值系数表》得来的,i=9%和12%,n=5;0.6499和0.5674是查《复利现值系数表》得来的,i=9%和12%,n=5 假设两个实际利率的目的在于,确定现值1000在两个利率对应现值的范围内。开始会疑惑如何确定这两个假设的利率,后来发现这是一个估值,在确定9%和12%之前可能会有很多次的预估。另外,现值的范围越小,计算出来的实际利率越精确。 对于这个值的预估,某网友给出这样的方法(还不是特别能理解那个原理,但是自己列了一个表,当然考试的时候是不可能这样列表的):一般考试会给出你大致的范围,比如注会考试就不会让你去慢慢试!一般情况下运用大升小降的原理去应付它就行,就是代入的利率求出的值大于需计算的利率的值,比如带入9%计算大于给定值,你就升高利率,升高到带入

计算方法——插值法综述

计算方法——插值法 11223510 李晓东 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是一些离散数值。有时即使给出了解析表达式,却由于表达式过于复杂,使用不便,且不易于计算与分析。解决这类问题我们往往使用插值法:用一个“简单函数”)(x ?逼近被计算函数)(x f ,然后用)(x ?的函数值近似替代)(x f 的函数值。插值法要求给出)(x f 的一个函数表,然后选定一种简单的函数形式,比如多项式、分段线性函数及三角多项式等,通过已知的函数表来确定)(x ?作为)(x f 的近似,概括地说,就是用简单函数为离散数组建立连续模型。 一、 理论与算法 (一)拉格朗日插值法 在求满足插值条件n 次插值多项式)(x P n 之前,先考虑一个简单的插值问题:对节点),,1,0(n i x i =中任一点)0(n k x k ≤≤,作一n 次多项式)(x l k ,使它在该点上取值为1,而在其余点),,1,1,1,0(n k k i x i +-=上取值为零,即 ? ? ?≠==k i k i x l i k 01)( (1.1) 上式表明n 个点n k k x x x x x ,,,,,,1110 +-都是n 次多项式)(x l k 的零点,故可设 )())(())(()(1110n k k k k x x x x x x x x x x A x l -----=+- 其中,k A 为待定系数。由条件1)(=k k x l 立即可得 )())(()(1 110n k k k k k k k x x x x x x x x A ----= +- (1.2) 故 ) ())(()() ())(()()(110110n k k k k k k n k k k x x x x x x x x x x x x x x x x x l --------= +-+- (1.3) 由上式可以写出1+n 个n 次插值多项式)(,),(),(10x l x l x l n 。我们称它们为在1+n 个节点n x x x ,,,10 上的n 次基本插值多项式或n 次插值基函数。 利用插值基函数立即可以写出满足插值条件的n 次插值多项式 )()()(1100x l y x l y x l y n n +++ (1.4)

数据插值与数据拟合

数据插值与数据拟合 1、一维数据插值: y=interp1(x0,y0,x,’method’) ‘method’共有四种方法选择: ‘nearest’ 最近点插值法取较近点的值 ‘linear’线性插值法用直线连接数据点 ‘spline’样条插值法用三次样条曲线通过数据点 ‘cubic’立方插值法用三次曲线通过数据点 例:对,,用个节点(等分)作上述四种插值,用m=21个插值点(等分)作图比较结果; 练习: 根据程序washu.可得,x=0:3的193个数据,即对应得y值,现在将 x=0:56图形形状不变 从而得到x=1:56的对应的y值,并且比较分析,哪一种插值效果好 2、 数据拟合 P=polyfit(x,y,n)返回系数从高到低 polyval(p,x) 例、在化工生产中获得的氯气的等级随生产时间下降。假定在时,与之间有如下形式的非线性模型: 现收集了44组数据: 80.49160.43280.41 80.49180.46280.40 100.48180.45300.40 100.47200.42300.40 100.48200.42300.38 100.47200.43320.41 120.46200.41320.40 120.46220.41340.40 120.45220.40360.41 120.43240.42360.38

140.45240.40380.40 140.43240.40380.40 140.43260.41400.39 160.44260.40420.39 160.43260.41 要求利用该数据求的值,以确定模型。 练习 问题1: N P K 施肥量(kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 47115.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75 24 49 73 98 147 196 245 294 342 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 47 93 140 186 279 372 465 558 651 18.98 27.35 34.86 38.52 38.44 37.73 38.43 43.87 42.77 46.22 (1)将上面第一个表中以施肥量为自变量n,产量为函数y,用最小二乘法拟合函数,输出a1,b1,c1的值,给出拟合误差R^2,并进行图形比较(2) 将上面第二个表中以施肥量为自变量p,产量为函数y,用最小二乘法拟合函数,输出a,b的值,给出拟合误差R^2,并进行图形比较 (3) 将上面第三个表中以施肥量为自变量k,产量为函数y,用最小二乘法拟合函数,输出a3,b3,c3的值,给出拟合误差R^2,并进行图形比较Quadratic: Compound:

常见的插值方法及其基础原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

插值方法与数据拟合

第三章 插值方法与数据拟合 所讨论的问题给复杂的函数 ()f x 找一简单的函数()p x 如多项式、三角函数 等,并让其满足一定的条件,让其近似的取代原函数 ()f x 。 或 有一数据表格,我们需要找一函数取近似的表征该表数据。 §1 拉格朗日(L a g r a n g e )插值 在函数类中多项式具有最简单的性质。 1230123()...n n p x a a x a x a x a x =+++++ 设 ()y f x =在区间[a ,b ]连续的实函数已知在该区间上n +1个不同点i x 的函 数值()1,2,...,i i y f x i n == 或 有数据表有1n +对数据 1,2,...,i i x y i n →= 插值节点 我们需要找一个n 次多项式 1230123()...n n p x a a x a x a x a x =+++++ 使得在这些点上函数值等于插值节点的值。 ()i i y p x = 1、线性插值 已知两个点的函数值:0 011x y x y →→ 做一线性函数使得在两个节点上函数值为节点值。 0011() ()y p x y p x == 函数为:

0011 01 010110 ()()()p x l x y l x y x x x x y y x x x x =+--=+-- 基函数()i l x 为一次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 几何意义:过两点做直线。按x 变化量平均。 2、抛物线插值 已知三个点的函数值:0 01122x y x y x y →→→ 做二次函数使得在三个节点上函数值为节点值。 001122() ()()y p x y p x y p x === 函数为: 001122 0012 21012010210122021 ()()()()p x l x y l x y l x y x x x x x x x x x x x x y y y x x x x x x x x x x x x =++------=++------ 基函数()i l x 为二次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 3、拉格朗日插值 已知n +1个点的函数值:0 011,....,n n x y x y x y →→→ 做n 次函数使得在n +1个节点上函数值为节点值。 0011() (),...,()n n y p x y p x y p x === 函数为:

相关主题
文本预览
相关文档 最新文档