当前位置:文档之家› 用Zorn引理证明代数问题

用Zorn引理证明代数问题

用Zorn引理证明代数问题
用Zorn引理证明代数问题

近世代数期末考试试卷与答案

一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。 A、a B、 a , e 33 C、 e, a D、 e, a , a 2、下面的代数系统( G, * )中,()不是群 A、G为整数集合, * 为加法 B、G为偶数集合, * 为加法 C、G为有理数集合, * 为加法 D、G为有理数集合, * 为乘法 3、在自然数集 N 上,下列哪种运算是可结合的?() A、a*b=a-b B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| 4、设 1 、 2 、 3 是三个置换,其中 1 =(12)(23)(13),2 =(24)(14),3=( 1324),则3=() A、2 B 、12 D 、2 1 12C 、2 5、任意一个具有 2 个或以上元的半群,它()。 A、不可能是群 B、不一定是群 C、一定是群 D、是交换群 二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正 确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子 ----- 称为整环。 4 3、已知群G中的元素a的阶等于 50,则a的阶等于 ------。 4、a 的阶若是一个有限整数n,那么 G与-------同构。 5、A={1.2.3}B={2.5.6}那么 A∩B=----- 。 6、若映射既是单射又是满射,则称为-----------------。 7 、叫做域F的一个代数元,如果存在F的----- a 0 , a1 , , a n使得 n a 0 a 1 a n0 。

代数证明与恒等变形

代数证明与恒等变形 代数证明主要是指证明代数中的一些相等关系或不等关系、 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明、 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边、 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与条件的沟通、 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用、 例1:设A 、B 、C 、D 都是整数,且M =A2+B2,N =C2+D2,MN 也可以表示成两个整数的平方和,其形式是______. 解MN =(A2+B2)(C2+D2) =A2C2+2ABCD +B2D2+A2D2+B2C2-2ABCD =(AC +BD )2+(AD -BC )2 =(AC -BD )2+(AD +BC )2, 所以,MN 的形式为(AC +BD )2+(AD -BC )2或〔AC -BD 〕2+(AD +BC )2. 例2:设X 、Y 、Z 为实数,且 (Y -Z )2+(X -Y )2+(Z -X )2=(Y +Z -2X )2+(Z +X -2Y )2+(X +Y - 2Z )2.求 )1)(1)(1() 1)(1)(1(222++++++z y x xy zx yz 的值. 解将条件化简成 2X2+2Y2+2Z2-2XY -2XZ -2YZ =0 ∴(X -Y )2+(X -Z )2+(Y -Z )2=0 ∴X =Y =Z ,∴原式=1. 例3:设A +B +C =3M ,求证:(M -A )3+(M -B )3+(M -C )3-3(M -A )(M - B )(M - C )=0. 证明令P =M -A ,Q =M -B ,R =M -C ,那么 P +Q +R =0. P3+Q3+R3-3PQR =(P +Q +R )(P2+Q2+R2-PQ -QR -RP )=0 ∴P3+Q3+R3-3PQR =0 即(M -A )3+(M -B )3+(M -C )3-3(M -A )(M -B )(M -C )=0 例4:假设67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小. 解设,y x A =那么 ,21++=y x B

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

代数式恒等式的证明

初中数学竞赛专题选讲 代数恒等式的证明 一、内容提要 证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法则、性质。 具体证法一般有如下几种 1.从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论的形式。 2.把左、右两边分别化简,使它们都等于第三个代数式。 3.证明:左边的代数式减去右边代数式的值等于零。即由左边-右边=0可得左边=右边。 4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边证它能达到另一边, 二、例题 例1求证:3 n+2-2n+2+2×5 n+2+3 n-2 n=10(5 n+1+3 n-2 n-1) 证明:左边=2×5×5 n+1+(3 n+2+3 n)+(-2 n+2-2 n) =10×5 n+1+3 n(32+1)-2 n-1(23+2) =10(5 n+1+3 n-2 n-1)=右边 又证:左边=2×5 n+2+3 n(32+1)-2 n(22+1) =2×5 n+2+10×3 n-5×2 n 右边=10×5 n+1+10×3 n-10×2 n-1 =2×5 n+2+10×3 n-5×2 n ∴左边=右边 例2 己知:a+b+c=0 求证:a3+b3+c3=3abc 证明:∵a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)(见19例1) ∵:a+b+c=0 ∴a3+b3+c3-3abc=0即a3+b3+c3=3abc 又证:∵:a+b+c=0∴a=-(b+c) 两边立方a3=-(b3+3b2c+3bc2+c3) 移项a3+b3+c3=-3bc(b+c)=3abc 再证:由己知a=-b-c 代入左边,得 (-b-c)3+ b3+c3=-(b3+3b2c+3bc2+c 3)+b3+c3 =-3bc(b+c)=-3bc(-a)=3abc

自考《数学教育》专业-近世代数习题指导

自考《数学教育》专业-近世代数习题指导

自考《近世代数》练习1及答案 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。 ( ) 2、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且( ) 3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 4、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ和D 都是非空集合,而f 是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同; ②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),

八年级数学竞赛讲座代数证明附答案

第二十三讲 代数证明 代数证明主要是指证明代数中的一些相等关系或不等关系. 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边 左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用. 例题求解 【例1】(1)求证:a a z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+- (2)求证:)1)(1)(1(4)1()1()1(222ab ab b b a a ab ab b b a a ++++=+++++. 思路点拨 (1)从较复杂的等式左边推向等式右边,注意左边每个分式分子与分母的联系;(2)等式两边都较复杂,对左、右两边都作变形或作差比较. 注 如果一个等式的字母在条件允许范围内的任意一个值,使得等式总能成立,那么这个等式叫做恒等式.把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形,形变值不变是恒等变形的特点. 代数式的化简求值、代数证明其实质都是作恒等变形,分解、换元、引参、配方、分组、拆分,取倒数等是恒等变形常用的技巧与方法. 【例2】 已知b a y x +=+,且2222b a y x +=+. 求证:2001200120012001b a y x +=+. (黄冈市竞赛题) 思路点拨 从完全平方公式入手,推出 x 、y 与a 、b 间关系,寻找证题的突破口. 【例3】 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(I=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .

利用复数妙解三角几何等问题

利用复数妙解三角几何等问题 摘要 复数在高中涉及的知识点较少,在高考中占据的分数也不多,但却是很有特色的内容。因为复数的代数形式、几何形式、向量形式、三角形式以及指数形式与三角、几何、代数等学科有着密切的联系。本文罗列了复数的代数形式、几何形式、向量形式、三角形式以及指数形式,从解三角函数、几何、不等式、方程等几个问题论述复数在解决非复数数学问题的具体应用,充分认识、深刻理解、熟悉掌握和灵活运用复数的几个表示形式去解答,对学生的创新性思维素质和能力的培养具有重要意义。 关键字:复数;形式;解题;妙解 复数是高三最后一章的内容,短短几页,只有三节,但在高考中却占着一定的分值。高考中复数主要是以选择题与填空题的形式出现,只要掌握了复数的概念以及运算规律,就很容易得出答案。因此,教材的编排只简单介绍了复数的概念,复数的运算以及数系的扩充,没有作过多的介绍,其三角形式和指数形式只是在背景材料中提到过,并没有作详细的介绍。但在实际应用中,很多的数学问题,比如:三角问题、几何问题等我们也可以用复数的知识去解答。在高中数学中,复数把三角、平面几何、解析几何、代数在一定的程度上相互链接起来了,那我们应该如何巧妙地利用复数的不同表示形式去解答这类问题呢下面分别对这几方面进行探究。 1复数的不同表示形式简介 复数的代数形式 =+(其中x、y为实数),其中“i”叫做虚数复数的代数形式表示为z x yi

单位,21i =-,x 和y 分别叫做复数的实部和虚部。 复数的几何形式 图 在复平面上,每一个复数z x yi =+都能够由复平面上坐标为(x ,y )的点 来表示,复数集C 和复平面上的点所称的集合之间建立了一个一一对应的关系:“任何一个复数z x yi =+都可以由复平面的唯一的一个点(x ,y )来表示,反之,复平面内的任何一个点(x ,y )都可以表示唯一的复数z x yi =+。” 复数z x yi =+←???→一一对应复平面内的点(x ,y ),这就是复数的几何表示形式。 复数的向量形式 我们知道,任何一个复数都与平面直角坐标系中的点构成一一对应的关系, 即:复数z x yi =+←???→一一对应复平面内的点M (x ,y ),而点M (x ,y ) ←???→一一对应平面向量。所以,复数z x yi =+←???→一一对应平面向量OM ,也就是说复数z x yi =+也可以用起点为原点,点M (x ,y )为终点的向量OM 表示,OM 这个向量即是复数的向量表示形式。

近世代数证明题

证明题 1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G 2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。证明:H /Kerf ≌H . 3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。 4、设R = ???? ??c o b a ,a ,b ,c ∈Z ,I = ???? ??o o x o x ∈Z 。 (1)验证R 是矩阵环Z 2×2的一个子环。 (2)证明I 是R 的一个理想。 5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G , o )构成一个群. 6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域?I 是由R 的一个素元生成 的主理想. 7、证明:模m 的剩余类环Zm 的每个子环都是理想. 8、设G 是群,H ≤G 。令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,?h ∈ H ,hx = xh }.证明: (1)N G (H )≤G (2)C G (H )△N G (H ) 9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群. 10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的 一个素元. 11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈ H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明: (1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }. (2)Z [x ]/(3,x )含3个元素. 13、设H 是群G 的子群,令N G (H )={x |x G , xH =Hx },证明N G (H)是G 的子群. 14、在整数环Z 中, a, b Z,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公 因数是一个素数。 f f

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

3.2.1 复数代数形式的加、减运算及其几何意义.doc

3.2复数代数形式的四则运算 3.2.1复数代数形式的加、减运算及其几何意义 整体设计 教材分析 复数的加减运算不仅是本节的重点,也是本章知识的重点之一.复数代数形式的加法运算法则是一种规定,它的合理性体现在:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神.复数的减法运算法则是通过转化为加法运算而得到的,渗透了转化的数学思想方法,是学生体会数学思想的素材.对于复数加法、减法运算的几何意义(即可以通过|hj量加法、减法法则来进行),它不仅乂一次让我们看到了向量这一工具的功能,也使数和形得到了有机的结合. 课时分配 1课时. 教学目标 1.知识与技能目标 掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义. 2.过程与方法目标 培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 3.情感、态度和价值观 培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神. 重点难点 重点:发数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 教学过程 引入新课 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究发数的加减运算. 探究新知 我们规定,复数的加法法则如下: 设Zi=a+bi, z2=c+di 是任意两个复数,那么(a+bi) + (c+di) = (a+c) + (b+d)i. 提出问题: 问题1:两个夏数的和是个什么数,它的值唯一确定吗? 问题2:当b=0, d=0时,与实数加法法则一致吗? M题3:它的实质是什么?类似于实数的哪种运算方法? 活动设计:学生独立思考,口答. 活动成果:1.仍然是个复数,且是一个确定的复数;2.一致;3.实质是实部与实部相加, 虚部与虚部相加,类似于实数运算中的合并同类项.

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数证明

11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 首先由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba 由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba

用复数证明代数问题

毕业论文题目:用复数证明代数问题学号:24111101025 姓名: 教学院: 专业班级: 指导教师: 完成时间:2015年5月1日 教务处制

贵州工程应用技术学院毕业论文(设计)任务书 注:本表一式一份,用于装订完整文本。

贵州工程应用技术学院毕业论文(设计)学生诚信声明书本人郑重声明:本人所提交的毕业论文(设计)《》是本人在指导教师指导下独立研究、写作的成果,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果,论文中所引用他人的无论以何种方式发布的文字、研究成果,均在论文中加以说明;对本文研究做出过重要贡献的个人和集体,均已在文中以明确方式标明。如果存在弄虚作假、抄袭、剽窃的情况,本人愿承担全部责任。 论文(设计)作者:(签字)时间:年月日 指导教师:(签字)时间:年月日 贵州工程应用技术学院毕业论文(设计)版权使用授权书本毕业论文(设计)《》是本人在校期间所完成学业的组成部分,是在指导教师的指导下完成的,论文(设计)工作的知识产权属于贵州工程应用技术学院。本人同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅;本人授权贵州工程应用技术学院可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印、网页制作或扫描等复制手段保存、汇编学位论文。毕业论文(设计)无论做何种处理,必须尊重本人的著作权,署明本人姓名。 未经指导教师和贵州工程应用技术学院同意,本人不擅自发表毕业论文(设计)相关研究内容或利用毕业论文(设计)从事开发和盈利性活动。毕业后若发表毕业论文(设计)中的研究成果,需征得指导教师同意,作者第一单位署名应为“贵州工程应用技术学院”,成果发表时本人工作(学习)单位可以在备注中注明。 论文(设计)作者:(签字)时间:年月日 指导教师:(签字)时间:年月日

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

代数系统证明题

问答题: 1:是一个代数系统,*是A 上的一个二元运算,如何根据运算表看出是否有①封闭性;②可交换性;③等幂元;④零元;⑤幺元。 )①封闭性:A 中的每个元素都在运算表中;②可交换性:运算表关于主对角线是对称的;③等幂性: 运算表中主对角线中的元素等于它所在行和列的表头元素;④零元:该元素所在行和所在列的元素值都与该元素相同;⑤幺元: 该元素所在的行和列依次与运算表中的行和列相同。 2:请叙述群的定义。 设是一个代数系统,其中G 是非空集合,*是G 上一个二元运算,如果 (1) 运算*是封闭的。 (2) 运算*是可结合的。 (3) 存在幺元e 。 (4) 对于每一个元素x ∈G,存在着它的逆元x-1。 则称是一个群。 证明题: 1: 在R 上定义运算:。证明是独异点。 证明过程: (1)∵对于任意a,b ∈R 显然a*b=a+b+ab ∈R , ∴*运算满足封闭性 (2)对于任意a,b,c ∈R 有 (a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c =a+b+c+ab+ac+bc+abc 而a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc) =a+b+c+bc+ac+ab+abc ∴(a*b)*c=a*(b*c) ∴*运算满足结合性 (3)设对任意元素a ∈R ,则有 a*0=a+0+a ×0=a 0*a=0+a+0×a=a 即有 a*0=0*a=a ∴0是幺元 由于中*运算封闭,满足结合律,有幺元,所以是独异点。 2: 设是一个群,证明是阿贝尔群的充要条件是对于任意的a ,b ∈G 有(a*b)*(a*b)=(a*a)*(b*b)。 证明过程: 证明:充分性证明: 设对任意,,a b G ∈有(*)*(*)(*)*(*)a b a b a a b b = 因为 ab b a b a ++=*

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

几何重数小于等于代数重数证明

几何重数小于等于代数重数证明及P190.3 设T是n维欧氏空间V上的一个线性变换, λ是T的一个特征值, 试证: λ的几何重数小于等于代数重数. 设ε1,ε2,ε3,ε4是线性空间ε的一组基,已知线性变换ε在这组基下的矩阵为 A=( 1021?1213 1255 2?21?2 ) 求 (1) ε在基ε1=ε1?2ε2+ε4;ε2=3ε2? ε3?ε4;ε3=ε3+ε4;ε4=2ε4下的矩阵; (2)ε的核与值域; (3)在ε的核中选取一组基,把它扩充为V的一组基,并求ε在这组基下的矩阵;(4)在ε的值域中选取一组基,把它扩充为V的一组基,并求ε在这组基下的矩阵。

解:(1) 因为(ε1,ε2,ε3, ε4)=(ε1,ε2,ε3, ε4)( 1 0 0 0 ?2 3 0 0 0 ?1 1 01 ?1 1 2)= (ε1,ε2,ε3, ε4)ε 所以 ε(ε1,ε2,ε3, ε4)=ε(ε1,ε2,ε3, ε4)ε=(ε1,ε2,ε3, ε4)εε=(ε1,ε2,η3, ε4)ε?1εε 故ε在基 ε1,ε2,ε3, ε4 下的矩阵为ε?1εε, 因此, ε?1εε= ( 1 0 0 0 23 13 0 0 23 13 1 0 ?12 0 ?12 12 ) ( 1 0 2 1?1 2 1 3 1 2 5 5 2 ?2 1 ?2)( 1 0 0 0 ?2 3 0 0 0 ?1 1 01 ?1 1 2) =13( 6 ?9 9 6 2 ?4 10 10 8 ?16 40 40 0 3 ?21 ?24 ) (2) 解:(2)设44332211εεεεαx x x x +++= ∈ε,则A α=0,故 A (ε1ε2 ε3ε4 )=0 计算知,2)(=A r 且上述齐次线性方程组的基础解系为T T )1,0,2,1(,)0,1,2 3 ,2(--- -,因而 421232112,2 3 2εεεαεεεα+--=+--= 是ker (ε)的一组基,ker (ε)=L (ε1,ε2). 显然,矩阵A 的前两列线性无关,构成矩阵A 的列向量组的一个极大无关组,因而 ε(ε)=εV =L (εε1,εε2,εε3,εε4)=L ( εε1,εε2) 其中εε1=ε1?ε2+ε3+2ε4,εε2=2ε2+2ε3?2ε4是εV的一组基. (3) 取ker (ε)的基21,αα把它扩充成V 的基2121,,,ααεε,

代数基本定理的证明方法研究(论文)

前 言 代数学基本定理在代数学中占有十分重要的地位,而在整个数学界中也起着基础作用。代数学基本定理有两种等价的陈述方式。第一种陈述方式为:“任何一个一元n 次复系数多项式0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )在复数域内至少有一根”,它的第二种陈述方式为:“任何一个一元n 次复系数多项式0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )在复数域内有n 个根,重根按重数计算”。尽管这个定理被命名为代数基本定理,但,迄今为止,该定理尚无纯代数方法证明。数学家J.P 赛尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor 在数学名著《从微分观点看拓扑》中给了一个证明,是几何直观的,但其中用到了和临界点测度有关的萨尔德定理。在复变函数论中,对代数基本定理的证明是相当优美的,其中运用了很多经典的复变函数的理论成果。 代数基本定理的第一个证明是由法国数学家达朗贝尔给出的,但其证明是不完整的。紧接着,欧拉也给出了一个证明,但也有缺陷。严格来说,第一个完整的证明是数学家高斯给出的,他在分析了拉格朗日的证明方法以后于1799年给出的,他是运用的纯解析的方法证明。而后,到高斯71岁时,共给出了四种证明方法。十九世纪七十年代,数学家 H.W.Kuhn []18 对于该定理给出了引人注目的构造性证明,这种方法的数学形象极好,并已 实际用于复系数代数方程求根,堪称不动点算法的范例。如果将复数域理解为复平面,将 0111...)(a z a z a z a z p n n n n ++++=--(1≥n ,0≠n a )的根理解为它在复平面上的零点,那 么就可以借助复变函数的理论去证明代数学基本定理。这种证明方法比较简洁,方法也有 多种。近年来,诸多数学家又给出了其它的证明方法,例如2003年翁东东[]6 对代数基本 定理进行了多种方法的分析,并给予了形象的证明。他并没有采用常用的刘维尔定理和儒歇原理运用复变函数的方法进行证明,而是采用了初等方法证明了代数基本定理,说明可不用复变函数理论中的有关概念和定理进行证明该定理。 本论文结合有关知识点,主要目的是归纳总结代数基本定理几种代表性的证明方法。第一章运用复变函数理论中的柯西定理、刘维尔定理、儒歇定理、辐角原理、最大模原理、最小模原理、留数定理来证明代数学基本定理,并对这些证明方法进行说明、比较与总结。第二章主要介绍了翁东东的初等方法的证明。第三章介绍了Kuhn 的两个构造性的证明方法。第四章简单介绍了高斯的纯解析证明方法。

相关主题
文本预览
相关文档 最新文档