当前位置:文档之家› 3)机器人逆运动学实验

3)机器人逆运动学实验

3)机器人逆运动学实验
3)机器人逆运动学实验

实验(3)机器人逆运动学实验

一、实验目的:

1)基于robotics机器人库构建机器人;

2)对构建的机器人进行逆运动学分析;

3)了解和熟悉机器人逆运动学的作用。

二、机器人连杆关系图:

图1 机器人连杆关系图

连杆变换矩阵:

参数含义:

三、基本函数介绍

(1)2连杆机器人实例

图2连杆机器人坐标系1)建立机器人DH参数表

2)根据D-H参数创建机器人连杆对象

3)根据连杆对象,建立机器人

4)观测建立机器人的情况

正运动学函数:

1)正运动学函数的使用

T=two_link.fkine([pi/4 pi/4])

T = 0.0000 -1.0000 0 0.7071

1.0000 0.0000 0 1.7071

0 0 1.0000 0

0 0 0 1.0000

2)观测计算结果的情况,三维显示

two_link.plot([pi/4 pi/4])

3)逆运动学函数

q=two_link.ikine(T,[0 0],[1 1 0 0 0 0])

q =0.7854 0.7854 ikine 函数的参数说明:

Q = R.ikine(T, Q0, M, OPTIONS)

Q0为求解的初始值;

M 为自由度数,也就是有运动关节,对应有关节的为1。 (2)对于六自由度机器人求解的逆解,以puma560为例。 1)函数ikine6s

使用方法Q = R.ikine6s(T, CONFIG) 其中T 为机器人位姿矩阵。CONFIG 为臂型

'l' arm to the left (default) 'r' arm to the right 'u' elbow up (default) 'd' elbow down

'n' wrist not flipped (default)

'f' wrist flipped (rotated by 180 deg)

X

Y

Z

2)puma560实例

>> mdl_puma560 >>qn qn =

0 0.7854 3.1416 0 0.7854 0 >> T = p560.fkine(qn) T =

-0.0000 0.0000 1.0000 0.5963 -0.0000 1.0000 -0.0000 -0.1501 -1.0000 -0.0000 -0.0000 -0.0144 0 0 0 1.0000

>>qi = p560.ikine6s(T) qi =

2.6486 -

3.9270 0.0940 2.5326 0.9743 0.3734

>>qi = p560.ikine6s(T,’ru ’)

qi = -0.0000 0.7854 3.1416 0.0000 0.7854 -0.0000 >>p560.plot(qi)

X

Y

Z

六、实验内容

(1)用机器人库建立下图的机器人,并且求解和显示下面几种情况讨论平面3

自由度机器人的姿态逆运动学解。并用机器人库求解给定0

H T 的前提下,求解平

面机器人的关节角度。

1)复习机器人逆解的代数求解方法,见P83-86页,尝试用matlab 编写平面3R 求解过程。

2)当1

009010000100001????

?

?=??

??

??0

H T ,

0.50.86607.53730.8660.60 3.926600100001-??

??

??=??

?

?

??

0H T ,

0.8660.50 3.12450.50.86609.167400100001-??

????=??

????

0H T 条件下的3R 机器人的关节角度。

(2)根据机器人库提供过得puma560—6自由度工业机器人模型,进行一下逆运动分析:

Puma-560机器人

1)T=p560.fkine(q),其中q=[0 0.7854 3.1416 0 0.7854 0]时,调用逆解函数,求出该情况下所有的解。并且用机器人plot函数画出计算前后的机器人图形,对比观测结果,分析情况。

2)T=p560.fkine(q),q = [0 pi/4 pi 0.1 0 0.2]时,调用逆解函数,求出该情况下所有的解。并且用机器人plot函数画出计算前后的机器人图形,

对比观测结果,分析情况。

机器人实验报告

智能机器人实验报告1 学院:化学与材料科学学院 学号: 2015100749 姓名:朱巧妤 评阅人:评阅时间:

实验1 电驱动与控制实验 (一)实验目的 熟悉和掌握机器人开发环境使用,超声传感器、碰撞传感器、温度传感器、颜色传感器等常见机器人传感器工作原理与使用方法,熟悉机器人平台使用与搭建;设计一个简单的机器人,并采用多种程序设计方法使它能动起来。 (二)仪器工具及材料 计算机、机器人实验系统、机器人软件开发平台、编程下载器等设备。 (三)内容及程序 实验内容: (1)碰撞传感器原理与应用; (2)颜色传感器原理与应用; (3)测距传感器原理与应用; (4)温度传感器原理与应用; (5)熟悉开发环境使用与操作;设计一个简单轮式移动机器人,并使用图形化编程方式实现对机器人的控制,通过该设计掌握机器人开发平台的结构设计、程序设计等基本方法。 实验步骤: 1)首先确定本次要做的机器人为货架物品颜色辨别的机器人。 2)根据模型将梁、轴、插销、螺丝等零件拼装成一个货架台 3)将货架台安装上可识别颜色的摄像头,并装在控制器上方,将两个摄像头的连接线分 别插入控制器的传感器接口,将显示器连接线插入传感器接口。 4)拼装完成后将控制器连接电脑,在电脑上运用Innobot软件对机器人进行颜色识别动 作的编程,拖动颜色传感器模块,对应选择数码管接口以及两个摄像头的接口,使机器人能将货架台上物品的颜色反应到数码管上。 5)将所编程序进行上传。测试看机器人是否能将颜色反映到显示器上完成所编动作。

(四)结果及分析 使用梁和轴以及螺钉拼装出货架台。 将拼装好的货架台装到传感器上。

机器人实验报告

一、机器人的定义 美国机器人协会(RIA)的定义: 机器人是一种用于移动各种材料、零件、工具或专用的装置,通过可编程序动作来执行种种任务的、并具有编程能力的多功能机械手。 日本工业机器人协会(JIRA—Japanese Industrial Robot Association):一种带有存储器件和末端执行器的通用机械,它能够通过自动化的动作替代人类劳动。(An all—purpose machine equipped with a memory device and an end—effector,and capable of rotation and of replacing human labor by automatic performance of movements.) 世界标准化组织(ISO):机器人是一种能够通过编程和自动控制来执行诸如作业或移动等任务的机器。(A robot is a machine which can be programmed to perform some tasks which involve manipulative or locomotive actions under automatic control.) 中国(原机械工业部):工业机器人是一种能自动定位控制、可重复编程、多功能多自由度的操作机,它能搬运材料、零件或夹持工具,用以完成各种作业。 二、机器人定义的本质: 首先,机器人是机器而不是人,它是人类制造的替代人类从事某种作业的工具,它能是人的某些功能的延伸。在某些方面,机器人可具有超越人类的能力,但从本质上说机器人永远不可能全面超越人类。

机器人运动学精品教程

第2章机器人位置运动学 2.1 引言 本章将研究机器人正逆运动学。当已知所有的关节变量时,可用正运动学来确定机器人末端手的位姿。如果要使机器人末端手放在特定的点上并且具有特定的姿态,可用逆运动学来计算出每一关节变量的值。首先利用矩阵建立物体、位置、姿态以及运动的表示方法,然后研究直角坐标型、圆柱坐标型以及球坐标型等不同构型机器人的正逆运动学,最后利用Denavit-Hartenberg(D-H表示法来推导机器人所有可能构型的正逆运动学方程。 实际上,机器手型的机器人没有末端执行器,多数情况下,机器人上附有一个抓持器。根据实际应用,用户可为机器人附加不同的末端执行器。显然,末端执行器的大小和长度决定了机器人的末端位置,即如果末端执行器的长短不同,那么机器人的末端位置也不同。在这一章中,假设机器人的末端是一个平板面,如有必要可在其上附加末端执行器,以后便称该平板面为机器人的“手”或“端面”。如有必要,这里还可以将末端执行器的长度加到机器人的末端来确定末端执行器的位姿。 2.2 机器人机构 机器手型的机器人具有多个自由度(DOF),并有三维开环链式机构。 在具有单自由度的系统中,当变量设定为特定值时,机器人机构就完全确定了,所有其他变量也就随之而定。如图2.1所示的四杆机构,当曲柄转角设定为120°时,则连杆与摇杆的角度也就确定了。然而在一个多自由度机构中,必须独立设定所有的输入变量才能知道其余的参数。机器人就是这样的多自由度机构,必须知道每一关节变量才能知道机器人的手处在什么位置。 图2.1 具有单自由度闭环的四杆机构 如果机器人要在空间运动,那么机器人就需要具有三维的结构。虽然也可能有二维多自由度的机器人,但它们并不常见。 机器人是开环机构,它与闭环机构不同(例如四杆机构),即使设定所有的关节变量,也不能确保机器人的手准确地处于给定的位置。这是因为如果关节或连杆有丝毫的偏差,该关节之后的所有关节的位置都会改变且没有反馈。例如,在图2.2所示的四杆机构中,如果连杆AB偏 移,它将影响杆。而在开环系统中(例如机器人),由于没有反馈,之后的所有构件都会发生偏移。于是,在开环系统中,必须不断测量所有关节和连杆的参数,或者监控系统的末

机器人实验与技术实验报告

机器人技术课程实验报告 题目:机器人灭火 专业:自动化 班级: 101 姓名及学号: 2013年10 月 成都信息工程学院控制工程学院 一、设计目的: 1、通过本课程的学习和训练,了解有关机器人技术方面的基本知识,掌握机器人学所涉及的技术的基本原理和方法,得到机器人技术开发的实践技能训练。

2、巩固相关理论知识,了解机器人技术的基本概念以及有关电工电子学、单片机、传感器等技术。 3、通过使用机器人模型,编程处理机器人运动过程,分析机器人的控制原理,通过对其具体结构的了解。 4、培养自学能力和独立解决问题的能力,熟悉MT-UROBOT图形界面的编程与调试方法,熟练掌握平台的输入输出口进行控制。 二、设计任务: 使机器人能在迷宫内自主行走,能自己编写程序,让机器人完成相应的任务。 三、设计要求: 1、认真阅读教材中第1章和第2章的内容,学会工程项目的建立,应用程序的仿真与调试。 2、利用I/O口和传感器对机器人进行控制。(实验步骤和参考程序可参照使用说明中的第3章及第四章4.3节) 四、系统设计: 1、介绍所使用的硬件情况及工作原理: MT-UROBOT是一种供教学和研究的新型移动智能机器人。开关按钮控制MT-URO MT-UROBOT结构(如下:) OT 电源开关的按钮,按此按钮可以打开或关闭机器人电源。“电源”指示灯按下 MT-UROBOT 的开关后,这个灯会发绿光,这时可以与机器人进行交流了!“充电”指示灯当你给机器人充电时,“充电”指示灯发红光。“充电口”将充电器的相应端插入此口,再将另一端插到电源上即可对机器人充电。“下载口”“充电口”旁边的“下载口”用于下载程序到机器人主板上,使用时只需将串口连接线的相应端插入下载口,另一端与计算机连接好,这样机器人与计算机就连接起来了。“复位/MTOS”按钮这是个复合按钮,用于下载操作系统和复位。当串口通信线接插在下载口上时,按击此按钮,机器人系统默认为此操作为下载操作系统;如果你想使用其复位功能则需要将通信线拔下,按击此按钮,机器人系统认为此操作为系统复位。“RUN”键打开电源后,按击“RUN”键,机器人就可以运行内部已存储的程序,按照你的“指令”行动。“通信”指示灯“通信”指示灯位于机器人主板的前方,在给 MT-UROBOT 下载程序时,这个黄灯会闪烁,

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。 (2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload)有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

两轮机器人实验报告

机电综合实验报告 两轮机器人 姓名:付文晖 班级:车辆工程二班 学号: 20110402216 同组成员:张彬 20110402203 平梦浩 20110402103 2014年12月

目录 一、实验目的.................................................. - 2 - 二、实验设备.................................................. - 2 - 三、实验内容.................................................. - 2 - 四、实验原理.................................................. - 2 - 4.1、实验平台——C51+AVR 控制板........................... - 2 - 4.2、开发平台——Keil μVision2........................... - 4 - 4.3、开发辅助工具——USBASP程序下载器软件................ - 5 - 4.4、机器人定速巡航与日字行走............................. - 6 - 4.5、机器人触须导航....................................... - 7 - 4.6、机器人红外导航....................................... - 8 - 五、实验过程及结果........................................... - 10 - 5.1、定速巡航与日字行走.................................. - 10 - 5.1.1、直线向前行走.................................. - 10 - 5.1.2、向左转1/4圈.................................. - 10 - 5.1.3、向右转1/4圈.................................. - 10 - 5.1.4、向后退........................................ - 11 - 5.1.5、日字行走...................................... - 11 - 5.2、触须导航............................................ - 12 - 5.2.1、实验准备...................................... - 12 - 5.2.2、安装胡须...................................... - 13 - 5.2.3、测试胡须...................................... - 14 - 5.2.4、触须导航程序.................................. - 14 - 5.3、红外导航............................................ - 16 - 5.3.1、搭建IR发射和探测器对......................... - 16 - 5.3.2、为何要使用三极管9013 ......................... - 17 - 5.3.3、测试红外发射探测器............................ - 17 - 5.2.4、红外导航程序.................................. - 18 - 六、实验心得................................................. - 22 -

机器人实验报告

机器人实验报告 院系:电气信息工程学院班级:XX级电气X班 姓名:XXX 提交日期:201X年X月X日

前言 作为先进制造业中不可替代的重要装备和手段,工业机器人已经成为衡量一个国家制造水平和科技水平的重要标志。机器人的应用越来越广泛,需求越来越大,其技术研究与发展越来越深入,这将提高社会生产率与产品质量,为社会创造巨大的财富。本文将从工业机器的发展历史,现状及未来趋势进行阐述。机器人技术作为20世纪人类最伟大的发明之一,自20世纪60年代初问世以来,经历了近50年的发展已取得显著成果。走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。 一、发展历史 工业机器人诞生于20 世纪60 年代,在20 世纪90 年代得到迅速发展,是最先产业化的机器人技术.它是综合了计算机,控制论,机构学,信息和传感技术,人工智能,仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域.它的出现是为了适应制造业规模化生产,解决单调,重复的体力劳动和提高生产质量而代替人工作业.在我国,工业机器人的真正使用到现在已经接近20 多年了,已经基本实现了试验,引进到自主开发的转变,促进了我国制造业,勘探业等行业的发展.随着我国改革开放的逐渐深入,国内的工业机器人产业将面对越来越大的竞争与冲击,因此,掌握国内工业机器人市场的实际情况,把握 我国工业机器人的相关技术与研究进展,显得十分重要。 二、发展现状 在普及第一代工业机器人的基础上,第二代工业机器人已经推广,成为主流安装机型,第三代智能机器人已占有一定比重(占日本1998年安装台数的10%,销售额的36%) (1)机械结构:1) 已关节型为主流,80年代发明的使用于装配作业的平 面关节机器人约占总量的1/3.90年代初开发的适应于窄小空间,快节奏,360度全工作空间范围的垂直关节机器人大量用于焊接和上,下料.2)应3K 和汽车,建筑,桥梁等行业需求, 超大型机器人应运而生.如焊接树10米长,10吨以上大构件的弧焊机器人群,采取蚂蚁啃骨头的协作机构.3)CAD,CAE 等技术已普遍用于设计,仿真和制造中. (2)控制技术:1) 大多数采用32位CPU,控制轴数多达27轴,NC 技术,离线编程技术大量采用.2) 协调控制技术日趋成熟,实现了多手与变位机, 多机器人的协调控制, 正逐步实现多智能体的协调控制. 采用基于PC 的开放 结构的控制系统已成为一股潮3) 流,其成本低,具有标准现场网络功能. (3)驱动技术:1) 80年代发展起来的AC 侍服驱动已成为主流驱动技术用于工业机器人中.DD 驱动技术则广泛地用于装配机器人中.2) 新一代的侍服电机与基于微处 理器的智能侍服控制器相结合已由FANUC 等公司开发并用于工业机器人中, 在远程控制中已采用了分布式智能驱动新技术. (4)应用智能化的传感器:装有视觉传感器的机器人数量呈上升趋势,不少机器人装有两种传感器,有些机器人留了多种传感器接口. (5)通用机器人编程语言:在ABB 公司的20多个小型号产品中,采用了通用模化块语言RAPID.最近美国"机器人工作空间技术公司"开发了Robot Script V.10通用语言,运行于该公司的通用机器人控制器URC 的Win NT/95环境.该语言易学医用,可用于各种开发环境,与大多数WINDOWS 软件产品兼容. (6)网络通用方式:大部分机器人采用了Ether 网络通讯方式,占总量的41.3,其它采用RS-232,RA-422,RS-485等通讯接口. (7)高速,高精度,多功能化:目前,最快的装配机器人最大合成速度为16.5m/s. 位置重复精度为正负0.01mm. 但有一种速度竞达到80m/s; 而另一种并连机构的NC 机器人, 其位置重复精度大1微秒. (8)集成化与系统化:当今工业机器人技术的另一特点是应用从单机,单

机器人实验报告

机器人学基础 实验报告 中南大学机电工程学院机械电子工程系 2016年10月

一、实验目的 1.了解四自由度机械臂的开链结构; 2.掌握机械臂运动关节之间的坐标变换原理; 3.学会机器人运动方程的正反解方法。 二、实验原理 本实验以SCARA 四自由度机械臂为例研究机器人的运动学问题.机器人运动学问题包括运动学方程的表示,运动学方程的正解、反解等,这些是研究机器人动力学和机器人控制的重要基础,也是开放式机器人系统轨迹规划的重要基础。 机械臂杆件链的最末端是机器人工作的末端执行器(或者机械手),末端执行器的位姿是机器人运动学研究的目标,对于位姿的描述常有两种方法:关节坐标空间法和直角坐标空间法。 关节坐标空间: 末端执行器的位姿直接由各个关节的坐标来确定,所有关节变量构成一个关节矢量,关节矢量构成的空间称为关节坐标空间。图1-1是GRB400机械臂的关节坐标空间的定义。因为关节坐标是机器人运动控制直接可以操纵的,因此这种描述对于运动控制是非常直接的。 直角坐标空间: 机器人末端的位臵和方位也可用所在的直角坐标空间的坐标及方位角来描述,当描述机器人的操作任务时,对于使用者来讲采用直角坐标更为直观和方便(如图1-2)。 当机器人末端执行器的关节坐标给定时,求解其在直角坐标系中的坐标就是 正向运动学求解(运动学正解)问题;反之,当末端执行器在直角坐标系中的坐 图1-1 机器人的关节坐标空间 图1-2 机器人的直角坐标空间法

标给定时求出对应的关节坐标就是机器人运动学逆解(运动学反解)问题。运动学反解问题相对难度较大,但在机器人控制中占有重要的地位。 机器人逆运动学求解问题包括解的存在性、唯一性及解法三个问题。 存在性:至少存在一组关节变量来产生期望的末端执行器位姿,如果给定末端执行器位臵在工作空间外,则解不存在。 唯一性:对于给定的位姿,仅有一组关节变量来产生希望的机器人位姿。机器人运动学逆解的数目决定于关节数目、连杆参数和关节变量的活动范围。通常按照最短行程的准则来选择最优解,尽量使每个关节的移动量最小。 解法:逆运动学的解法有封闭解法和数值解法两种。在末端位姿已知的情况下,封闭解法可以给出每个关节变量的数学函数表达式;数值解法则使用递推算法给出关节变量的具体数值,速度快、效率高,便于实时控制。下面介绍D-H 变化方法求解运动学问题。 建立坐标系如下图所示 连杆坐标系{i }相对于{ i ?1 }的变换矩阵可以按照下式计算出,其中连杆坐标系D-H 参数为由表1-1给出。 齐坐标变换矩阵为: 其中描述连杆i 本身的特征;和描述连杆i?1与i 之间的联系。对于旋转关节,仅是关节变量,其它三个参数固定不变;对于移动关节,仅是关节变量,其它三个参数不变。

机器人实验报告参考资料

实验1 工业机器人的机械系统 1.1 实验目的 1、了解机器人机械系统的组成; 2、了解机器人机械系统各部分的原理及作用; 3、掌握机器人单轴运动的方法。 1.2 实验设备 1、RBT-6T/S01S机器人一台; 2、RBT-6T/S01S机器人柜一台。 1.3 实验原理 机器人机械系统主要由以下几大部分组成:原动部件、传动部件、执行部件。基本机械结构连接方式为原动部件→传动部件→执行部件。机器人的传动简图如图2-1所示。 Ⅰ关节传动链主要由伺服(或步进)电机、减速器构成。 Ⅱ关节传动链主要由伺服电机、减速器构成。 Ⅲ关节传动链主要由步进电机、同步带、减速器构成。 Ⅳ关节传动链主要由步进电机、减速器构成。 Ⅴ关节传动链主要由步进电机、同步带、减速器构成。 Ⅵ关节传动链主要由步进电机、同步带、减速器构成。 在机器人末端还有一个气动夹持器。 原动部件包括步进电机和伺服电机两大类,关节Ⅰ采用交流伺服(或步进)电机驱动方式;、Ⅱ采用交流伺服电机驱动方式;关节Ⅲ、Ⅳ、Ⅴ、Ⅵ采用步进电机驱动方式。本机器人中采用了同步齿型带传动、谐波减速传动等传动方式。执行部件采用了气动手爪机构,以完成抓取作业。 1.4 实验步骤 1、教师介绍机器人机械系统中原动部分、传动部分以及执行部分的位置及在机器人系统中的工作状况; 2、接通控制柜电源,待系统启动后,运行机器人软件; 3、按下控制柜“启动”按钮;

图2-6 关节运动界面 4、点击主界面“机器人复位”按钮,机器人进行回零运动。观察机器人的运动,六个关节全部运动完成后,系统会提示复位完成,机器人处于零点位置; 5、点击“关节运动”按钮,出现如图2-6所示界面; 6、选择“关节Ⅰ”,关节方向选择“正向”,启动方式选择“加速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取-120度,点击“启动”按钮,观察机器人第Ⅰ关节运动情况; 7、选择“关节Ⅰ”,关节方向选择“反向”,启动方式选择“加速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮,观察机器人第Ⅰ关节运动情况,然后点击“立即停止”按钮; 8、选择“关节Ⅱ”,关节方向选择“正向”,启动方式选择“匀速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取-120度,点击“启动”按钮,观察机器人第Ⅱ关节运动情况; 9、选择“关节Ⅱ”,关节方向选择“反向”,启动方式选择“匀速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮,观察机器人第Ⅱ关节运动情况,然后点击“立即停止”按钮; 10、选择“关节Ⅲ”,关节方向选择“正向”,启动方式选择“加速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取30度,点击“启动”按钮,观察机器人第Ⅲ关节运动情况; 11、选择“关节Ⅲ”,关节方向选择“反向”,启动方式选择“加速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅲ关节运动情况,然后点击“立即停止”按钮; 12、选择“关节Ⅳ”,关节方向选择“正向”,启动方式选择“匀速”,运动方式选择“位置模式”,运行速度取默认值,目标位置取60度,点击“启动”按钮,观察机器人第Ⅳ关节运动情况; 13、选择“关节Ⅳ”,关节方向选择“反向”,启动方式选择“匀速”,运动方式选择“速度模式”,运行速度取默认值,点击“启动”按钮观察机器人第Ⅳ关节运动情况,然后点击“立即停止”按钮; 14、选择“关节Ⅴ”,关节方向选择“正向”,启动方式选择“加速”,运动方式

足球机器人实验报告

机器人足球实验报 告 专业:计算机科学与技术 课程名称:足球机器人理论与实践 指导老师:刘钊 学号: 200813137197 学生姓名:顾伟

1.实验目的 1)逐步掌握FIRA平台的使用 2)掌握FIRA客户端智能体的编写 3)完成指定的智能体功能与动作 2.程序清单: #ifndef_AFX_NO_DAO_SUPPORT_5V5_PARAMETER #include #define PI 3.14159265 typedef struct {double x, y,z;} Vector3D; typedef struct {long left, right, top, bottom;} Bounds; typedef struct {Vector3D pos;} Ball; typedef struct {Vector3D pos;double rotation;} OpponentRobot; typedef struct {Vector3D pos; double rotation,velocityLeft, velocityRight;} Robot; typedef struct { Robot home[5]; OpponentRobot opponent[5]; Ball currentBall, lastBall, predictedBall; Bounds fieldBound, goalBound; long gameState; long whosBall; void *userData; } Environment; //基本数据处理函数组 double angle(Vector3D p,Vector3D p0); double angle(double x,double y,double x0,double y0); double angle(Vector3D p0,Vector3D p); double dist(double x1,double y1,double x2,double y2); double dist(Vector3D p1,Vector3D p2); double differ_two_angle(double a1,double a2); Vector3D turn_blue(Vector3D p); Vector3D turn_yellow(Vector3D p); double turn_blue(double rotate); double turn_yellow(double rotate); //策略函数组 void act_v(int no,double vl,double vr,Environment* env); void rotation_to(int po,double rotation,Environment* env);//po号机器人面向rotation 角度,基于坐标变换后的角度值 void run_to_pos(int po,Vector3D pos,Environment* env);//po号机器人跑到pos位置void run_to_pos2(int po,Vector3D pos,Environment*env); #endif 3在stdfx.cpp中添加基础数据处理函数实现过程 #include"math.h" double differ_two_angle(double a1,double a2) { double a=fabs(a1-a2);

机器人学实验报告

机器人学基础实验报告 一、实验目的 1.了解四自由度机械臂的开链结构; 2.掌握机械臂运动关节之间的坐标变换原理; 3.学会机器人运动方程的正反解方法。 二、实验原理 本实验以SCARA 四自由度机械臂为例研究机器人的运动学问题.机器人运动学问题包括运动学方程的表示,运动学方程的正解、反解等,这些是研究机器人动力学和机器人控制的重要基础,也是开放式机器人系统轨迹规划的重要基础。 机械臂杆件链的最末端是机器人工作的末端执行器(或者机械手),末端执行器的位姿是机器人运动学研究的目标,对于位姿的描述常有两种方法:关节坐标空间法和直角坐标空间法。 建立坐标系如下图所示: 连杆坐标系{i }相对于{ i ?1}的变换矩阵可以按照下式计算出,其中连 杆坐标系D-H 参数为 由表1-1给出。 齐坐标变换矩阵为: 其中 描述连杆i 本身的特征;和 描述连杆i ?1与i 之间的联系。

对于旋转关节,仅是关节变量,其它三个参数固定不变;对于移动关节,仅 是关节变量,其它三个参数不变。 表1-1 连杆参数表 其中连杆长l 1=200mm ,l 2=200mm ,机器人基坐标系为O-X 0Y 0Z 0。根据上面的坐标变换公式,各个关节的位姿矩阵如下: ????? ???????--=10 00 cos sin 00sin cos cos cos sin 0sin sin cos sin cos 33 3 3 33 333333323d T αααθαθθ αθαθθ 运动学正解:各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学模型)为:

其中:z 轴为手指接近物体的方向,称接近矢量 a (approach );y 轴为两手指的连线方向,称方位矢量o (orientation );x 轴称法向矢量n (normal ),由右手法则确定,n=o*a 。p 为手爪坐标系原点在基坐标系中的位置矢量。 运动学逆解:通常可用未知的连杆逆变换右乘上式: 令两式对应元素分别相等即可解出 。 其中 22 12 222212y x y x p p l p p l l M +++-= 将上式回代,可得, ?? ? ? ??-++=1112)sin()cos(l r r arctg ?θ?θθ式中:22y x p p r += ;y x p p arctg =? 令第二行第四个元素对应相等,可得: 令第四行第三个元素对应相等,可得: 所以, 注意:关节运动范围: θ1 0-180° θ2 0-100° d3 ±40mm θ4 ±170 三、实验数据处理 步骤1.检查实验系统各部分的信号连接线、电源是否插好,完成后打开伺服驱动系统的电源开关。 步骤2.运行GRBserver 程序,出现以下程序界面。

SCARA机器人的运动学分析

电子科技大学 实验报告 学生姓名: 一、实验室名称:机电一体化实验室 二、实验项目名称:实验三SCARA 学号: 机器人的运动学分析 三、实验原理: 机器人正运动学所研究的内容是:给定机器人各关节的角度,计算机器人末端执行器相对于参考坐标系的位置和姿态问题。 各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程) 为: n x o x a x p x 0T40T1 11T2 22T3 d3 n y o y a y p y ( 1-5)3T4 4= o z a z p z n z 0001 式 1-5 表示了 SCARA 手臂变换矩阵0 T4,它描述了末端连杆坐标系{4} 相对基坐标系 {0} 的位姿,是机械手运动分析和综合的基础。 式中: n x c1c2c4s1 s2 c4 c1 s2s4s1 c2 s4,n y s1c2 c4c1 s2 c4s1 s2 s4c1c2 s4 n z0 , o x c1c2 s4s1 s2 s4 c1 s2 c4s1c2c4 o y s1c2 s4c1 s2 s4s1 s2 c4c1c2c4 o z0 , a x0 , a y0 , a z1 p x c1 c2 l2s1s2l 2c1l 1, p y s1c2 l 2 c1 s2 l 2 s1l1, p z d3 机器人逆运动学研究的内容是:已知机器人末端的位置和姿态,求机器人对应于这个位置和姿态的全部关节角,以驱动关节上的电机,从而使手部的位姿符合要求。与机器人正运动学分析不同,逆问题的解是复杂的,而且具有多解性。

1)求关节 1: 1 A arctg 1 A 2 l 12 l 22 p x 2 p y 2 arctg p x 式中:A p x 2 ; p y 2l 1 p y 2 2)求关节 2: 2 r cos( 1 ) arctg ) l 1 r sin( 1 式中 : r p x 2 p y 2 ;arctg p x p y 3). 求 关节变 量 d 3 令左右矩阵中的第三行第四个元素(3.4)相等,可得: d 3 p z 4). 求 关节变 量 θ 4 令左右矩阵中的第二行第一个元素(1.1,2.1 )相等,即: sin 1 n x cos 1n y sin 2 cos 4 cos 2 sin 4 由上式可求得: 4 arctg ( sin 1 n x cos 1 n y )2 cos 1 n x sin 1 n y 四、实验目的: 1. 理解 SCARA 机器人运动学的 D-H 坐标系的建立方法; 2. 掌握 SCARA 机器人的运动学方程的建立; 3. 会运用方程求解运动学的正解和反解; ( 1-8) ( 1-9) ( 1-10 )

机器人学基础实验报告

实验报告 ——机器人运动学实验 一、基本理论 本实验以SCARA 四自由度机械臂为例研究机器人的运动学问题.机器人运动学问题包括运动学方程的表示,运动学方程的正解、反解等,这些是研究机器人动力学和机器人控制的重要基础,也是开放式机器人系统轨迹规划的重要基础。 机械臂杆件链的最末端是机器人工作的末端执行器(或者机械手),末端执行器的位姿是机器人运动学研究的目标,对于位姿的描述常有两种方法:关节坐标空间法和直角坐标空间法。 关节坐标空间: 末端执行器的位姿直接由各个关节的坐标来确定,所有关节变量构成一个关节矢量,关节矢量构成的空间称为关节坐标空间。图1-1是GRB400机械臂的关节坐标空间的定义。因为关节坐标是机器人运动控制直接可以操纵的,因此这种描述对于运动控制是非常直接的。 直角坐标空间: 机器人末端的位臵和方位也可用所在的直角坐标空间的坐标及方位角来描述,当描述机器人的操作任务时,对于使用者来讲采用直角坐标更为直观和方便(如图1-2)。 当机器人末端执行器的关节坐标给定时,求解其在直角坐标系中的坐标就是正向运动学求解(运动学正解)问题;反之,当末端执行器在直角坐标系中的坐标给定时求出对应的关节坐标就是机器人运动学逆解(运动学反解)问题。运动学反解问题相对难度较大,但在机器人控制中占有重要的地位。 图1-1 机器人的关节坐标空间 图1-2 机器人的直角坐标空间法

机器人逆运动学求解问题包括解的存在性、唯一性及解法三个问题。 存在性:至少存在一组关节变量来产生期望的末端执行器位姿,如果给定末端执行器位臵在工作空间外,则解不存在。 唯一性:对于给定的位姿,仅有一组关节变量来产生希望的机器人位姿。机器人运动学逆解的数目决定于关节数目、连杆参数和关节变量的活动范围。通常按照最短行程的准则来选择最优解,尽量使每个关节的移动量最小。 解法:逆运动学的解法有封闭解法和数值解法两种。在末端位姿已知的情况下,封闭解法可以给出每个关节变量的数学函数表达式;数值解法则使用递推算法给出关节变量的具体数值,速度快、效率高,便于实时控制。下面介绍D-H 变化方法求解运动学问题。 建立坐标系如下图所示 连杆坐标系{i }相对于{ i?1}的变换矩阵可以按照下式计算出,其中连杆坐标系D-H 参数为由表1-1给出。 齐坐标变换矩阵为: 其中描述连杆i本身的特征;和描述连杆i?1与i之间的联系。 对于旋转关节,仅是关节变量,其它三个参数固定不变;对于移动关节,仅 是关节变量,其它三个参数不变。

六轴运动机器人运动学求解分析

六轴联动机械臂运动学及动力学求解分析 V0.9版 随着版本的不断更新,旧版本文档中的一些笔误得到了修正,同时文档内容更丰富,仿真程序更完善。 作者朱森光 Email zsgsoft@https://www.doczj.com/doc/1516188827.html, 完成时间 2016-02-28

1引言 笔者研究六轴联动机械臂源于当前的机器人产业热,平时比较关注当前热门产业的发展方向。笔者从事的工作是软件开发,工作内容跟机器人无关,但不妨碍研究机器人运动学及动力学,因为机器人运动学及动力学用到的纯粹是数学和计算机编程知识,学过线性代数和计算机编程技术的人都能研究它。利用业余时间翻阅了机器人运动学相关资料后撰写此文,希望能够起到抛砖引玉的作用引发更多的人发表有关机器人技术的原创性技术文章。本文内容的正确性经过笔者编程仿真验证可以信赖。 2机器建模 既然要研究机器人,那么首先要建立一个机械模型,本文将以典型的六轴联动机器臂为例进行介绍,图2-1为笔者使用3D技术建立的一个简单模型。首先建立一个大地坐标系,一般教科书上都是以大地为XY平面,垂直于大地向上方向为Z轴,本文为了跟教科书上有所区别同时不失一般性,将以水平向右方向为X轴,垂直于大地向上方向为Y轴,背离机器人面向人眼的方向为Z轴,移到电脑屏幕上那就是屏幕水平向右方向为X轴,屏幕竖直向上方向为Y轴,垂直于屏幕向外为Z轴,之所以建立这样不合常规的坐标系是希望能够突破常规的思维定势训练在任意空间建立任意坐标系的能力。 图2-1 图2-1中的机械臂,底部灰色立方体示意机械臂底座,定义为关节1,它能绕图中Y轴旋转;青色长方体示意关节2,它能绕图中的Z1轴旋转;蓝色长方体示意关节3,它能绕图中的Z2轴旋转;绿色长方体示意关节4,它能绕图中的X3轴旋转;深灰色长方体示意关节5,它能绕图中的Z4轴旋转;末端浅灰色机构示意关节6即最终要控制的机械手,机器人代替人的工作就是通过这只手完成的,它能绕图中的X5轴旋转。这儿采用关节这个词可能有点不够精确,先这么意会着理解吧。 3运动学分析 3.1齐次变换矩阵 齐次变换矩阵是机器人技术里最重要的数学分析工具之一,关于齐次变换矩阵的原理很多教科书中已经描述在此不再详述,这里仅针对图2-1的机械臂写出齐次变换矩阵的生成过程。首先定义一些变量符号,关节1绕图中Y轴旋转的角度定义为θ0,当θ0=0时,O1点在OXYZ坐标系内的坐标是(x0,y0,0);关节2绕图中的Z1轴旋转的角度定义为θ1,图中的θ1当前位置值为+90度;定义O1O2两点距离为x1,关节3绕图中的Z2轴旋转的角度定义为θ2,图中的θ2当前位置值为-90度;O2O3两点距离为x2,关节4绕图中的X3轴旋转的角度定义为θ3, 图中的θ3当前位置值为0度;O3O4两点距离为x3,关节5绕图中的Z4轴旋转的角度定义为θ4, 图中的θ4当前位置值为-60度;O4O5两点距离为x4,关节6绕图中的X5轴旋转的角度定义为θ5, 图中的θ5当前位置值为0度。以上定义中角度正负值定义符合右手法则,所有角度定义值均为本关节坐标系相对前一关节坐标系的相对旋转角度值(一些资料上将O4O5两点重合在一起即O4O5两点的距离x4退化为零,本文定义x4大于零使得讨论时更加不失一般性)。符号定义好了,接下来描述齐次变换矩阵。 定义R0为关节1绕Y轴的旋转矩阵 =cosθ0 s0 = sinθ0 //c0 R0 =[c0 0 s0 0 0 1 0 0 0 c0 0 -s0 0 0 0 1] 定义T0为坐标系O1X1Y1Z1相对坐标系OXYZ的平移矩阵 T0=[1 0 0 x0 0 1 0 y0 00 1 0 0 0 0 1] 定义R1为关节2绕Z1轴的旋转矩阵 R1=[c1 –s1 0 0 s1 c1 0 0

机器人逆运动学

clear; clc; L1 = Link('d', 0, 'a', 0, 'alpha', pi/2); %Link 类函数 L2 = Link('d', 0, 'a', 0.5, 'alpha', 0,'offset',pi/2); L3 = Link('d', 0, 'a', 0, 'alpha', pi/2,'offset',pi/4); L4 = Link('d', 1, 'a', 0, 'alpha', -pi/2); L5 = Link('d', 0, 'a', 0, 'alpha', pi/2); L6 = Link('d', 1, 'a', 0, 'alpha', 0); b=isrevolute(L1); %Link 类函数 robot=SerialLink([L1,L2,L3,L4,L5,L6]); %SerialLink类函数https://www.doczj.com/doc/1516188827.html,='带球形腕的拟人臂'; %SerialLink属性值robot.manuf='飘零过客'; %SerialLink属性值robot.display(); %Link 类函数 theta=[0 0 0 0 0 0]; robot.plot(theta); %SerialLink类函数 theta1=[pi/4,-pi/3,pi/6,pi/4,-pi/3,pi/6]; p0=robot.fkine(theta); p1=robot.fkine(theta1); s=robot.A([4 5 6],theta); cchain=robot.trchain; q=robot.getpos(); q2=robot.ikine(p1); %逆运动学 j0=robot.jacob0(q2); %雅可比矩阵 p0 = -0.7071 -0.0000 0.7071 1.4142 0.0000 -1.0000 -0.0000 -0.0000 0.7071 0.0000 0.7071 1.9142 0 0 0 1.0000 p1 = 0.9874 0.1567 0.0206 1.0098 0.0544 -0.4593 0.8866 1.8758 0.1484 -0.8743 -0.4621 0.0467 0 0 0 1.0000 >>s s =

机器人实验报告.doc

机器人实验报告 。创建一个名为"登录页面"的布局文件,该文件用于展示登录信息。程序界面如下图所示:package com。例子。mylayout 1;导入安卓。应用程序。活动;导入安卓内容上下文;导入安卓内容意图;导入安卓。内容。共享配置文件;导入安卓。操作系统。捆绑;导入安卓菜单;导入安卓视图视图;导入安卓。小部件。edittext导入安卓。小部件。烤面包。公共类活动01扩展了活动{编辑文本名称;编辑文本传递;受保护的空创建(捆绑保存实例属性){ super.onCreate(保存实例属性);设置内容视图;名称=(编辑文本)findViewById(编辑文本1);pass=(编辑文本)findViewById(编辑文本2);}公共无效点击(查看视图){意图意图1=新意图(此,MyLayout1主要活动。类);开始活动(意图1);}公共空白点击1(查看视图){共享引用sf1=获取共享引用(“帐户,上下文。模式_私人);字符串名称1=sf1.getString('name ',');字符串pass1=sf1.getString('pass ',');字符串名称2=name.getText().到字符串();字符串pass2=pass.getText().到字符串();如果(姓名1。等于(名称2)传递1。等于(通过2)){意图意图2=新意图(此,文本视图1。类);intent2.putExtra('name ',name 1);intent2.putExtra("通过“,传1);开始活动(意图2);}其他{字符串co='您的用户名或密码错误;Toast.makeText(此,co.toString(),1000).show();} }私有共享引用获取共享引用(){返回null}}创建一个名为"注册页面"的布局文件,该文件用于展示登录信息。程序界面如下图所示以下内容以下内容: package com。例子。mylayout 1;-package com。例子。mylayout

相关主题
文本预览
相关文档 最新文档