当前位置:文档之家› 在ansys中施加预应力怎样把预应力转化成初始应变

在ansys中施加预应力怎样把预应力转化成初始应变

在ansys中施加预应力怎样把预应力转化成初始应变
在ansys中施加预应力怎样把预应力转化成初始应变

在ansys中施加预应力怎样把预应力转化成初始应变

比如要对索施加400KN预应力,不是用它除以索的弹性模量吧

dcn_mj

Score:48 Posts:56

Posted on 2006-03-15 19:09

你要分清应力和力的概念,用400KN除以索的有效面积,换算成应力,应力除以模量才是初应变。

willing

Score:13 Posts:14

Posted on 2006-03-16 10:49

这个我知道,发的时候没注意单位。我不清楚的是预应力和ansys中的初应变是不是对应的,材料中说给张弦梁施加400KN预应力,那建模时在ansys中索的初应变是不是直接用400除以索的面积和弹性模量呀考虑整体结构,这样建

好模后索中力肯定不是400KN。也就是说我们平时所说的施加多少预应力,比如400KN,是给索加载的值还是

张拉完成以后的值okok.or g

这个弱弱问题困扰小妹很久,望指教

willing Edited on 2006-03-16 12:38

hillshan

Score:84 Posts:128

Posted on 2006-03-23 09:07

我的理解是预应力筋最后的值,因为预应力在施工时,通过仪器读给的值,这个值一般来说时考虑预应力损试后的,例如相要预应力=100KN,你要施加125KN(假设损失25%)。

hdm11

Score:10 Posts:10

Posted on 2006-03-24 16:40

也可以通过升温和降温来模拟预应力

hnjzzws

Score:16 Posts:26

Posted on 2006-03-27 08:31

用ansys考虑预应力比较困难,因为管道摩阻和预应力损失比较难以考虑

chao

Score:27 Posts:21

Posted on 2006-04-10 12:40

ANSYS中预应力施加是通过温度控制来模拟,然而在实际的工程中,预应力施加的过程有位移,ANSYS却不能模拟,对于索膜结构的模拟有一定的困难。

hyzzz

Score:37 Posts:42

Posted on 2006-04-23 20:51

预应力施加在ANSYS中可以通过温度控制来模拟,即把预应力等效为施加对应于预应力单元上的温度变化;在该单元上设置初始温度,然后通过温变来实现预应力。

joannall

Score:6 Posts:38

Posted on 2006-05-03 10:17

hyzzz wrote:

预应力施加在ANSYS中可以通过温度控制来模拟,即把预应力等效为施加对应于预应力单元上的温度变化;在该单元上设置初始温度,然后通过温变来实现预应力。

okok.or g

具体怎么操作呢?有没有例子呀?

douyal Posted on 2006-05-07 20:32

对于预应力拉索施加预应力,ANSYS里可以用初应变,也可以用降温法。但对

于一般的柔性结构(比如预应力钢结构),加的初应变或温度都不可能是一次

Score:23 Posts:22 性成功的,因为结构的变形会影响预应力效果,通常通过多次试算,手工迭代,才能达到理想的设计值(也就是包括自重等工矿下),建议降温计算较快。对于预应力混凝土一般只要2次就可以达到效果了。实际上降温和初应变在静力计算的效果是一样的,可以用降的温度算出初应变。如果要进行特征值屈曲分析或是非线性屈曲分析,建议使用初应变,因为温度是当作外荷载加上去的。

lilinz

Score:30 Posts:33

Posted on 2006-05-15 15:43

ansys中预应力的施加一般是通过温度变化来模拟的吧。

lessoryjoan

Score:72 Posts:54

Posted on 2006-05-19 15:07

因为结构实际预应力后会产生变形,这样实际施加的预应力值就不是想要加的值。楼上说的手工迭代未免过于繁琐。

我们之所以想要对结构实际预应力往往是想要结构在设计荷载工况下控制结构的位移值,这就给我们在ansys中实际想要的预应力值提供帮助。

一般我们以KN作为设计预应力值的单位,如果我们以“位移”作为施加预应力的单位则在ansys中很容易施加期望的预应力“效果”比如:期望在x倍恒载作用下结构的位移为零,通过ansys apdl的程序功能要不了几次迭代就会得到理想的预应力值,而且非常精确!一下是一个小算例。

/prep7

et,1,188

et,2,8

et,3,10

keyopt,3,2,1

mp,ex,1,https://www.doczj.com/doc/1f16758315.html,

mp,nuxy,1,https://www.doczj.com/doc/1f16758315.html,

mp,dens,1,7.85e3

mp,ex,2,https://www.doczj.com/doc/1f16758315.html,

mp,nuxy,2,https://www.doczj.com/doc/1f16758315.html,

mp,dens,2,https://www.doczj.com/doc/1f16758315.html,

mp,alpx,2,12e-6

r,1,2022.16e-6

r,2,907.46e-6!,0.2015e-2

!****************************************

SECTYPE,https://www.doczj.com/doc/1f16758315.html,1, BEAM, I, 200x200, https://www.doczj.com/doc/1f16758315.html,

SECDATA,0.2,0.2,0.2,0.012,0.012,0.008,0,0,0,https://www.doczj.com/doc/1f16758315.html,

SECTYPE,https://www.doczj.com/doc/1f16758315.html,2, BEAM, I, 22, 0

SECDATA,0.11,0.11,0.22,0.0123,0.0123,0.0075,0,0,0,https://www.doczj.com/doc/1f16758315.html, SECTYPE,https://www.doczj.com/doc/1f16758315.html,3, BEAM, CTUBE, pipe, https://www.doczj.com/doc/1f16758315.html, SECDATA,0.0425,0.0495,0,0,0,0,0,0,0,https://www.doczj.com/doc/1f16758315.html, SECTYPE,https://www.doczj.com/doc/1f16758315.html,4, BEAM, CSOLID, suo1, https://www.doczj.com/doc/1f16758315.html, SECDATA,0.017,0,0,0,0,0,0,0,0,0

SECTYPE,https://www.doczj.com/doc/1f16758315.html,5, BEAM, CSOLID, suo2, https://www.doczj.com/doc/1f16758315.html, SECDATA,0.0105,0,0,0,0,0,0,0,0,0

!****************************************

k,1,0,0

k,2,5.045

k,3,10.645

k,4,16.245

k,5,21.845

k,6,26.890

k,7,-0.375,-2

k,8,0,-1.99

k,9,2.245,-1.928

k,10,5.045,-1.851

k,11,7.845,-1.774

k,12,10.645,-1.697

k,13,13.445,-1.620

k,14,16.245,-1.697

k,15,19.045,-1.774

k,16,21.845,-1.851

k,17,24.645,-1.928

k,18,26.890,-1.99

k,19,27.265,-2

k,20,2.245,-2.903

k,21,5.045,-3.531

k,22,7.845,-3.974

k,23,10.645,-4.217

k,24,13.445,-4.34

k,25,16.245,-4.217

k,26,19.045,-3.974

k,27,21.845,-3.531

k,28,24.645,-2.903

k,10000,13.445,1000

k,20000,-1000,0

!****************************************

*do,i,1,5,1

l,i,i+1

*enddo

*do,i,7,18,1

l,i,i+1

*enddo

*do,i,20,27,1

l,i,i+1

*enddo

l,8,20

l,18,28

l,1,8

l,2,10

l,3,12

l,4,14

l,5,16

l,6,18

*do,i,9,17,1

l,i,i+11

*enddo

!**************************************** lsel,s,,,1,17,1,https://www.doczj.com/doc/1f16758315.html,!上弦

latt,1,,1,,10000,,1

lesize,all,,,4

okok.or g

lsel,s,,,18,27,1,https://www.doczj.com/doc/1f16758315.html,!下弦索

latt,2,2,3!,,,,4

lesize,all,,,1

okok.or g

lsel,s,,,28,33,1,https://www.doczj.com/doc/1f16758315.html,!上腹杆

latt,1,,1,,20000,,2

lesize,all,,,4

okok.or g

lsel,s,,,34,42,1,https://www.doczj.com/doc/1f16758315.html,!下腹杆

latt,1,1,2,,,,3

lesize,all,,,1

okok.or g

lsel,all

lmesh,all

allsel,all,all

!**************************************** *set,t,-150

/solu

dk,7,ux,,,,uy,uz,rotx

dk,19,uy,,,,uz,rotx

nslk,s

d,all,uz

nlgeom,on

pstres,https://www.doczj.com/doc/1f16758315.html,

acel,,9.8

fk,1,fy,-5292

fk,6,fy,-5292

*do,i,2,5,1

fk,i,fy,-10584

*enddo

fk,8,fy,-8526

fk,18,fy,-8526

*do,i,9,17,1

fk,i,fy,-17052

*enddo

ESEL,S,REAL,,https://www.doczj.com/doc/1f16758315.html,!对下弦索降温https://www.doczj.com/doc/1f16758315.html,

BFE,all,TEMP,1,t, , ,

outres,all,all

allsel,all,all

solve

!以上为荷载工况2:自重+恒载

!****************************************

*set,parm,1

*dowhile,parm

*GET,kzwy,NODE,143,U,Y

*set,abskzwy,abs(kzwy)

*if,abskzwy,le,0.001,then

*exit

*endif

*set,t,t-0.5

/solu

ESEL,S,REAL,,https://www.doczj.com/doc/1f16758315.html,!对下弦索降温https://www.doczj.com/doc/1f16758315.html,

BFE,all,TEMP,1,t, , ,

outres,all,all

allsel,all,all

solve

*enddo

*status,kzwy

!程序中以跨中节点(143号)位移在一倍恒载下的位移小于0.001为目标。

连续梁桥ansys命令流

. !!连续梁桥 /prep7 et,1,4 !!!!定义梁单元 et,2,21 !!!!定义mass21单元 !!定义粱材料!!泊松比!!密度 mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2 mp,dens,2,3302.153125 mp,ex,3,3.45e10 mp,nuxy,3,0.2 mp,dens,3,3301.658695 mp,ex,4,3.45e10 mp,nuxy,4,0.2 mp,dens,4,3299.906778 mp,ex,5,3.45e10 mp,nuxy,5,0.2 mp,dens,5,3298.327219 mp,ex,6,3.45e10 mp,nuxy,6,0.2

. mp,dens,6,3292.351605 mp,ex,7,3.45e10 mp,nuxy,7,0.2 mp,dens,7,3284.137255 mp,ex,8,3.45e10 mp,nuxy,8,0.2 mp,dens,8,3271.802136 mp,ex,9,3.45e10 mp,nuxy,9,0.2 mp,dens,9,3260.41903 mp,ex,10,3.45e10 mp,nuxy,10,0.2 mp,dens,10,3248.193657 mp,ex,11,3.45e10 mp,nuxy,11,0.2 mp,dens,11,3235.117644 mp,ex,12,3.45e10 mp,nuxy,12,0.2 mp,dens,12,3221.585664

. mp,ex,13,3.45e10 mp,nuxy,13,0.2 mp,dens,13,3208.826871 mp,ex,14,3.45e10 mp,nuxy,14,0.2 mp,dens,14,3194.279207 mp,ex,15,3.45e10 mp,nuxy,15,0.2 mp,dens,15,3179.924673 mp,ex,16,3.45e10 mp,nuxy,16,0.2 mp,dens,16,3166.445716 mp,ex,17,3.45e10 mp,nuxy,17,0.2 mp,dens,17,3152.555731 mp,ex,18,3.45e10 mp,nuxy,18,0.2 mp,dens,18,3138.312105 mp,ex,19,3.45e10

基于ANSYS的连续刚构桥分析操作篇

目录 一、工程背景 (1) 二、工程模型 (1) 三、ANSYS分析 (2) (一)前处理 (2) (1)定义单元类型 (2) (2)定义材料属性 (3) (3)建立工程简化模型 (3) (4)有限元网格划分 (5) (二)模态分析 (5) (1)选择求解类型 (5) (2)建立边界条件 (6) (3)输出设置 (6) (4)求解 (6) (5)读取结果 (6) (6)结果分析 (8) (三)结构试验载荷分析 (8) (1)第二跨跨中模拟车载分析 (8) (2)边跨跨中模拟车载分析 (9) 四、结果分析与强度校核 (10) (一)结果分析 (10)

(二)简单强度校核 (10) 参考文献 (11)

连续刚构桥分析 一、工程背景: 随着我国经济的发展,对交通运输的要求也不断提高;高速路,高铁线等遍布全国,这就免不了要架桥修路。截至2014年年底,我国公路桥梁总数已达万座,万延米i。进百万的桥梁屹立在我国交通线上,其安全便是头等大事。随着交通运输线的再扩大,连续刚构桥跨越能力大,施工难度小,行车舒顺,养护简便,造价较低等优点将被广泛应用。 二、工程模型: 现有某预应力混凝土连续刚构桥,桥梁全长为184m,宽13m,其中车行道宽,两侧防撞栏杆各主梁采用C50混凝土。桥梁设计载荷为公路—— 级。 图2-1桥梁侧立面图 上部结构为48m+88m+48m三跨预应力混凝土边界面连续箱梁。箱梁为单箱双室箱形截面,箱梁根部高5m,中跨梁高,边跨梁端高。箱梁顶板宽,底板宽,翼缘板悬臂长,箱梁高度从距墩中心处到跨中合龙段处按二次抛物线变化。0号至3号块长3m(4x3m),4、5号块长,6号块到合龙段长4m(6x4m),合龙段长2m。边跨端部设横隔板,墩顶0号块设两道厚横隔板。0号块范围内箱梁底板厚度为,1号块范围内底板厚度由线性变化到,2号块到合龙段范围内底板厚度由线性变化到。全桥顶板厚度为。0到5号块范围内腹板厚度为,6至7号块范围内腹板厚度由线性变化到,8号块到合龙段范围内夫板厚度为。 下部结构桥采用C50混凝土双薄壁墩,横向宽,厚,高25m双壁间设系梁,下设10mX10m矩形承台,厚。ii 图2-2主梁纵抛面图 图2-3 箱梁截面图 三、ANSYS分析: (一)前处理

ansys连续梁桥(ansys连续梁桥)-9页精选文档

ansys连续梁桥(ansys连续梁桥) The key steps of modeling and analysis are as follows: The center line 1, box beam to simulate the plate thickness is the sideline, box girder floor, roof, web and flange plate. 2, determine the location of each key point. The thickness of flange and floor 3, correct simulation of chamfering and the thickness of the gradient. 4. After entering into the process, analyze the stress and deformation. /prep7 /title, three, span, continus, Grider K, 1,0,0 K, 2, -2.1,0 K, 3, -2.6, -0.125 K, 4, -2.8, -0.125 K, 5, -3, -0.125 K, 6, -3.4857, -0.1036 K, 7, -3.9714, -0.0821 K, 8, -4.4571, -0.0607 K, 9, -4.9429, -0.0393 K, 10, -5.4286, -0.0179 K, 11, -5.9143,0.0036 K, 12, -6.4,0.025 K, 13, -2.800, -1.85 K, 14,0.0000, -1.85 Kgen, 9,1,12,1,0,0,49/8100 Kgen, 2,1,12,1,0,0,50900 Kgen, 9901912,1,0,0,34.5/8100 Kgen, 2901912,1,0,0,35900 C1=0.000843399 C2=0.001701323

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的内力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和内力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的内力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的内力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add按钮新建实力常量

利用ANSYS建立变截面箱梁

腾讯朋友 ?首页 ?好友 ?社交 ?应用 ?消息 ?我的主页 ?设置 ?换肤 ?建议 ?退出 搜索搜索 郑军涛 ?主页 ?说说new ?日志 ?相册 ?分享 ?留言板 ?投票 ?礼物 ?好友 利用ANSYS建立变截面箱梁 分享 利用ANSYS生成变截面箱梁 Beam188/189 支持自定义的变截面 1、首先建立变截面箱梁截面,并保存截面。必须保证每个截面的关键点号相同,而且为保证生成的准确性,应尽量的使得关键点有足够多的数目。 2、要对截面进行面积分块,并指定各线段的段数,这样才能做出规整的箱梁截面网格划分,也就保证了变截面箱梁桥各截面的网格模式相同,建议对于变化急

剧的两边截面应使得线足够的短。并不是划分越密越可能成功,而是线越短越可能成功 3。通过梁节段两端对应的截面建立taper截面,定义好桥的线形后,指定每段线对应的taper截面。 4、可以用slist命令查看生成截面的性质,加深对secread 命令的理解 以下例进行说明: Ⅱ-Ⅱ截面图 Ⅰ-Ⅰ截面图

全梁1/2图示 Ⅰ-Ⅰ截面命令流finish /clear /prep7 k,1 k,2,2750 k,3,3350,2400 k,4,5450,2750 k,5,6700,2850 k,6,6700,3050 k,7,0,3050 k,8,0,280 k,9,2359,280

k,10,2886,2400 k,11,1836,2750 k,12,0,2750 l,1,2 l,2,3 l,3,4 l,4,5 l,5,6 l,6,7 l,8,9 l,9,10 l,10,11 l,11,12 l,1,8 l,7,12 al,all arsym,x,all aadd,1,2 nummrg,all numcmp,all adele,1 l,2,9 l,13,20

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

Ansys桥梁计算

桥梁计算(常用的计算方法) 在Ansys单元库中,有近200种单元类型,在本章中将讨论一些在桥梁 工程中常用到的单元,包括一些单元的输人参数,如单元名称、节点、自由度、实常数、材料特性、表面荷载、体荷载、专用特性、关键选项KEYOPl等。***关于单元选择问题 这是一个大问题,方方面面很多,主要是掌握有限元的理论知识。首先 当然是由问题类型选择不同单元,二维还是三维,梁,板壳,体,细梁,粗梁,薄壳,厚壳,膜等等,再定义你的材料:各向同性或各向异性,混凝土的各项?参数,粘弹性等等。接下来是单元的划分与网格、精度与求解时间的要求等 选择,要对各种单元的专有特性有个大概了解。 使用Ansys,还要了解Ansys的一个特点是笼统与通用,因此很多东西 被掩盖到背后去了。比如单元类型,在Solid里面看到十几种选择,Solid45,Solidl85,Solid95等,看来区别只是节点数目上。但是实际上每种类型里还 有Keyopt分成多种类型,比如最常用的线性单元Solid45,其Keyopt(1):in●cludeorexclude extradisplacement shapes,就分为非协调元和协调元,Keyopt (2):fullintegration。rreducedintegration其实又是两种不同的单元,这样不同 组合一下这个Solid45实际上是包含了6种不同单元,各有各的不同特点和 用处。因此使用Ansys要注意各单元的Keyopt选项。不同的选项会产生不 同的结果。· 举例来说:对线性元例如Solid45,要想把弯曲问题计算得比较精确,必 须要采用非协调模式。采用完全积分会产生剪切锁死,减缩积分又会产生 零能模式(ZEM),非协调的线性元可以达到很高的精度,并且计算量比高阶 刷、很多,在变形较大时,用Enhanced Strain比非协调位移模式(Enhaced Displacement)更好(Solidl85)。但是这些非协调元都要求网格比较规则才 行,网格不规则的话,精度会大大下降,所以如何划分网格也是一门实践性 很强的学问。 采用高阶单元是提高精度的好办法,拿不定主意时采用高阶元是个比 较保险的选择,但是高阶单元在某些情况下也会出现剪切锁死,并且很难发 现,因此用减缩积分的高阶元通常是最保险的选择,但是在大位移时,网格 扭曲较大,减缩积分就不适用。 不同结构形式的桥梁具有不同的力学行为,必须针对性地创建其模型,? 选择维数最低的单元去获得预期的效果(尽量做到能选择点而不选择线,能 选择线而不选择平面,能选择平面而不选择壳,能选择壳而不选择三维实 体)。下面的几节介绍一下桥梁工程计算中经常会用到的单元。 ***桥梁仿真单元类型

连续梁桥ansys命令流

!!连续梁桥 /prep7 et,1,4 !!!!定义梁单元 et,2,21 !!!!定义mass21单元 !!定义粱材料!!泊松比!!密度 mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2 mp,dens,2,3302.153125 mp,ex,3,3.45e10 mp,nuxy,3,0.2 mp,dens,3,3301.658695 mp,ex,4,3.45e10 mp,nuxy,4,0.2 mp,dens,4,3299.906778 mp,ex,5,3.45e10 mp,nuxy,5,0.2 mp,dens,5,3298.327219 mp,ex,6,3.45e10 mp,nuxy,6,0.2 mp,dens,6,3292.351605 mp,ex,7,3.45e10 mp,nuxy,7,0.2 mp,dens,7,3284.137255 mp,ex,8,3.45e10 mp,nuxy,8,0.2 mp,dens,8,3271.802136 mp,ex,9,3.45e10 mp,nuxy,9,0.2 mp,dens,9,3260.41903 mp,ex,10,3.45e10 mp,nuxy,10,0.2 mp,dens,10,3248.193657

mp,nuxy,11,0.2 mp,dens,11,3235.117644 mp,ex,12,3.45e10 mp,nuxy,12,0.2 mp,dens,12,3221.585664 mp,ex,13,3.45e10 mp,nuxy,13,0.2 mp,dens,13,3208.826871 mp,ex,14,3.45e10 mp,nuxy,14,0.2 mp,dens,14,3194.279207 mp,ex,15,3.45e10 mp,nuxy,15,0.2 mp,dens,15,3179.924673 mp,ex,16,3.45e10 mp,nuxy,16,0.2 mp,dens,16,3166.445716 mp,ex,17,3.45e10 mp,nuxy,17,0.2 mp,dens,17,3152.555731 mp,ex,18,3.45e10 mp,nuxy,18,0.2 mp,dens,18,3138.312105 mp,ex,19,3.45e10 mp,nuxy,19,0.2 mp,dens,19,3124.795334 mp,ex,20,3.45e10 mp,nuxy,20,0.2 mp,dens,20,3110.7135 mp,ex,21,3.45e10 mp,nuxy,21,0.2 mp,dens,21,3097.080875

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

ANSYS空间梁格法分析连续斜梁桥命令流

/prep7 !DEFINE THE ELEMENTARY PARAMETERS *DIM,L,ARRAY,10 *DIM,DISTC,ARRAY,10 N=4 NBOX=2 L(1)=20 L(2)=30 L(3)=30 L(4)=20 NUML=NBOX+3 NUMC=(L(1)+L(2)+L(3)+L(4))+1 CITA=25/180*3.1415926 DISTC(1)=2.9584 DISTC(2)=4.0802 DISTC(3)=0.00 DISTC(4)=4.0802 DISTC(5)=2.9584 !DEFINE THE NODES OF BRIDGE N, 1, 0, 0, 0.00 N, NUMC, NUMC-1, 0, 0.00 FILL,1,NUMC N, 200+1, (DISTC(1)+DISTC(2))*SIN(CITA)/COS(CITA), 0.0,-(DISTC(1)+DISTC(2)) N, 200+NUMC,NUMC-1+(DISTC(1)+DISTC(2))* SIN(CITA)/COS(CITA),0.0,-(DISTC(1)+DISTC(2)) FILL,201,200+NUMC N, 400+1, DISTC(2)*SIN(CITA)/COS(CITA), 0.0, -DISTC(2) N, 400+NUMC,NUMC-1+DISTC(2)*SIN(CITA)/ COS(CITA), 0.0,-DISTC(2) FILL,401,400+NUMC N, 600+1, -DISTC(2)*SIN(CITA)/COS(CITA), 0.0, DISTC(2) N, 600+NUMC,NUMC-1-DISTC(4)*SIN(CITA)/C OS(CITA),0.0, DISTC(4) FILL,601,600+NUMC N, 800+1, -(DISTC(4)+DISTC(5))*SIN(CITA)/COS(CITA ),0.0, DISTC(4)+DISTC(5) N, 800+NUMC,NUMC-1-(DISTC(4)+DISTC(5))* SIN(CITA)/COS(CITA),0.0, DISTC(4)+DISTC(5) FILL,801,800+NUMC ! 定义纵梁单元材料、几何参数 ET,1,BEAM4 MP,EX , 1, 3.45E+10 MP,NUXY, 1, 0.2000 MP,DENS, 1, 2600 MP,ALPX, 1, 1.00E-05 R,1,0.3133,0.0871,0.0959,1.0,0.25,, RMORE ,,0.00265,,,,, ET,2,BEAM4 MP,EX , 2, 3.45E+10 MP,NUXY, 2, 0.2000 MP,DENS, 2, 2600 MP,ALPX, 2, 1.00E-05 R,2,1.6048,0.5486,1.5400,2.0,1.0,, RMORE ,,0.036,,,,, ET,3,BEAM4 MP,EX , 3, 3.45E+10 MP,NUXY, 3, 0.2000 MP,DENS, 3, 2600 MP,ALPX, 3, 1.00E-05 R,3,2.3625,0.9885,2.2600,2.0,1.0,, RMORE ,,0.0956,,,, ! 定义横梁单元材料、几何参数 ET,4,BEAM4 MP,EX , 4, 3.45E+10 MP,NUXY, 4, 0.2000 MP,DENS, 4, 0 MP,ALPX, 4, 1.00E-05 R,4,0.500,0.4582,0.0416,1.0,1.0,, RMORE ,,0.00879,,,,, ET,5,BEAM4 MP,EX , 5, 3.45E+10 MP,NUXY, 5, 0.2000 MP,DENS, 5, 0 MP,ALPX, 5, 1.00E-05 R,5,1.0250,0.2770,0.0495,1.0,1.0,, RMORE ,,0.0609,,,,, ! 生成纵向梁格单元 TYPE,1 MAT,1

ansys梁单元

当一个结构构件的一个方向尺寸远远大于另外两个方向的尺寸时,3D构件就可以理想化为1D构件以提高计算效率。这样的单元有两类:以承受轴向拉压作用为主的杆单元,和承受弯曲作用为主的梁单元。 ANSYS提供的单元类型中共有9种梁单元,分别为BEAM3, BEAM4, BEAM23, BEAM24, BEAM44, BEAM54, BEAM161, BEAM188, BEAM189。在结构分析中常用的是BEAM4和BEAM188或BEAM189这三中梁单元。 BEAM4单元 1.BEAM4单元是一种具有拉压弯扭能力的3D弹性单元。每节点6个自由度。 2.BEAM4单元的定义包括:几何位置的确定,单元坐标系的确定,截面特性 的输入。 BEAM4单元包含两个节点(i,j)或三个节点(i,j,k),k为单元的方向节点;单元的截面特性用实常数(REAL)给出,主要包括截面(area),两个 方向的截面惯性矩(IZZ)和(IYY),两个方向的厚度(TKY和TKZ),相对单元坐标系x轴的方向角(THETA),扭转惯性矩(IXX)。其中惯性矩,厚度,方向角都是在单元坐标系下给出的。 3.BEAM4单元坐标系的方向确定如下:单元坐标系X轴由节点i,j连线方 向确定由i指向 j;对于两节点确定的BEAM4单元,若方向角theta=0,则单元坐标系y轴默认平行于整体坐标系的x-y平面;若单元坐标系x 轴与整体坐标系z轴平行,则单元坐标系y轴默认平行整体坐标系的y 轴,z轴由右手法则判定;若用户希望自己来控制单元绕单元坐标系x轴的转动角,则可以通过方向角theta或第三个节点k来实现,i,j,k 确定一个平面,单元坐标系的Z轴就在该平面内。 可以用下列命令查看单元坐标系及截面: /ESHAPE, 1 /PSYMB, ESYS 说明:在指定网格划分属性时,可将某一关键点作为方向点属性赋予所需划分的线,这样就生成包含3个节点的梁单元。(具体见后面) 4.单元压力荷载(pressure)的施加比较特殊。只能用SFBEAM命令来实现, 通过其他方式施加荷载都是无效的,其中LKEY为荷载方向号。 5.beam4单元应力输出:包括轴向正应力,弯曲应力,两者的合应力。 命令:PRESOL,ELEM GUI:LIST RESULT〉ELEM SOLUT〉LINEELEM RESULT

曲线梁桥ANSYS计算命令流

!****************************************************************************** *********************** ! case2:无偏载(以跨径布置30m+40m+30m,桥宽8.5为例) ! 上海城市设计研究院L1+L2+L3预应力混凝土曲线连续梁桥结构分析 ! 两端为抗扭支座,中间支座为点铰支座 ! 每次要记得修改横隔梁的参数,即Mass21单元的实常数 !****************************************************************************** *********************** FINI /CLE /prep7 !DEFINE THE ELEMENTARY PARAMETERS *DIM,L,ARRAY,10 *DIM,H,ARRAY,10 *DIM,CITA,ARRAY,10 !*****以下参数均可修改*************** N=3 !跨数 L(1)=30 !第一跨 L(2)=40 !第二跨 L(3)=30 !第三跨 e1=1.25 !1#墩处内支座到中心线的间距 e2=1.25 !1#墩处外支座到中心线的间距 e3=0 !2#墩处的支座偏心距(正的表示外偏) e4=0 !3#墩处的支座偏心距 e5=1.25 !4#墩处内支座到中心线的间距 e6=1.25 !4#墩处外支座到中心线的间距 R=10000 !曲线桥半径 H0=1.0 !梁底到截面形心处的高度 M=16146 !mass21单元质量 J=27246.38 !mass21单元转动惯量 !************************************* LL=0.0 *DO,I,1,N LL=LL+L(I) CITA(I)=L(I)/R/3.1415925*180 *ENDDO CITA0=LL/R/3.1415925*180

ANSYS梁单元的选择

ANSYS中有七八种梁单元,它们的特点和适用范围各不相同。了解这些单元之间的异同,有助于正确选择单元类型和得到较为理想的计算结果。 梁是一种几何上一维而空间上二维或三维的单元,主要用于模拟一个方向长度大于其它两方向的结构形式。也就是说,主要指那些细长、像柱子一样的结构,只要横截面的尺寸小于长度尺寸,就可以选用梁单元来模拟(这在一定意义上和壳单元在一个方向上比另外两个方向都薄原理相似)。通常来讲,横截面尺寸需要小于长度的1/20或1/30,这里的长度是指两支撑点间的物理意义上的距离。梁单元本身可以进行任意的网格划分,且不支配梁理论的适用性;反过来,就像刚才提到的那样,物理尺寸和特性将决定选择哪种单元更为合适。 有两种基本的梁单元理论:铁木辛格(剪切变形)理论和欧拉-伯努力理论。ANSYS 中的如下单元是基于欧拉-伯努力梁理论: 1.2D/3D elastic BEAM3/4 2.2D plastic BEAM23 3.2D/3D offset tapered,unsymmetric BEAM54/44 4.3D thin-walled,plastic BEAM24 欧拉-伯努力梁理论建立在如下假定的基础上: 1.单元形函数为Hermitian多项式,挠度是三次函数; 2.弯矩可以线性改变; 3.不考虑横截面剪切变形; 4.扭转时截面不发生翘曲; 5.只具有线性材料能力(部分单元BEAM23/24具有有限的非线性材料能力); 6.非常有限的前后处理能力(除了BEAM44)。 ANSYS中有两种梁单元(BEAM188和BEAM189)是基于铁木辛格(剪切变形)理论,这种梁理论主要建立在如下假定基础上: 1.单元形函数为拉格朗日插值多项式,具有线性或二次的位移函数; 2.横向剪应力沿厚度方向为常数(一阶剪切变形梁单元); 3.可以模拟自由或约束扭转效应; 4.支持丰富的模型特性(塑性和蠕变); 5.强大的前生处理能力。 使用中需要注意: (1)铁木辛格(剪切变形)理论是基于一阶剪切变形理论的,它不能准确地求解短粗梁,因此,ANSYS在帮助里指出该类型梁的适用范围是:GAl2/EI>30,对于那些高跨比较大的梁应选用实体单元求解; (2)ANSYS中2结点的铁木辛格(剪切变形)单元BEAM188对网格密度的依赖性较强,选用时单根构件单元数应不小于5或不小于3,并且打开KEYOPT(3),否则误差会较大。

ANSYS四跨连续梁的内力计算教程

ANSYS四跨连续梁的力计算 四跨连续梁模型图如下所示,各个杆件抗弯刚度EI相同,利用平面梁单元分析它的变形和力 1.结构力学分析 利用结构力学方法可以求出这个连续梁的剪力图和弯矩图如下

这里只给出了梁的弯曲刚度相同条件,没有指定梁截面的几何参数和材料的力学性质。从结构力学分析的条件上看,这些条件对于确定梁的力已经足够,但是对于梁的变形分析和应力计算,还需要补充材料的力学参数和截面几何参数。所以以下分析中,假定梁的截面面积位0.3m2,抗弯惯性矩为0.003m4,截面高度为0.1m;材料的弹性模量为1000kN/m2,泊松比为0.3。补充这些参数对于梁的力没有影响,但是对于梁的变形和应力是有影响的。 2.用节点和单元的直接建模求解 按照前面模型示意图布置节点和单元,在图示坐标系里定位节点的坐标和单元连接信息,以及荷载作用情况和位移约束。由于第二跨中间有两个集中力,所以在集中力位置设置两个节点。这样,就可以将这两个集中力直接处理成节点荷载。对于平面梁单元的节点只需输入平面上的两个坐标值,所以这里只输入节点的x坐标和y坐标。 (1)指定为结构分析 运行主菜单中preference偏好设定命令,然后在对话框中,指定分析模块为structural结构分析,然后单击ok按钮

(2)新建单元类型 运行主菜单preprocessor—element type—add/edit/delete命令,接着在对话框中单击add 按钮新建单元类型 (3)定义单元类型 先选择单元为beam,接着选2d elastic 3,然后单击ok按钮确定,完成单元类型的选择

(4)关闭单元类型的对话框 回到单元类型对话框,已经新建了beam3的单元,单击对话框close按钮关闭对话框 (5)定义实力常量 运行主菜单preprocessor—real constants—add/edit/delete命令,接着在对话框中单击add 按钮新建实力常量

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

ANSYS_命令求解连续梁内力

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!求解多跨连续梁的弯矩图!!! !!!!算例ex01 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! finish /clear,nostart /filname,ex01,1 !!定义文件名 !!!!!参数输入 /prep7 L=8 !!跨度 NN=20 !!每跨分段数量 Ns=1 !!跨度数量 Ex=2.06e11 !!弹性模量 Nuxy=0.3 !!泊松比 qq=1.0*1000 !!均布荷载 aa=0.2 !!方管截面宽度 bb=0.25 !!方管截面高度 tt=0.01 !!方管管壁厚度 Area=aa*bb-(aa-2*tt)*(bb-2*tt) Izz=aa*bb**3/12-(aa-2*tt)*(bb-2*tt)**3/12 Ashear=2*tt*bb !!剪切面积 !!!!!前处理 /prep7 et,1,beam3 !!定义单元类型 mp,ex,1,Ex !!定义材料特性 mp,nuxy,1,Nuxy r,1,Area,Izz,bb,Area/Ashear,, !!定义实常数(考虑剪切变形)!r,1,Area,Izz,bb,,, !!定义实常数(不考虑剪切变形) !!!!!定义节点 Nnode=NN*Ns+1 !!节点总数 dx=L/NN !!每段单元长度 *do,i,1,Nnode n,i,(i-1)*dx,0,0 *enddo !!!!!定义单元 Nele=Nnode-1 !!!单元总数 type,1 real,1

mat,1 *do,i,1,Nele e,i,i+1 !!!定义单元(单元自动编号)! en,i+Nele,i,i+1 !!!定义单元(单元按规定编号) *enddo !!!!施加约束 *do,i,1,Ns+1 n1=(i-1)*NN+1 d,n1,uy,0 *enddo d,1,ux,0 !!!施加荷载 sfbeam,all,1,pres,qq !!!!求解 /solu allsel,all solve !!!!画弯矩图 /post1 ETABLE,SMIS6,SMISC, 6 ETABLE,SMIS12,SMISC, 12 PLLS,SMIS6,SMIS12,-1,0 !!画弯矩图 plnsol,u,y,0,1.0, !!画变形图 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!求解单层球面网壳的临界荷载!!! !!!!算例ex02 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! finish /clear,nostart /filname,ex02,1 !!定义文件名 !!!!!参数输入 /prep7 PI=3.1415926535 R=15 !!球面半径 f=5 !!网壳矢高 NR=8 !!径向划分数量 NC=24 !!环向划分数量 alf=acos((R-f)/R) !!圆心角(弧度)

ANSYS建模apdl命令流实例应用

大桥全长2996.8m,其中主桥采用跨度为101.5+188.5+580+217.5+159.5+116m的钢桁梁斜拉桥;非通航孔正桥采用6孔跨径64m预应力混凝土简支箱梁;东引桥采用16孔梁长32.6m预应力混凝土简支箱梁;跨大堤桥采用48.9+86+48.8m预应力混凝土连续箱梁;西引桥采用15孔梁长32.6m预应力混凝土简支梁及2孔梁长24.6m预应力混凝土简支梁,其中宁安线采用箱梁,阜景线采用T梁。 主桥采用103+188.5+580+217.5+159.5+117.5m两塔钢桁斜拉桥方案,全长1366m。主梁为三片主桁钢桁梁,桁间距2x14m,节间长14.5m,桁高15m。主塔为钢筋混凝土结构,塔顶高程+204.00m,塔底高程-6.00m,斜拉索为空间三索面,立面上每塔两侧共18对索,全桥216根斜拉索。所有桥墩上均设竖向和横向约束,4#塔与主梁之间设纵向水平约束,3#塔与梁间使用带限位功能的粘滞阻尼器。主梁为”N”字型桁式,横向采用三片桁结构,主桁的横向中心距各为14m,桁高15m,节间距14.5m[2]。 结构构造 主桥采用两塔钢桁斜拉桥方案,主梁为三片主桁钢桁梁,主桁上下弦杆均为箱型截面,上弦杆内高1000mm,内宽1200mm,板厚20~48mm。下弦杆内高1400mm,宽1200mm,板厚20~56mm。下弦杆顶板向桁内侧加宽700mm与整体桥面板焊接。腹杆主要采用H型截面。H型杆件宽1200mm,高720和760mm,板厚20~48mm。根据不同的受力区段选用不同的杆件截面,在辅助墩附近的压重区梁段,腹杆采用箱型截面杆件。主桁采用焊接杆件,整体节点。在节点外以高强度螺栓拼接的结构形式,上下弦杆四面等强对接拼装。H型腹杆采用插入式连接。箱型腹杆采用四面与主桁节点对拼的连接形式。主桁拼接采用M30高强螺栓。

相关主题
文本预览
相关文档 最新文档