当前位置:文档之家› 煤气化常见问题,以及解答

煤气化常见问题,以及解答

煤气化常见问题,以及解答
煤气化常见问题,以及解答

煤气化常见问题,以及解答

一氧化碳随氧煤比的变化问题。

氧煤比增加,将有较多的煤发生燃烧反应,放热量增大,气化炉温度升高,为吸热的气化反应提供更多的热量,对气化反应有利。因此,碳的转化率、冷煤气效率及产气量上升,CO2和比氧耗、比煤耗下降。随着氧煤比的进一步增加,碳转化率增加不大,同时由于过量氧气进入气化炉,导致了CO2的增加,使冷煤气效率,产气率下降,比氧耗、比煤耗上升。因此,氧煤比应有一个最适宜值,一般认为氧碳的原子比在1.0左右比较合适。

C元素是要平衡的,抛开碳转化率的因素不谈,CO浓度的趋势和CO2应该是相反的。如果考虑C转化率的问题,则情况略有不同,但大的趋势不变。总体来说生成的CO量随氧煤比的变化趋势是先增加,后减小,中间会出现一个最大值。

水煤浆气化反应略有不同,因为变换反应对气体组成影响也很突出,氧量的增加会导致碳氧化生成CO2的比例增加,但温度上升会导致变换反应减少,具体情况也需要详细分析,但感觉总体趋势应该还是一样的。

2)德士古气化炉液位低跳车究竟要设置那些连锁?激冷水要不要设置流量低低跳车连锁?水洗塔要不要设置液位低低跳车连锁?

设置激冷室液位15%连锁(此值是经过设计院、GE公司共同讨论定下来的,气化炉尺寸是3200mm*3800mm)。激冷水设置连锁是很有必要的。至于碳洗塔液位连锁就没有什么意义,完全可以不要。

气化炉液位低低连锁有三选二,运行时应该把此连锁投上!以保安全!激冷水没必要设置流量低低跳车连锁,因为气化炉系统有个激冷水低低连锁,当激冷水低低时,事故激冷水补水阀会全开!水洗塔更没必要设置跳车连锁,有足够的时间处理它!

气化炉液位在正常运行期间是必须要挂的。的确当液位低的时候这两个阀会自动关闭的,但是这个液位只比跳车值高一点点。至于气化炉液位低会让这两个阀连锁关闭主要是防止因液位低而导致窜气,不是用来保护气化炉液位的。如果是激冷水泵出了问题,备泵会自启动的,除氧水泵直接手动给气化炉供水这是万不得以的办法,一般情况下不用的。另外在运行中,只要不是误操作或者锁斗程控系统出问题,气化炉液位是不可能瞬间到达跳车值的,如果气化炉液位是因为带水问题而引起的液位低,我支持解除激冷室液位连锁来辅助处理。

3)德士古气化炉激冷环在运行中会出现什么常见问题,如何进行检修维护的?

激冷环堵是比较常见的问题,主要表现为激冷水流量的下降,激冷水与

气化炉的压差增大。当激冷水流量下降到一定程度时,必须停车对激冷环进行清洗。

工艺方面的措施:a) 加强灰水质量的控制,尽量做到按设计要求进行排水和补充新鲜水。b)试验、选用高温高压下适当的灰水分散稳定剂,有效防止激冷环和激冷环进水管道的结垢和腐蚀,以免因垢堵而减少激冷水量,因灰多而磨蚀激冷环环管内壁。c) 控制连投次数,尽量不连投,运行周期不可太长。d)优化操作,避免工艺气带灰带水,避免恶化水洗塔水质。

4)德士古气化炉支撑板温度高的原因。

激冷水水膜分布不均可以使下降管结渣而使它堵塞和渣口结渣同样是使气体在气化炉里面憋气,很容易造成支撑板温度高,而且也会使气化炉整体温度上升.所以在控制上尽量保持气化炉温度的稳定且适合这种煤的灰熔点。气化炉支撑板温度高后,在维持系统稳定的情况下降负荷,而且注意炉子的温度,不要憋气太久,那样就容易造成气化炉鼓肚,对设备以后的运行造成很大的影响.

支撑板的温度高的原因:

a、气化炉锥底的耐火砖减薄,热阻减小使热量大量传的支撑板使温度上升。

b、支撑板出现裂纹气化炉的气体通过裂纹窜气。

c、热偶被大量的积灰覆盖热量不能被上升的气流带走。

d、气化炉内压力变大或波动造成锥底砖窜气。

导致德士古气化炉支撑板温度高的原因主要有:

a、火区下移;

b、锥体砖缝隙大,或已到使用周期,或质量原因造成烧蚀严重;

c、烧嘴偏喷,造成锥体砖局部烧坏而温度高;

d、激冷环布水不匀,或局部干区;

e、煤质变化,操作工反应不及时,操作不当。

5)德式古三流式烧嘴在使用时应注意那些问题?大家最长使用多少时间?

鲁南化肥厂的烧嘴最长运行151天,到后期也是提心吊胆的!鲁南的烧嘴包括耐火砖运行周期都比较长,原因有很多,当然与鲁南的工人操作水平和领导的技术管理水平是分不开的。但是不能不提及的是鲁南的气化炉操作压力只有2.7MPa,而且鲁南的煤种掺烧做的是比较好的,运行周期很大程度上也取决于煤种。

鲁化的烧嘴运行151天的时间完全在计划之内,在停车检修的前期气化炉的各项指标正常,烧嘴雾化效果正常,渣中可燃物没有出现明显的异常。现在正在研究运行时间更长的烧嘴。气化炉运行时应注意:a、严禁断冷却水。b、尽量减少开停车次数。c、尽量使用可磨指数大的煤。

d、气化炉温度不要过高。

德士古烧嘴是德士古煤气化工艺的核心设备,一般情况下运行初期,雾化效果好.气体成份稳定.系统工况稳定;运行到后期,喷嘴头部变形,雾化效果不好.这时气体成份变化较大,有效气成份下降.特别是发生偏喷时,使局部温度过高,烧坏热偶,严重时.发生窜气导致炉壁超温。要最大限度地提高烧嘴的运行周期需要注意如下几点:

a、煤质和煤浆质量是影响烧嘴寿命的主要因素,煤的灰熔点尽量不要超过1300℃,煤浆浓度控制在55-56%较为合适。

b、尽可能将气化温度控制在较低的范围,能够有效提高其运行周期,一般情况下应该控制在1350℃以下。

c、在系统投煤量发生较大变化的情况下,要提前调整煤/氧比到合适的范围,坚决杜绝飞温。

6)德士古气化下降管烧穿的原因及处理?

激冷环堵塞,下降管布水不均,没能在下降管内侧形成一定厚度的水膜以保护下降管,造成烧坏。主要是因为炉膛温度超高,造成激冷环堵塞。炉膛温高有以下主要原因:a.氧煤比增大,也就*氧量单方面增大。

b.煤质不稳定,致使灰熔点降低;或者助熔剂加量不足或者少加,致使灰熔点降低。

c.各路激冷水供给通道出现问题,致使激冷水量不够。

下降管烧穿的原因有:a、激冷水流量低于工艺指标或激冷水在激冷环上分布不均造成下降管部分断水b、部分焊接点质量问题c、下降管的材质选型不对d、生产过程中不稳定,气化炉液位控制过低,造成

下降管不稳定。

通过进炉子观察分析及结合运行时期的参数进行综合比较,认为,根本原因就是形成干区:其一、激冷环水量小占主导原因;其二、气化炉热负荷过大,破坏了下降管的水膜,导致挂渣;其三、烧嘴偏喷,且火区下移较大,直接将下降管水膜撕破,造成挂渣;其四、灰渣性能不稳定。

7)德式古气化炉渣口堵。

如果堵渣口你得先找到原因为什么堵,一般在开车时候很少堵除非你温度很低加负荷加的很慢还有可能造成煤浆流量不稳定,在正常的时候堵渣口是因为你的温度有很大的波动CH4控制的太高,不可以控制5000PPM一般最高3000PPM但是时间不能时间过长因为这样很同意堵渣口,如果要是堵了话你可以提温但是速度不能过快大概没半小时10度左右中心氧也要控制好大约百分之20左右

一定要时时观察PDI1214就是压差,但有的时候不能太相信它也要

看看炉压和合成气出口压力自己算算压差这个比较准,一般情况下堵的不厉害的情况下能熔开渣口.最主要的就是温度不要有大波动,而且要看灰熔点,把石灰石的配比也要配好要长做灰熔点.

一方面是由于气化炉操作温度不当而引起的。气化炉温度的控制原则就是在保证液态排渣的情况下尽可能维持较低的温度,但是如果温度控制过低,渣的流动性就会变差,在锥形渣口处就会越积越多,导致渣口减小,气体在燃烧室停留时间明显增长,气体的成分就会随之改变。

另一方面是由于德士古烧嘴张角增大引起的。德士古烧嘴的张角有严格的设计尺寸,在运行较长的时间以后,烧嘴磨损,张角增大,燃烧不好,高压下带向炉壁的灰渣就会增加,当渣积到一定的程度,在重力和气体冲击力的双重影响下,积渣顺着炉壁流向渣口,渣在渣口处聚积,渣口随之变小。

出现渣口不畅的情况时,应该及时调整氧煤比,提高炉膛温度,缓慢熔渣。这个过程不能太急,而且,加氧要严格遵守多次少量的原则,避免造成渣口再次缩小,因为这时渣量加大。同时注意炉温的变化趋势,如果发现及时,通过提高氧煤比,一般在8h内就可恢复,当渣口恢复正常,气体成分也相对稳定了,可以适当减小氧煤比,再观察几个小时,确认无反复迹象,恢复到正常操作温度运行。

渣口堵的判断方法:

1.看压差气化炉的压力和洗涤塔的出口压力自己算,压差大就是有点堵.

2.看PDI1214这个不是很准

3.看气化炉的液位如果堵的话液位波动很大

4.合成气气体分析结果CO少CO2多.CH4波动的太大

5.看渣样去锁斗底下看.

8)德士古气化洗涤塔出口工艺气带水的现象,原因,危害及处理?

水洗塔带水一般有两个原因引起,一是负荷增加过快,气流速度突然加大,水气来不及分离,二是气体中细灰分含量过大,导致分离困难引起。带水后直接导致的就是进变换炉气体中夹带液态水,把变换触媒浸泡,引起变换阻力大,触媒失活,最严重可导致生产无法运行。一般在工程公司设计时,都需要在变换前加水分器分离水分,除考虑带水外还得考虑冷凝水。要避免带水,一是保证煤质尽量稳定,二是避免大幅度增加负荷。

(1)气化炉高负荷下,液位无法提高,没有达到设计的正常液位,直接影响合成气水浴效果,合成气第一道洗涤较差,部分灰分会夹带到洗涤塔内。(2)气化炉可能有带水现象,由于激冷室内直接接触来自气化炉燃烧室的熔渣和飞灰,系统内水质较差,大量灰分会随合成气夹带的水到达洗涤塔内,影响洗涤塔的水质,并会影响出口合成气清洁度。(3)洗涤塔水质恶化,影响从洗涤塔抽取的激冷水的水质,长期运行会加剧气化炉激冷环结垢,最终导致气化炉停车。(4)气化炉合成气出口喷凝水来自冷凝液泵,由于出压 4.8MPa,与气化炉出口压差低,现**

的小孔已被合成气中的灰分堵塞,没有喷凝水的洗涤,对合成气中的飞灰没有起到浸润作用。(5)文丘里洗涤器容易结垢,影响喷射洗涤的效果。(6)洗涤塔内件设计可能存在问题,洗涤效果差,合成气中夹带水气和灰分较多,造成变换系统阻力上升。

9)关于德士古气化氧气与气化炉的压差。

装置操作压力不一样,所要求的压差也不一样,它与喷嘴的尺寸有一定关系,你所说的可能是鲁南厂,操作压力2.8~3.0Mpa,氧气与正常操作压差应在 1.0Mpa,氧气与煤浆的压差在0.5Mpa 左右,以保证雾化效果。如果是6.5Mpa操作压力,入炉氧气压力应在8.0~8.2Mpa ,煤浆入炉压力在7.5~7.8Mpa,如果是4.0Mpa操作压力,氧气与气化炉压差在1.2Mpa,与煤浆在0.5Mpa左右

10)多喷嘴气化装置如何调整负荷

氧气流量靠调节阀来调整,煤浆流量靠煤浆泵来调整。

一台煤浆泵分成两只对喷的烧嘴,其煤浆流量的调节目前全部采用变频调节,所以不必担心;至于氧气流量,一般来说采用的都是比较精确的调节阀进行调整的,误差不会太大。即便大一点,在炉内经过烧嘴喷出后再对撞,也就不会直接冲蚀炉砖了。氧气流量波动在5%、煤浆波动在12%的情况下,都没有让气化炉出现偏喷,何况是比较好的设备哪。

11)黑水和灰水是一个概念吗?黑水处理和闪蒸在概念上是什么关系?黑水,表面理解就是黑色的水,实际上也就是直接从气化炉、洗涤塔两部分底部直接排出的含有大多气化残碳的水;灰水,表面理解就是灰

色的水,实际上也就是直接从气化炉、洗涤塔两部分底部直接排出的含有大多气化残碳的水经闪蒸处理沉淀澄清去渣后水;换句话说,一闪蒸为分界线,线前为黑水,线后为灰水。

以德士古工艺而言,黑水是从气化炉里排出至闪蒸系统,然后进入沉降槽,经初步分离后,一部分灰浆去压滤机,余下的带灰水进入灰水槽便是灰水,这部分灰水与来自变换的冷凝液混合后,进除氧器,再与来自闪蒸罐的水混合后,进入洗涤塔.在TAXECO气化中,闪蒸、沉降除灰后的水就可以称作灰水。

12)德士古水煤浆加压气化是气化炉带水的的原因有哪些啊?针对各种原因又该采取怎样的措施来解决啊?

1.系统的负荷太高了,是产生的合成气量大

只有降负荷了

2.后系统的压力突然降低

不知道怎么办,哈哈

3.激冷室液位高而且温度也高

多放黑水同时多加激冷水

4.激冷室里面的下降管坏了

停车修呗

5.可能是合成气管线有点堵,使得有点憋气

不知道怎么处理,哈哈

6.操作温度太高

降低温度和灰熔点

炭洗塔出口工艺气温度过高,塔盘冷凝液加的太多也会带水

1:压力或者负荷增加时,热流强度增加,可能导致膜状沸腾,使得变换能力下降厉害而炉内气体带水,

2:负荷高了,气流速度也大了,也会带水;

3:上下流通管道与原来的生产负荷相匹配,加大生产也会使得过饱和蒸汽水带出;

4:分布板分离时夹带的水不能有效分离开,也会使水随气流带出。13)气化炉在正常运行过程中锥底温度偏高的原因

锥体温度超温,不能单纯说火焰下移造成,因为炉内温度在1300度以上,火焰靠上炉内锥体温度也不会低。所以造成锥体温度高的原因我认为有以下几点:1)锥体结构或筑炉质量存在问题,导致串气,高温熔渣进入锥体砖缝,引起主题温度上升;2)渣口挂渣导致渣口变形,工艺气偏流影响工艺气在下降管内降温,造成流速较大的位置锥体温度上升;3)锥体挂渣,当炉况异常时,炉渣拔丝形成针状渣,随工艺气上升在锥体聚集,导致锥体换热效果下降,造成锥体温度上升。其中第一条引起的原因最多,此时调整中心氧量时,也会引起锥体温度变化。还有特殊的情况,如渣口压差大,同时垫片损坏,引起热气体外窜;还有

就是下降管烧穿,也会导致锥底板温度上升;这些都是很严重的事情;其实当初专利商设置测温点的目的一是为了防止锥底砖串气,第二是为

了预防下降管烧穿,这些都是很严重的事故;所以,锥底温度上升是大家

应该重视的问题.

锥体温度超温也就是拖板砖温度高,我认为主要有下几点:1)煤灰分大,负荷高,渣对锥体冲刷大减薄;2)锥体结构或筑炉质量出现问题,导致串气,高温气体或熔渣进入锥体砖缝,引起温度上升;3)中心氧流量过大,高温区下移或是负荷过大,对锥体冲刷引起温度上升;4)渣口挂渣导致渣口变形,工艺气偏流影响工艺气在下降管内降温,造成流速大的位置锥体温度上升;5)锥体挂渣,当炉况异常时,炉渣拔丝形成针状渣,随工艺气上升在锥体聚集,导致锥体换热效果下降,造成锥体温度上升;6)激冷环的激冷水流量出现波动。其中第三,六条引起的原因最多,此时调整中心氧量或是稳定激冷水流量,就会转好。

14)气化炉烘炉回火如何处理

气化炉烘炉时回火主要原因是炉子里面的压力比外界高,使气体向低压排放,所以就要把持炉子里面呈负压状态,也就用抽引加大抽负压状态,同时也要及时排气,不能让它在炉子里面积累,否则难抽负压,也就上面说的气化炉液位不能太高,否则气体难排出。

1、立即关闭烘炉燃料。

2、置换气化炉内可燃气。

3、检查气化炉回火的原因(气化炉液位高、抽引气小、抽引气路堵、燃料过大、气化炉没有完

全封闭、抽引气分离罐冷凝液没有及时排除)并排除。

4、重新按烘炉曲线烘炉。

15)关于气化炉点火方式

水煤浆气化炉点火就没有壳牌气化炉点火如此麻烦了,壳牌炉子先由

IB(点火烧嘴)点着后,再点SUB(开工烧嘴),最后再点CB(煤烧嘴).一般情况下,IB点火成功性很高,问题主要是在SUB上,国内几家厂SUB被烧坏,大部分是烧嘴头处烧坏,只要更换了烧嘴头就可以再次使用,壳牌的原始设计中,SUB的烧嘴头就是一个可以更换的部件,对烧嘴头的使用时间上有着严格的要求,好象是连续烧了多少小时或者是使用了多少次后就得要更换烧嘴头,具体数字不记得了.呵呵!

壳牌炉子的单炉投煤量是水煤浆炉子的好几倍,如果只用一个点火烧嘴来点CB的话,对点火烧嘴的要求太高了

16)如何降低灰渣中的残炭

检查分析炉渣残炭高的原因:

1、原料粒度不均匀,粒度相差太大,或矸石多含粉大,炉温不能提高,原料反应不完全。

2、上吹时间长、蒸汽用量大,气化层上移、炉温低,原料反应不完全。

3、炉内有疤块、风洞或气化层分布不好,原料在气化层时间短,未完全反应。

4、设备存在缺陷:炉箅通风不均,破渣能力差。

炉条机拉的过快,原料未来得及反应。

发生炉两侧挡溜板故障,溜炭。

5、原料煤活性差。

处理办法:

1、原料加工要加强,使入炉原料煤粒度要均匀,拣净矸石。

2、调节上下吹百分比或上下吹蒸汽使气化层处于合适位置及合适厚度、温度。

3、处理炉内疤块风洞,优化炉况。

4、检查处理或更换炉箅,调整好合适的炉条机转速,检查处理挡溜板。

5、更换活性差的煤种。

17)水煤浆气化炉为什么不采用水冷壁而一直采用耐火砖

水冷壁结构并不存在专利的问题,这在锅炉行业中很常见,有一定实力的锅炉厂都应该会设计制作。其实之所以不采用水冷壁结构,我认为还

是从水煤浆气化原理上分析。水煤浆气化带入系统的水分过多,导致煤中的部分碳不得不被氧化成二氧化碳,以变为气化系统提供足够的热量,这也是为什么水煤浆气化的粗合成气中二氧化碳量远高于粉煤气化的原因。如果采用水冷壁,气化系统还要额外多损失一部分热量到水冷壁上,这会导致二氧化碳量进一步上升,有效气比例进一步下降,影响气化效率。这与粉煤气化是有很大区别的。

18)锁斗发现渣堵应如何处理?

一、堵渣原因

锁斗堵渣一般分两种情况:

1、渣块堵渣。一般是由于气化炉所燃烧的煤的灰熔点偏高,在气化炉温波动结渣或气化炉有漏急冷结渣(shell气化炉水冷壁、烧嘴隔焰罩、热裙等部位)以及下渣口积累的悬挂渣脱落所至,对于德士古炉还存在温度波动耐火砖剥落形成的“砖渣”。这样的结渣大于下渣锁斗通道或架桥,就会使得下渣不畅,严重时不能放渣下料。

2、泥渣堵塞。(低灰熔点的)煤在气化炉温度过低时,燃烧不完全,在急冷前就部分开始成灰粒状,灰含量偏高,使得颗粒状偏少,含水量过多,成泥状,粘度大,会淤积在锁斗下部,沉积压实后架桥阻塞下料。

二、处理方法

1、预防性措施:及时分析煤的灰熔点,添加适量助熔剂,保持物料稳

定、氧煤比适中,保持气化炉温稳定,保持熔渣流动性,一旦出现堵渣时,应及时平缓的调整工况;

2、保持锁斗内水位指标和适宜的水流动性,防止渣沉积压实架桥;

3、堵渣处理:最有效的方法是在锁斗下部配接压力水冲洗管线。当堵渣时,进行人工“除桥”,将程控改人工干预,进行间断的带压力大水流反向冲洗松动,再进行排渣操作,反复多次,会有实效。冲洗水的压力应高于锁斗内压力但不得过高,低了达不到松动效果,过高会使得气化炉内水含量突增甚至明水进入引起设备安全事故。压差控制的理论数据需要针对具体炉膛计算,个人经验控制在1.0~1.5MPa效果不错。一般第二种原因用此方法比第一种更有效。第一种处理难度稍大些。当然若锁斗阀打不开或大块渣松动不下来会带不走,最终只有停工处理了。

19)shell、GSP等干煤粉气化技术原料输送需要氮气,它们对氮气的质量指标有没有特殊要求?一般的空分装置能否满足其要求?

原料输送部分的动力氮只要其氧含量低于5%的污氮,满足煤粉制备或输送过程中的安全即在**下限50%即可。

用于反应段后如用于吹洗、反吹等的氮气将进入粗合成气可能对下游化工装置造成影响,其纯度是有要求的,一般应在PPm级,如为IGCC可放宽。

一般大型空分装置很容易达到此要求,除非设计或改造失误,ASU变成了污氮机

20)GSP煤粉气化压力

1、“GSP气化技术其气化炉操作压力可在2.5-8.0MPa选择”是理论方面的内容,实际情况是操作压力目前最大也只能到4.0MPa,这是粉煤输送系统决定的。

如果继续提高操作压力,一方面超高压氮气制取方面可能存在问题,另外由于操作压力的提高设备投资也会大幅度升高。

2、目前GSP在世界此运行的最大装置为1984年在德国黑水泵建成的130MW气化装置(投褐煤量为720-750t/d,产气量为50000Mm3/h,气化炉内径1.9m,压力容器外壳内径2.4m),的设计压力也只有3.0MPa,工作压力仅为2.5Mpa。

8.0MPa粉煤气化只是设想。无论是GSP、SHELL、两段炉的气化压力,目前只能到4MPa。压力再高,不仅没有设计经验,而且目前没有这个必要。你们只要看一看shell的开车,压力低的开得好一些。因此,粉煤气化目前没有必要提高压力,当务之急是解决稳定运行问题,减少停车次数。不要给这种工艺增加负担。

21)为什么TEXACO的粗煤气从气化炉出来以后要先和工艺冷凝液混和后再到文丘里里面洗涤啊?直接出来以后就去文丘里可以么?

德士古公司在设计时确实是在气化炉的出口要加入部分冷凝液,主要目的就是为了防止气化炉出口堵塞,但是随着国内对德士古技术的消化,关键是操作水平的上升,许多装置都不在使用这种方法,新建的装置设计中也就取消取消了冷凝液。

在气化炉的出口要加入部分冷凝液原设计上是有,现在设计一般没有,而且在正常时候也不是用来冷却激冷水的,在根据长期实现,这个水对除渣作用也不是很理想,所以现在的设计中没有这个。而正真降温、除尘、饱和工艺气还是在气化炉激冷室中。

22)合成气出激冷室的温度有要求吗?一些文献上说是220℃左右,淮南的工艺包数据是227℃。

一般出激冷室的温度控制在220度左右,但随着生产情况的不同会有变动.就同一种炉子同一种煤而言,温度的变动一般反映的是激冷室水位

的变化,温度没有高限,而是水位有低限.在这个温度范围内不会对下降管造成损害.

合成气出激冷室的温度通常是对应压力下的饱和温度,由于合成气带水,合成气中的水*饱和的,温度一般还要低一些。淮南气化炉的压力为4MPa,对应的饱和温度为250.3℃,所以工艺包中227℃是合理的。

23)碳洗涤塔的塔盘进水量和塔釜补水*定的吗?它们和洗涤塔液位控

制有关系吗?

生产稳定以后,这两个量应该是基本固定的,与洗涤塔液位有关系,塔盘水量主要由出塔气的含灰量来定。

碳洗塔塔盘补水在实际运行中是非常重要的,这路水给的多少对合成气带灰有重要影响,简单的说是洗涤合成气用的。如果这路水给的少,合成气出碳洗塔后带灰会比较多一点,长期这样运行的话,会导致变换路因为带灰严重试变换效率降低。所有塔盘给水量的大小不*定的,要根据合成气带灰程度来决定,另外负荷高的时候加的也要响应增多。至于塔釜补水。也要根据碳洗塔液位来调整补水量。

24)多种情况下气化炉停车后的切水

1 运行时停车

如果气化炉是在运行时停车,此时在现场关闭完炉头阀门后就通知切水,因为气化炉保压是理想状态下的,没有气化炉能完全保压,为防止因压力低排不出水导致气化炉液位高,要尽快切水至开工管线。

2 计划停车

将该计划停车炉负荷降至半负荷后切水至开工管线,然后停车。同样是为防止排不出水。

3 计划倒炉

计划停车炉降至半负荷后,计划开车炉投料,投料后水走开工管线。当投料炉压力升至与运行炉相当时切水至闪蒸系统。计划停车炉切水至开工管线后停车。

有人可能担心开工管线承压问题,其实,开工管线的压力设计都是单台炉子满负荷时候的压力,因为闪蒸系统如果出了问题,还是要把水切至开工管线,隔离处理的,当然时间不能过长

25)多喷嘴装置在开停车、生产负荷调整时中心氧量如何调整?调整的目的是什么?

水煤浆气化的单喷嘴为预混式烧嘴,要求火焰较长,中心氧量控制为总氧量的15%左右;四喷嘴为预膜式烧嘴,火焰对置喷后形成梅花状,要求的火焰较短,而中心氧量对火焰的长度起到比较明显的作用,其控制范围为总氧量的8~12%。如果控制比例过大,易于造成气化炉拱顶超温,损坏耐火砖。

26)多喷嘴装置中,一对烧嘴跳车,另一对烧嘴短期运行如何操作

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

国内外煤炭资源现状及煤化工技术进展和前景解析

国内外煤炭资源现状及煤化工技术进展和前景 摘要:本文就中国能源建设面临着结构的优化与调整,结合中国能源结构以煤为主、石油及相关产品供需矛盾日益突出的现实,对国内外煤炭储量、产量及市场现状进行了较详尽的调研,对煤化工技术进展及前景进行了客观的分析,为我公司未来发展提前寻找了石油和天然气的最佳替代产品,指出了煤化工产业将是今后20年的重要发展方向,这对于我国减轻燃煤造成的环境污染、降低我国对进口石油的依赖,保障能源安全,促进经济的可持续发展,均有着重大意义。可以预见,煤炭的清洁转化和高效利用,将是未来能源结构调整和保证经济高速发展对能源需求的必由之路,现代煤化工在中国正面临新的发展机遇和长远的发展前景。 1 世界煤炭资源概况 据《BP世界能源统计2007》数据统计,2006年年底探明的煤炭可采储量全球总计9090.64亿吨,可采年限为147年。总体上看,世界煤炭资源的分布,北半球多于南半球,煤炭主要集中在北半球。北半球北纬30°- 70°之间是世界上最主要的聚煤带,占世界煤炭储量的70%以上。其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。拥有煤炭资源的国家大约70个,其中储量较多的国家有中国、俄罗斯、美国、德国、英国、澳大利亚、加拿大、印度、波兰和南非地区,它们的储量总和占世界的88%。世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4个国家共占29%。根据2006年全球煤炭探明储量,美国以2446亿吨储量稳坐头把席位,俄罗斯以1570亿吨储量排第二位,中国和印度分别为1145和924亿吨排第三、四位。澳大利亚、南非、乌克兰、哈萨克斯坦、波兰和巴西占据第五到第十位。

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

煤化工产业概况及其发展趋势

煤化工产业概况及其发 展趋势 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

我国煤化工产业概况及其发展趋势 煤化学加工包括煤的焦化、气化和液化。主要用于冶金行业的煤炭焦化和用于制取合成氨的煤炭气化是传统的煤化工产业,随着社会经济的不断发展,它们将进一步得到发展,同时以获得洁净能源为主要目的的煤炭液化、煤基代用液体燃料、煤气化—发电等煤化工或煤化工能源技术也越来越引起关注,并将成为新型煤化工产业化发展的主要方向。发展新型煤化工产业对煤炭行业产业结构的调整及其综合发展具有重要意义。 1 煤化工产业发展概况 1. 1 煤炭焦化 焦化工业是发展最成熟,最具代表性的煤化工产业,也是冶金工业高炉炼铁、机械工业铸造最主要的辅助产业。目前,全世界的焦炭产量大约为~亿t/a,直接消耗原料精煤约亿t/a 。受世界钢铁产量调整、高炉喷吹技术发展、环境保护以及生产成本增高等原因影响,工业发达国家的机械化炼焦能力处于收缩状态,焦炭国际贸易目前为2500万t/ a。 目前,我国焦炭产量约亿t/a,居世界第一,直接消耗原料煤占全国煤炭消费总量的14%。 全国有各类机械化焦炉约750座以上,年设计炼焦能力约9000万 t/a,其中炭化室高度为4m~5.5m以上的大、中型焦炉产量约占80%。中国大容积焦炉(炭化室高≧6m)已实现国产化,煤气净化技术已达世界先进水平,干熄焦、地面烟尘处理站、污水处理等已进入实用化阶段,焦炭质量显着提高,其主要化工产品的精制技术已达到或接近世界先进水平。 焦炭成为我国的主要出口产品之一,出口量逐年上升,2000年达到1500t/a,已成为全球最大的焦炭出口国。 从20世纪80年代起,煤炭行业的炼焦生产得到逐步发展,其中有的建成向城市或矿区输送人工煤气为主要目的的工厂,有的以焦炭为主要产品。煤炭行业焦化生产普遍存在的问题是:焦炉炉型小、以中小型焦炉为主,受矿区产煤品种限制、焦炭质量调整提高难度较大,采用干法熄焦、烟尘集中处理等新技术少,大多数企业技术进步及现代化管理与其他行业同类工厂相比有较大差距。 1.2 煤气化及其合成技术 1.2.1 煤气化 煤气化技术是煤化工产业化发展最重要的单元技术。全世界现有商业化运行的大规模气化炉414台,额定产气量446×106Nm3/d,前10名的气化厂使用鲁奇、德士古、壳牌3种炉型,原料是煤、渣油、天然气,产品是F-T合成油、电或甲醇等。 煤气化技术在我国被广泛应用于化工、冶金、机械、建材等工业行业和生产城市煤气的企业,各种气化炉大约有9000多台,其中以固定床气化炉为主。近20年来,我国引进的加压鲁奇炉、德士古水煤浆气化炉,主要用于生产合成氨、甲醇或城市煤气。

适合于炼厂制氢的煤气化技术选择

收稿日期:2013-04-23;收到修改稿日期:2013-06-18。作者简介:罗志荣,男,1975年出生,2002年毕业于石油大学计算机与科学专业,现任中国石化茂名分公司煤制氢车间主任。联系电话:0668-2241992;E-mail :luozr.mmsh@sinopec.com 。 随着国内成品油需求量的增长,国内炼油能力正快速增长,而随着环保要求的逐年提高,全加氢型的炼厂也越来越被认可。氢气使用量的增加使炼油企业更加关注氢气成本的下降,而原油价格的提高和煤化工技术在国内的发展,使成本相对较低的煤成为制氢原料的首选。当前,可用的煤气化技术比较多,也各有优缺点,用于炼厂制氢的煤气化技术应根据炼厂的特点进行选择。 1一般炼厂氢气的特点1.1稳定性 对于炼厂来说,氢气的稳定性是最重要的,尤其是全加氢型炼厂,由于其产品和装置的原料均需要加氢,氢气的中断可能导致全厂停产。 1.2压能的匹配要求灵活 炼厂的氢气多用于其加氢装置,根据用氢装 置工艺的需要,一般是通过氢压机将压力提高到某个压力,如炼厂加氢裂化装置,氢压机出口压力一般在17MPa 左右。因此,如果是新建炼厂,提高氢气压力有利于进一步降低炼厂的能耗。如果是旧炼厂改造则需要匹配其原有的压力等级,而且尽量不要采用降压方式,避免压能的损失。 1.3对氢气纯度要求较高 炼厂的加氢装置对于氢气纯度的要求较高, 特别是渣油加氢,由于溶解甲烷的能力较差,一般要求新氢纯度要大于99%,且由于加氢装置催化剂普遍含有钴、钼、镍等元素,一氧化碳和二氧化 碳会在反应器内发生甲烷化反应,造成床层温度的波动,因此,一般加氢装置对于一氧化碳和二氧化碳的含量有严格的限制。 2炼厂煤气化技术的适应性分析 煤气化是煤制氢的核心部分,炼厂选择煤作 为氢气的原料一定要结合自身的特点,选择合适的煤气化技术。 2.1 可选择的煤气化技术 目前,国内外主要有代表性的先进煤气化技 术有:①湿法水煤浆进料的代表:美国GE 单喷嘴水煤浆气化技术,国内四喷嘴对置气化、分级气流床气化、多元料浆气化等。②干法粉煤进料的代表:壳牌SCGP 、西门子GSP 气化工艺,国内两段干煤粉气化、SE-东方炉粉煤气化、航天炉、科林炉等。③块(碎)煤进料的代表:德国Lurgi 固态排渣工艺、英国BGC 公司的BGL 液态排渣气化工艺。3种煤气化技术对比见表1。 煤气化技术多数已投入工业运行。根据已经投产的煤气化装置运行情况,气流床气化技术的工业化发展速度最快,其中以湿法进料气化技术更为成熟。湿法进料、热壁炉气化技术,经多年工业化运行考验,国内外技术均已成熟,工程建设和 适合于炼厂制氢的煤气化技术选择 罗志荣 (中国石化茂名分公司,广东茂名525011) 摘要:阐述炼厂煤/焦制氢的必要性以及煤气化技术在制氢项目中的重要性,介绍国内外主要煤气化技术,并从气化压力、原料的适应性、产品的适应性、投资和操作费用等不同方面对粉煤气化技术和水煤浆气化技术进行了分析。重点分析了不同水煤浆气化技术对炼厂制氢项目的影响,分析认为单喷嘴水煤浆气化技术具有自己独特的优势,是炼厂制氢项目较为适合的技术。 关键词:炼厂氢气 煤气化技术 选择 适应性 2013年8月第36卷第4期 Large Scale Nitrogenous Fertilizer Industry Aug.2013Vol.36No.4

现代煤化工产业发展现状分析

现状分析、政策走向及前景预测 一、现代煤化工产业概述 煤化工是以煤为原料,经过化学加工使煤转化为气体、液体、固体燃料及化学品,生产出各种化工产品地工业,是相对于石油化工、天然气化工而言地.从理论上来说,以原油和天然气为原料通过石油化工工艺生产出来地产品也都可以以煤为原料通过煤化工工艺生产出来.煤化工主要分为传统煤化工和现代煤化工两类,其中煤焦化、煤合成氨、电石属于传统煤化工,而目前所热议地煤化工实际上是现代煤化工,主要是指煤制甲醇、煤制乙二醇、煤制天然气、煤制油、煤制二甲醚及煤制烯烃等项目.目前煤化工热地背景源于石油、天然气价格地不断上涨,使得以煤为原料地煤化工产品在生产上具备了巨大地成本优势,从而成为相对石化产品地最具竞争力地替代产品.从煤化工基地建设而言,煤化工产业涉及煤炭、电力、石化等领域,是技术、资金、资源密集型产业,对能源、水资源地消耗大,对资源、生态、安全、环境和社会配套条件要求较高.煤化工地工艺路线主要有三条,即焦化、气化和液化,在煤地各种化学加工过程中,焦化是应用最早且至今仍然是最重要地方法,其主要目地是制取冶金用焦炭,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃;煤气化在煤化工中也占有很重要地地位,用于生产城市煤气及各种燃料气,也用于生产合成气(作为氢气、合成氨、合成甲醇等地原料);煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料(石脑油、汽油、柴油);煤地其他直接化学加工,则生产褐煤蜡、磺化煤、腐植酸及活性炭等,仍有小规模地应用.个人收集整理勿做商业用途 国内外现代煤化工产业发展现状 从全球煤化工发展状况来看,主要集中在南非(公司是世界唯一拥有煤制液化工厂地公司,该公司地个煤基液化厂保证了南非地汽油、柴油供给量)、美国(太平原合成燃料厂是世界上目前唯一运行地大规模煤制天然气商业化工厂地公司,年产亿方天然气和万吨合成氨)和中国,除中国外其他国家并无大规模地发展,国内以煤炭为原料地化工产品在国际上大多是以石油和天然气为原料地,高高在上地国际原油价格是促使煤化工再次得到重视地直接动因.以原油和煤炭地单位热值来衡量,目前煤炭地价格只有原油价格地左右,以煤炭来代替石油作为化工产品地原料具有很好地经济意义.个人收集整理勿做商业用途 “富煤、贫油、少气”是我国能源发展面临地现状,我国能源资源中,煤资源相对丰富,石油资源相对少,而且石油往往受制于国际市场.因此,通过把煤液化替代石油成为我国能源发展地一个明智选择.而且煤液化之后,相对于石油更加环保,符合国家节能环保地要求.未来随着我国经济发展,能源需求将日益扩大,对于煤液化地需求也就越大.这也就是意味着,对于煤化工需求也就越来越大.个人收集整理勿做商业用途 我国是世界上最大地煤化工生产国,煤化工产品多、生产规模较大,当前我国正处于传统煤化工向现代煤化工转型时期,以石油替代为目标地现代煤化工产业刚刚起步.由于国际市场油价高起,我国现代煤化工项目已呈现遍地开花之势,激发了富煤地区发展煤化工产业地积极性.据了解,在煤炭资源丰富地鄂尔多斯、通辽、赤峰、阿拉善盟等地,煤化工产业开始“井喷”.神华集团煤直接液化项目、伊泰集团间接法煤制油项目、神华包头煤制烯烃项目、大唐多伦煤制烯烃项目、通辽乙二醇项目等煤化工重点项目相继建成并投产.目前,全国煤制烯烃地在建及拟建产能达万吨,煤制油在建及拟建产能达万吨,煤制天然气在建及拟建产能接近亿立方米,煤制乙二醇在建及拟建产能超过万吨.这些项目全部建成之后,我国将是世界上产能最大地现代煤化工国家.近五年我国焦炭、电石、煤制化肥和煤制甲醇产量均位居世界首位,成为煤化工产品生产大国.年是现代煤化工爆发地启动之年,预计投资额应该在亿元左右,之后四年投资额将逐增加,年将达到奇峰,预计在亿,五年累计超过万亿,是十一五期间地倍.个人收集整理勿做商业用途 三、国家现代煤化工产业政策

煤气化技术的现状和发展趋势

煤气化技术的现状和发展趋势 1、水煤浆加压气化 1.1 德士古水煤浆加压气化工艺(TGP) 美国Texaco 公司在渣油部分氧化技术基础上开发了水煤浆气化技术,TGP 工艺采用水煤浆进料,制成质量分数为60%~65%的水煤浆,在气流床中加压气化,水煤浆和氧气在高温高压下反应生成合成气,液态排渣。气化压力在2.7~6.5MPa,提高气化压力,可降低装置投入,有利于降低能耗;气化温度在1 300~1 400℃,煤气中有效气体(CO+H2)的体积分数达到80%,冷煤气效率为70%~76%,设备成熟,大部分已能国产化。世界上德士古气化炉单炉最大投煤量为2 000t/d。德士古煤气化过程对环境污染影响较小。 根据气化后工序加工不同产品的要求,加压水煤浆气化有三种工艺流程:激冷流程、废锅流程和废锅激冷联合流程。对于合成氨生产多采用激冷流程,这样气化炉出来的粗煤气,直接用水激冷,被激冷后的粗煤气含有较多水蒸汽,可直接送入变换系统而不需再补加蒸汽,因无废锅投资较少。如产品气用作燃气透平循环联合发电工程时,则多采用废锅流程,副产高压蒸汽用于蒸汽透平发电机组。如产品气用作羟基合成气并生产甲醇时,仅需要对粗煤气进行部分变换,通常采用废锅和激冷联合流程,亦称半废锅流程,即从气化炉出来粗煤气经辐射废锅冷却到700℃左右,然后用水激冷到所需要的温度,使粗煤气显热产生的蒸汽能满足后工序部分变换的要求。 1.2 新型(多喷嘴对置式)水煤浆加压气化 新型(多喷嘴对置式)水煤浆加压气化技术是最先进煤气化技术之一,是在德士古水煤浆加压气化法的基础上发展起来的。2000 年,华东理工大学、鲁南化肥厂(水煤浆工程国家中心的依托单位)、中国天辰化学工程公司共同承担的新型(多喷嘴对置)水煤浆气化炉中试工程,经过三方共同努力,于7 月在鲁化建成投料开车成功,通过国家主管部门的鉴定及验收。2001 年2 月10 日获得专利授权。新型气化炉以操作灵活稳定,各项工艺指标优于德士古气化工艺指标引起国家科技部的高度重视和积极支持,主要指标体现为:有效气成分(CO+H2)的体积分数为~83%,比相同条件下的ChevronTexaco 生产装置高1.5~2.0 个百分点;碳转化率>98%,比ChevronTexaco 高2~3 个百分点;比煤耗、比氧耗均比ChevronTexaco 降低7%。 新型水煤浆气化炉装置具有开车方便、操作灵活、投煤负荷增减自如的特点,同时综合能耗比德士古水煤浆气化低约7%。其中第一套装置日投料750t 能力新型多喷嘴对置水煤浆加压气化炉于2004 年12 月在山东华鲁恒升化学有限公司建成投料成功,运行良好。另一套装置两台日投煤1 150t 的气化炉也在兖矿国泰化工有限公司于2005 年7 月建成投料成功,并于2005 年10 月正式投产,2006 年已达到并超过设计能力,目前运行状况良好。该技术在国内已获得有效推广,并已出口至美国。 2、干粉煤加压气化工艺 2.1 壳牌干粉煤加压气化工艺(SCGP) Shell 公司于1972 年开始在壳牌公司阿姆斯特丹研究院(KSLA)进行煤气化研究,1978 年第一套中试装置在德国汉堡郊区哈尔堡炼油厂建成并投入运行,1987 年在美国休斯顿迪尔·帕克炼油厂建成日投煤量250~400t 的示范装置,1993年在荷兰的德姆克勒(Demkolec)电厂建成投煤量2 000t/d 的大型煤气化装置,用于联合循环发电(IGCC),称作SCGP 工业生产装置。装置开工率最高达73%。该套装置的成功投运表明SCGP 气化技术是先进可行的。 Shell 气化炉为立式圆筒形气化炉,炉膛周围安装有由沸水冷却管组成的膜式水冷壁,其内壁衬有耐热涂层,气化时熔融灰渣在水冷壁内壁涂层上形成液膜,沿壁顺流而下进行分

煤气化工艺流程

精心整理 煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之 化碳 15%提 作用。 2 。净化 装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽

,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 缓 可 能周期性地加至气化炉中。 当煤锁法兰温度超过350℃时,气化炉将联锁停车,这种情况仅发生在供煤短缺时。在供煤短缺时,气化炉应在煤锁法兰温度到停车温度之前手动停车。 气化炉:鲁奇加压气化炉可归入移动床气化炉,并配有旋转炉篦排灰装置。气化炉为双层压力容器,内表层为水夹套,外表面为承压壁,在正常情况下,外表面设计压力为3600KPa(g),内夹套与气化炉之间压差只有50KPa(g)。 在正常操作下,中压锅炉给水冷却气化炉壁,并产生中压饱和蒸汽经夹套蒸汽气液分离器1

国内外煤化工产业技术进展情况

国内外煤化工产业发展情况 刘纳新

目录 1 国际煤气化技术 (2) 1.1 煤炭气化技术 (2) 1.2 煤炭液化技术 (6) 1.3 整体煤气化联合循环(IGCC) (7) 2 国际煤化工产品开发进展情况 (8) 2.1 大型煤气化成为煤炭利用的技术热点 (8) 2.2 车用替代燃料成为煤基替代能源产品开发的重点 (9) 2.3 碳一化学品及其衍生物行业发展势头强劲 (10) 2.4 煤基多联产成为煤炭综合利用的重要方式 (11) 2.5 南非煤化工发展情况 (13) 2.6 美国煤化工发展情况 (14) 2.7 日本煤化工发展情况 (15) 2.8 欧盟煤化工发展情况 (16) 3 国内煤气化技术应用情况 (17) 3.1 多种煤气化技术并存 (17) 3.2 煤炭气化多联产技术 (18) 3.3 山西天脊煤化工集团有限公司煤气化技术的应用与发展 (18) 4 国内煤化工产品开发及项目建设情况 (19) 4.1 国内煤化工产品开发和建设 (19) 4.2 煤制甲醇项目 (20) 4.3 煤制二甲醚项目 (20) 4.4 煤制合成氨项目 (21) 4.5 煤制天然气和煤制烯烃 (21) 5 国内煤化工产业发展趋势 (23)

1 国际煤气化技术 国际煤气化技术主要包括:煤气化、煤液化和整体煤气化联合循环(IGCC)技术。目前新一代煤气化技术的开发和工业化进程中,总的方向是气化压力由常压向中高压(8.5 MPa)提高,温度向高温(1500-1600℃)发展,气化原料多样化,固态排渣向液态排渣发展。 1.1 煤炭气化技术 煤炭气化是在适宜的条件下将煤炭转化为气体燃(原)料的技术,旨在生产民用、工业用燃料气和合成气,并使煤中的硫、灰分等在气化过程中或之后得到脱除,使污染物排放得到控制。煤炭气化近年来在国外得到较大发展,目的是为煤的液化、煤气化联合循环及多联产提供理想的气源,扩大气化煤种,提高处理能力和转换效率,减少污染物排放。在100多年的研究开发于商业化应用中,相继开发出多种气化技术和工艺,按技术特点可粗略地划分为固定床、流化床和气流床气化技术。 1.1.1固定床 1.1.1.1固定床间歇式气化炉(UGI)。以块状无烟煤或焦炭为原料,以空气和水蒸气为气化剂,在常压下生产合成原料气或燃料气。该技术目前已属落后的技术,气化率低,原料单一、能耗高,环境污染严重。随着能源政策和对环境要求的提高,该技术正在逐步被新的煤气化技术所取代。 1.1.1.2鲁奇气化炉。20世纪30年代德国鲁奇公司开发成功了固

我国水煤浆气化技术现状及发展趋势 胡永刚

我国水煤浆气化技术现状及发展趋势胡永刚 摘要:我国水煤浆气化技术从研究、开发、工程示范到工业化装置的长周期稳 定运行,对我国现代煤化工产业的发展起到了举足轻重的作用。尤其是多种具有 自主知识产权的水煤浆气化技术的开发及大规模工业化应用,不仅实现了煤基化 工多联产和产业链的延伸,而且强化了我国在世界煤化工、煤基多联产等领域的 地位,对世界煤炭清洁、安全、高效利用提供了多元化的技术支撑。 关键词:水煤浆气化技术;现状分析;发展趋势 引言:煤炭资源是我国的主要能源,在一次能源结构中处于主导地位。近年 来在经济转型、环保加强等因素的制约下,煤炭消费增速明显放缓,2018年煤炭 占我国一次能源消费比例首次低于60%。在煤炭多种利用方式中,煤气化技术虽 然过程复杂、仅占我国煤炭消费总量的6%左右,但却是煤炭高效加工、转化的 龙头,也是煤炭清洁利用的关键,更是保障国家经济、能源安全和社会可持续发 展的基础。 1.我国水煤浆气化技术现状 我国水煤浆气化技术在消化吸收国外先进水煤浆气化工艺的基础上,经过十 几年的不断实践积累了丰富的经验,探索开发出多种具有我国自主知识产权的水 煤浆气化技术,在我国乃至世界煤炭气化史上写下了浓墨重彩的一笔。 2.水煤浆气化技术 2.1多喷嘴对置式水煤浆气化技术 多喷嘴对置式水煤浆气化技术是由国家水煤浆研究中心和华东理工大学在先 进德士古气化基础上,进行优化、改进且具有自主知识产权的气流床气化技术。 该技术主要包含磨煤制浆单元、气化单元、净化单元和渣水处理单元。浓度60% 的水煤浆是由原料煤和工艺废水经湿法研磨而成,水煤浆经高压煤浆泵与来自空 分的纯度≥97%的纯氧经过预膜式工艺喷嘴充分混合,再经高效雾化进入燃烧室, 在燃烧室内发生复杂的化学反应,生成粗煤气。粗煤气携带高温熔渣一起经下降 管进入激冷室,熔渣在激冷室内固化,在冲力作用下进入锁斗,定期外排。而粗 煤气经激冷水降温、增湿后间歇外排出激冷室,通过混合器的增湿、旋分器的除 尘和水洗塔的洗涤得到的净化煤气送往下一工序。生产过程产生的高含渣黑水经 蒸发热水塔、酸气分离器和真空闪蒸罐组成的闪蒸系统后,达到了黑水浓缩、能 量回收、灰水循环利用的节能降耗效果。 该技术相对其他气化技术具有如下优势:采用预膜式工艺喷嘴,具有雾化效 果好、不产生回火以及磨损显著减弱等优点;采用多喷嘴对置式进料,在炉内形 成射流与撞击结合流场结构,强化物料混合,处理负荷高,而且装置易于大型化,有效气成分和碳转化率均可提升2~3个百分点,比煤耗可以降低约2个百分点;采用合成气分级洗涤净化系统,合成气含尘量低,激冷环不易结垢,变换阻力小;采用高效的能量回收系统,传质、传热效率高;装置操作较为简便、系统稳定、 在线率高[20];拱顶砖寿命最长已经超过15000h,筒体砖和锥底砖最长已超过44000h,工艺喷嘴最长使用周期达到152d。 2.2非熔渣-熔渣分级气化技术 非熔渣-熔渣分级气化技术(也称一代清华炉气化技术)是吸收消化了国外先进 煤气化技术,针对气化炉炉顶易结渣、烧嘴寿命短及有效气化空间小等缺点自行 开发创新的分级气化技术。该技术工艺流程为:水煤浆通过给料机构与气化剂纯氧、预混气体(CO2、N2或蒸汽)同时送入喷嘴,保持气化炉上段(非熔渣段)温度低

煤气化工艺流程

煤气化工艺流程 1、主要产品生产工艺 煤气化是以煤炭为主要原料的综合性大型化工企业,主要工艺围绕着煤的洁净气化、综合利用,形成了以城市煤气为主线联产甲醇的工艺主线。 主要产品城市煤气和甲醇。城市燃气是城市公用事业的一项重要基础设施,是城市现代化的重要标志之一,用煤气代替煤炭是提高燃料热能利用率,减少煤烟型大气污染,改善大气质量行之有效的方法之一,同时也方便群众生活,节约时间,提高整个城市的社会效率和经济效益。作为一项环保工程,(其一期工程)每年还可减少向大气排放烟尘1.86万吨、二氧化硫3.05万吨、一氧化碳0.46万吨,对改善河南西部地区城市大气质量将起到重要作用。 甲醇是一种重要的基本有机化工原料,除用作溶剂外,还可用于制造甲醛、醋酸、氯甲烷、甲胺、硫酸二甲酯、对苯二甲酸二甲酯、丙烯酸甲酯等一系列有机化工产品,此外,还可掺入汽油或代替汽油作为动力燃料,或进一步合成汽油,在燃料方面的应用,甲醇是一种易燃液体,燃烧性能良好,抗爆性能好,被称为新一代燃料。甲醇掺烧汽油,在国外一般向汽油中掺混甲醇5~15%提高汽油的辛烷值,避免了添加四乙基酮对大气的污染。 河南省煤气(集团)有限责任公司义马气化厂围绕义马至洛阳、洛阳至郑州煤气管线及豫西地区工业及居民用气需求输出清洁能源,对循环经济建设,把煤化工打造成河南省支柱产业起到重要作用。 2、工艺总流程简介: 原煤经破碎、筛分后,将其中5~50mm级块煤送入鲁奇加压气化炉,在炉内与氧气和水蒸气反应生成粗煤气,粗煤气经冷却后,进入低温甲醇洗净化装置

,除去煤气中的CO2和H2S。净化后的煤气分为两大部分,一部分去甲醇合成系统,合成气再经压缩机加压至5.3MPa,进入甲醇反应器生成粗甲醇,粗甲醇再送入甲醇精馏系统,制得精甲醇产品存入贮罐;另一部分去净煤气变换装置。合成甲醇尾气及变换气混合后,与剩余部分出低温甲醇洗净煤气混合后,进入煤气冷却干燥装置,将露点降至-25℃后,作为合格城市煤气经长输管线送往各用气城市。生产过程中产生的煤气水进入煤气水分离装置,分离出其中的焦油、中油。分离后煤气水去酚回收和氨回收,回收酚氨后的煤气水经污水生化处理装置处理,达标后排放。低温甲醇洗净化装置排出的H2S到硫回收装置回收硫。空分装置提供气化用氧气和全厂公用氮气。仪表空压站为全厂仪表提供合格的仪表空气。 小于5mm粉煤,作为锅炉燃料,送至锅炉装置生产蒸汽,产出的蒸汽一部分供工艺装置用汽,一部分供发电站发电。 3、主要装置工艺流程 3.1备煤装置工艺流程简述 备煤工艺流程分为三个系统: (1)原煤破碎筛分贮存系统,汽运原煤至受煤坑经1#、2#、3#皮带转载至筛分楼、经节肢筛、破碎机、驰张筛加工后,6~50mm块煤由7#皮带运至块煤仓,小于6mm末煤经6#、11#皮带近至末煤仓。 (2)最终筛分系统:块煤仓内块煤经8#、9#皮带运至最终筛分楼驰张筛进行检查性筛分。大于6mm块煤经10#皮带送至200#煤斗,筛下小于6mm末煤经14#皮带送至缓冲仓。 (3)电厂上煤系统:末煤仓内末煤经12#、13#皮带转至5#点后经16#皮

国内煤气化技术评述与展望

2012年 第15期 广 东 化 工 第39卷 总第239期 https://www.doczj.com/doc/1d6361535.html, · 59 · 国内煤气化技术评述与展望 付长亮 (河南化工职业学院,河南 郑州 450042) [摘 要]依据煤气化技术的常用分类标准和评价指标,分析研究了国内所用的煤气化技术的优势与不足。综合考虑原料广泛性、技术先进性、投资成本等因素,认为航天炉干粉煤气化技术具有适应的煤种多、气化效率高、生产能力大、碳转化率高、投资省、操作费用低等优势,在未来的煤化工产品生产中将会得到普遍的应用。 [关键词]煤气化技术;评述;展望 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)15-0059-02 Review and Prospects of Domestic Coal Gasification Technology Fu Changliang (Henan V ocational College of Chemical Technology, Zhenzhou 450042, China) Abstract: According to common classification standard and evaluation index, advantages and disadvantages of domestic coal gasification technology were analyzed and studied. Considering comprehensively the raw material extensive, technology advanced and investment cost, it was thought that HT-L dry powder coal gasification had the vast potential for future development, because of the more quantity of coal type used, higher gasification efficiency, larger production capacity, higher carbon conversion, lower investment cost. Keywords: coal gasification technology ;review ;prospects 1 煤气化及其评价指标 煤气化指在高温下煤和气化剂作用生成煤气的过程。可简单表示如下: +???→高温 煤气化剂煤气 其中的气化剂主要指空气、纯氧和水蒸汽。煤气化所制得的煤气是一种可燃性气体,主要成分为CO 、H 2、CO 2和CH 4,可作为清洁能源和多种化工产品的原料。因此,煤气化技术在煤化工中处于非常重要的地位。 煤气化反应主要在气化炉(或称煤气发生炉、煤气炉)内进行。不同的煤气化技术主要区别在于所用的气化炉的形式不同。 通常,对煤气化技术的评价主要从气化效率、冷煤气效率、碳转化率和有效气体产率四个方面进行。气化效率衡量原料(煤和气化剂)的热值转化为可利用热量(煤气的热值和产生蒸汽的热值)的情况,是最常用的评价指标,标志着煤气化技术的能耗高低。冷煤气效率衡量原料的热值转化为煤气热值的情况,是制得煤气量多少及质量高低的标志。碳转化率衡量煤中有多少碳转化进入到煤气中,是煤利用率高低的标志。有效气体产率衡指单位煤耗能产出多少有效气体(CO+H 2),是对煤气化技术生产有价值成分效果好坏的评价。这四个指标不完全独立,从不同的方面反映了煤气化技术中人们最关注的问题。 2 煤气化技术的分类 煤气化的分类方法较多,但最常用的分类方法是按煤与气化剂在气化炉内运动状态来分。此法,将煤气化技术分为如下几种。 2.1 固定床气化 固定床气化也称移动床气化,一般以块煤或煤焦为原料。煤由气化炉顶加入,气化剂由炉底送入。流动气体的上升力不致使固体颗粒的相对位置发生变化,即固体颗粒处于相对固定状态。气化炉内各反应层高度亦基本上维持不变。因而称为固定床气化。另外,从宏观角度看,由于煤从炉顶加入,含有残炭的灰渣自炉底排出,气化过程中,煤粒在气化炉内逐渐并缓慢往下移动,因而又称为移动床气化。目前,国内采用此方法的煤气化技术主要有固定床间歇气化法和加压鲁奇气化法。 2.2 流化床气化 流化床煤气化法以小颗粒煤为气化原料,这些细粒煤在自下而上的气化剂的作用下,保持着连续不断和无秩序的沸腾和悬浮状态运动,迅速地进行着混和和热交换,其结果导致整个床层温度和组成的均一。目前,国内属于此方法的煤气化技术主要有恩德粉煤气化技术和ICC 灰融聚气化法。 2.3 气流床气化 气流床气化是一种并流式气化。气化剂(氧与蒸汽)与煤粉一同进入气化炉,在1500~1900 ℃高温下,将煤部分氧化成CO 、H 2、CO 2等气体,残渣以熔渣形式排出气化炉。也可将煤粉制成 煤浆,用泵送入气化炉。在气化炉内,煤炭细粉粒与气化剂经特殊喷嘴进入反应室,会在瞬间着火,发生火焰反应,同时处于不充分的氧化条件下。因此,其热解、燃烧以及吸热的气化反应,几乎是同时发生的。随气流的运动,未反应的气化剂、热解挥发物及燃烧产物裹挟着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。这种运动形态,相当于流态化技术领域里对固体颗粒的“气流输送”,习惯上称为气流床气化。属于此类方法的煤气化技术较多,国内主要有壳牌干粉煤气化法、德士古水煤浆气化法、GSP 干粉煤气化法、航天炉干粉煤气化等[1-3]。 3 国内主要煤气化技术评述 3.1 固定床间歇式气化 块状无烟煤或焦炭在气化炉内形成固定床。在常压下,空气和水蒸汽交替通过气化炉。通空气时,产生吹风气,主要为了积累能量,提高炉温。通水蒸汽时,利用吹风阶段积累的能量,生产水煤气。空气煤气和水煤气以适当比例混合,制得合格原料气。 该技术是20世纪30年代开发成功的。优点为投资少、操作简单。缺点为气化效率低、对原料要求高、能耗高、单炉生产能力小。间歇制气过程中,大量吹风气排空。每吨合成氨吹风气放空多达5000 m 3。放空气体中含CO 、CO 2、H 2、H 2S 、SO 2、NO x 及粉灰。煤气冷却洗涤塔排出的污水含有焦油、酚类及氰化物,对环境污染严重。我国中小化肥厂有900余家,多数采用该技术生产合成原料气。随着能源和环境的政策要求越来越高,不久的将来,会逐步被新的煤气化技术所取代。 3.2 鲁奇加压连续气化 20世纪30年代,由德国鲁奇公司开发。在高温、高压下,用纯氧和水蒸汽,连续通过由煤形成的固定床。氧和煤反应放出的热量,正好能供应水蒸汽和煤反应所需要的热量,从而维持了热量平衡,炉温恒定,制气过程连续。 鲁奇加压气化法生产的煤气中除含CO 和H 2外, 含CH 4高达10 %~12 %,可作为城市煤气、人工天然气、合成气使用。相比较于固定床间歇气化,其优点是炉子生产能大幅提高,煤种要求适当放宽。其缺点是气化炉结构复杂,炉内设有破粘机、煤分布器和炉篦等转动设备,制造和维修费用大,入炉仍需要是块煤,出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂。 3.3 恩德粉煤气化技术 恩德粉煤气化技术利用粉煤(<10 mm)和气化剂在气化炉内形成沸腾流化床,在高温下完成煤气化反应,生产需要的煤气。 由于所用的原料为粉煤,煤种的适应性比块煤有所放宽,原料成本也得到大幅度降低。得益于流化床的传质、传热效果大大优于固定床,恩德粉煤气化炉的生产能力比固定床间歇制气有较大幅度的提高。由于操作温度不高,导致气化效率和碳转化率都不高,且存在废水、废渣处理困难等问题。此技术多用于替代固定床间歇制气工艺[4-6]。 [收稿日期] 2012-07-21 [作者简介] 付长亮(1968-),男,河南荥阳人,硕士,高级讲师,主要从事化工工艺的教学与研究。

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

相关主题
文本预览
相关文档 最新文档