当前位置:文档之家› 傅里叶变换在信号与系统系统中的应用

傅里叶变换在信号与系统系统中的应用

傅里叶变换在信号与系统系统中的应用
傅里叶变换在信号与系统系统中的应用

河北联合大学

本科毕业设计(论文)

题目傅里叶变换在信号与系统中的应用

院系理学院

专业班级07数学一班

学生姓名刘帅

学生学号200710050113

指导教师佟玉霞

2011年5月24日

题目傅里叶变换在信号与系统中的应用

专业数学与应用数学姓名刘帅学号200710050113

主要内容、基本要求、主要参考资料等

主要内容

傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。

基本要求

通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。

参考资料

[1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版

[2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社

[3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈

连丰审校电子工业出版社

[4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译

腾建辅审校电子工业出版社

[5]《现代通信原理》陶亚雄主编电子工业出版社

[6]《信号与系统》乐正友著清华大学出版社

[7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社

[8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电

子科技大学出版社

[9] https://www.doczj.com/doc/1d5073780.html,/view/191871.htm//百度百科傅里叶变换

[10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社

[11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社

完成期限

指导教师

专业负责人

2010年11 月1日

目录

1.引言 (1)

2.傅里叶变换 (1)

2.1 傅里叶变换的提出及发展 (1)

2.2 傅里叶变换定义 (2)

2.3 傅里叶变换的分类 (3)

傅里叶变换的性质

3.傅里叶变换在滤波技术中的应用 (4)

3.1 滤波的概念 (4)

3.2 理想选择性滤波器 (4)

3.3 系统的物理可实现性 (6)

4.傅里叶变换在调制与解调技术中的应用 (7)

4.1 调制与解调的原理 (8)

4.2 正弦调制过程 (9)

4.3 相干解调 (10)

5.傅里叶变换在抽样技术中的应用 (11)

5.1理想抽样 (11)

5.2 抽样的恢复 (13)

5.3零阶抽样保持 (15)

6.频分复用与时分复用 (17)

7.结束语 (19)

参考文献 (20)

1.引言

傅立叶变换是在傅立叶级数正交函数展开的基础上发展而产生的。这方面的问题也称为傅立叶分析。傅立叶分析的研究与应用至今已经历了一百余年。1822年法国数学家傅立叶(J.Fourier,1768—1830).提出并证明了将周期函数展开为正弦函数的原理.莫定了傅立叶变换的理论基础。进入20世纪以后。人们认识到,在通信与控制系统的理论研究和实际应用之中,采用频率域(颍域)的分析方法较之经典的时同域(时域)方法有许多突出的优点。当今。傅立叶分析方法已经成为信号分析与系统设计不可缺少的重要工具。随着计算机、数字集成电路技术的发展。在傅立叶变换方法中出现了所谓的”快速傅立叶变换”(F丌).目前快速傅立叶变换的研究与应用已相当成熟,而且仍然在不断更新与发展。傅立叶变换不仅应用于电力工程、通信和控制领域之中.而且在力学、光学、量子物理和各种线性系统分析等许多有关效学、物理和工程技术领域中得到广泛普遍的应用。

滤波、调制和抽样,将模拟信号数字化;对信号进行处理改善信号性能,产生新的较理想信号。另外通过调制,使不同频率,不同时域信号可同时发送,从而达到节省频带的目的,即所谓时分复用、频分复用。电话,电视等也都涉及到傅里叶的变换。傅里叶分析方法的建立经历了一段漫长的历史,涉及到许多人的工作和许多物理现象的研究。当今傅里叶分析法已经成为信号分析与系统不可缺少的重要工具。

2.傅里叶变换

2.1 傅里叶变换的提出及发展

1804 年,法国科学家 J.-B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究。他在题为《热的解析理论》一文中,发展了热流动方程,并且指出如何求解。在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种思想,虽然缺乏严格的论证,但对近代数学以及物理、工程技术却都产生了深远的影响,成为傅里叶变换的起源。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦

基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。傅里叶变换通过对函数的分析来达到对复杂函数的深入理解和研究。最初,傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。“任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类。利用这一点,傅里叶变换可通过对相对简单的事物的研究来了解复杂事物,而且现代数学发现傅里叶变换具有非常好的性质:

(1)傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子。

(2)傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。

(3)正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质, 从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

(4)著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算, 从而提供了计算卷积的一种简单手段。

(5)离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))。

正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

2.2 傅里叶变换定义

若)(t f 在任一有限区间上满足狄利克雷条件,且)(t f 在(-∞,+∞)上绝对可积(如下积分收敛),即:

?

∞∞-∞

∞-?=)()( (2)

傅里叶逆变换:

ωωπωd e F t f t j ?∞

∞-=)(21)( (3)

其中,F(ω)称为)(t f 的象函数,)(t f 称作F (ω)的原函数。

2.4傅里叶变换的分类

连续傅里叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式,如式3。

该式其实表示的是连续傅里叶变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。一种对连续傅里叶变换的推广称为分数傅里叶变换

(Fractional Fourier Transform )。当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine

transform) 或 正弦转换(sine transform).另一个值得注意的性质是,当f(t) 为纯实函数时,F(?ω) = F(ω)成立.

离散傅里叶变换:为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数x(n) 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数x(n)表示为下面的求和形式: 10,)(1)(2-≤≤=∑∞-∞=-N n k X N n x k nk N j e π (4)

其中X(k)是离散傅里叶变换。直接使用这个公式计算,而快速傅里叶变换(FFT )可以将复杂度大大降低。计算复杂度的降低以及数字电路计算能力的发展使得DFT 成为在信号处理领域十分实用且重要的方法。

3.傅里叶变换在滤波技术中的应用

3.1 滤波的概念

利用电路容抗或感抗随频率变化的特性,对不同频率的输入信号产生不同的响应,让需要的某一频率的信号顺利的通过,而抑制不需要的其他频率信号,这一过程即为滤波,实现该过程的系统称为滤波器。

设滤波器的输入()x t ,输出()y t ,则有滤波器系统的输入关系如下:

()()()x t h t y t *= (5)

由时域卷积定理知,式5可转换为

()()()X H Y ωωω= (6)

其中:()()CFT x t X ω??

?→,()()CFT y t Y ω???→,()()CFT h t H ω???→ 由式6知,借助傅里叶变换不仅使运算得到简化,而且为从频域上对信号进行研究,进行频谱分析提供了可能。又由式6知

()()/()H Y X ωωω= (7)

其中()H ω称为系统函数,可完全表征系统的性质和特征。因此,若已知输入()x t 及要求的输出()y t ,对其分别进行傅里叶变换后,便可根据需要设计出适当的滤波系统,从而满足适当地满足实际需要。

3.2 理想选择性滤波器

理想选择滤波的频率特性,具有对某个频率范围内的复指数信号j t e ω或正弦信号cos()t ω能无失真地通过,在频率范围之外则给予彻底抑制。通常把信号能通过的频率范围称为滤波器的通带,阻止信号通过的频率范围称为阻带,通带的边界频率称为截止频率。根据滤波器通、阻带所处的位置不同,可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等基本滤波器,它们是信号和系统分析中重要的基本系统。

1、理想低通滤波器

理想低通滤波器是指能使某频率范围内的信号无失真的通过,而高于一定频率值的信号完全抑制的滤波器,其系统函数()L H ω为

1, 0ωω<

()L H ω= (8)

0, 0ωω>

其中,0ω是理想低通滤波器的截止频率。频谱如图1所示。

图1 理想低通滤波器的频谱

2、理想高通滤波器

理想高通滤波器与理想低通滤波器相对应,是指使高于某个频率值的信号无失真的通过而低于该频率的信号则完全抑制,其系统函数()H H ω为

1, 0ωω>

()H H ω= (9)

0,0ωω<

其中,0ω是理想高通滤波器的截止频率。频谱如图2所示。

图2 理想高通滤波器频谱图

3、理想带通滤波器

理想带通滤波器是一个允许特定频段的信号波通过同时屏蔽其他频段的滤波器,其系统函数()B H ω为

1 , 12ωωω<<

()B H ω= (10)

0,2ωω>或1ωω<

其中,1ω称带通滤波器的低通截止频率,2ω称带通滤波器的高通截止频率。频率

响应如图3。

图3 理想带通滤波器频谱图

4、理想带阻滤波器

理想带阻滤波器与理想带通滤波器相对应是指衰减或抑制某一频率范围内的信号,而允许此频率范围以外的频率的信号通过的滤波器,其系统函数()B H ω为

0,12ωωω<<

()B H ω= (11)

1,2ωω>或1ωω<

频率响应如图4示。

图 4 理想带阻滤波器频谱图

3.3 系统的物理可实现性

为了简单,理想滤波器通常都定义成频域上具有实的和单位幅度的频率响应,且有零相位特性。实际上,上述所有理想滤波器的频率响应再乘0j t e ω-,仍

能让处于通带内的信号无失真地通过,并完全抑制通带外的信号。根据傅里叶变换的时移性质,乘线性相移因子0j t e ω-,只是使信号产生一个时间滞后0t ,它们

仍然是理想滤波器。为了和上述的零相位理想滤波器相区别,也可把具有线性相位理想滤波器。

但是实际上,没有真正意义的理想滤波器。实际的滤波器无法完全过滤掉所设计的允许通过的频率范围之外的频率的波。例如,在理想通带边界有一部分频率衰减的区域,不能完全过滤,这一曲线被称作滚降斜率(roll-off)。滚降斜率通常用dB 度量来表示频率的衰减程度。一般情况下,滤波器的设计就是使这过渡带尽可能的窄,以便该滤波器能最大限度接近理想通带的设计。

就时域特性而言,一个物理可实现系统必须是因果的即它的单位冲激响应()h t 在t<0时必须为零。从频域特性来看,如果()H ω满足平方可积的条件,即

2

()H d ωω∞

-∞<∞? (12)

图 5 实际带通滤波器幅度特性

4.傅里叶变换在调制与解调技术中的应用

在许多工程问题中,调制与解调的概念起着十分重要的作用,并有广泛的应用。所谓调制就是用一个信号去控制另一个信号的某个参量,产生已调制信号,其实质是把各种信号的频谱搬移,使它们互不重叠地占据不同的频率范围。在几乎所有实际通信系统中,信号从发送端到接收端,为实现有效、可靠和远距离的信号传输,都需要调制和解调。比如无线通信。调制过程将信号频谱搬移到任何

所需的较高频率范围,这就容易以电磁波形式辐射出去。

调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的代通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

从另一方面讲,如果不进行调制而是把被传送的信号直接辐射出去,那么各电台所发出的信号频率就会相同,它们混在一起,收信者将无法选择所要接受的信号。解调则是相反的过程,即从已调制信号中恢复出原信号,实质是把各种信号的频谱搬移,使它们互不重叠地占据不同的频率范围,也即信号分别依附于不同频率的载波上,接收机就可以分离出所需要频率的信号,不致互相干扰。

4.1 调制与解调的原理

在无线电技术中,将一个称为载波的高频电振荡(电流、电压)的参数(振幅、频率、相位)按照欲传输的信号的特征变化的过程称为调制。低频信号(指欲传输的信号)辐射效率低,不能直接用于发射,调制的目是借助于高频电振荡将低频信号连带传送出去。不同的低频信号可以附载在不同频率的高频电振荡上同时传送,这样就可以充分利用无线电频谱同时传输许多路广播信号,而且它们之间不会相互干扰。根据高频载波的振幅、频率或相位随低频信号变化的特点,调制相应地分为调幅、调频或调相。此外,如果先用信号去调制脉冲序列的参数(脉冲幅度、脉冲宽度或脉冲位置等),再用这组经过调制的脉冲序列去调制一个高频正弦波载波,这种调制方式称为脉冲调制。

解调是调制的反过程,指将已调信号恢复为原始信号的过程。目前使用的解调方法有相干解调和非相干解调。这些方法能有效地解调出调制信号的全部特征(幅度、频率、初相位)。

4.2 正弦调制过程

载波信号为0cos()t ω,它的傅里叶变换是

F [0cos()t ω]=π[00()()σωωσωω++-]

调制信号为()g t ,其频谱为G(ω),占据-0ω至0ω的有限频带,将()g t 与0cos()t ω进行时域相乘便可得到已调信号()f t ,如式(14)示:

()f t =()g t 0cos()t ω

对上式进行傅里叶变换并由傅里叶变换的时域卷积性质得:

F [()f t ]=()F ω=(1/2π)()

G ω*π[00()()σωωσωω++-]

=1/2[00()()G G ωωωω++-]

由此,信号()g t 的频谱()G ω被搬移到0ω附近,实现了频谱的搬移。频谱搬移过程实现过程如图6示:

图6 调制原理方框及其频谱

4.3 相干解调

设0cos()t ω信号是接收端的本地载波信号,它与发送端的载波同频同相。()f t 与0cos()t ω相乘的结果使频谱()F ω向左、右分别移动0ω(并乘以系数1/2),得到频谱0()G ω,也可以从时域的相乘关系得到解释:

0()g t =[()g t 0cos()t ω]0cos()t ω

=1/2()g t +1/2()g t 0cos(2)t ω

F [0()g t ]=0()

G ω=1/2()G ω+1/4[000(2)(2)G G ωωωω++-] 再利用一个适当低通滤波器,滤除在频率位02ω附近的分量,即可取出()g t ,完成解调。解调过程如图7示。

图7 相干解调方框图及频谱

这种解调器称为相干解调(或同步解调),需要在接收端产生与发送端频率相同的本地载波,这将使接收机复杂化。为了在接收端省去本地载波,可采用如下方法。在发射信号中加入一定强度的载波信号A 0cos()t ω,这时,发送端的合成

信号为[A+()g t ]0cos()t ω,如果A 足够大,对于全部t,有A+()g t >0,于是已调信号的包络检波器,即可提取包络,恢复()g t ,不需要本地载波。此方法可降低接受机的成本,但付出的代价是要使用价格昂贵的发射机,因为需提供足够强的信号A 0cos()t ω之附加功率。在此种调制方法中,载波的振幅随信号()g t 成比例地改变,因而称为“振幅调制”或“调幅(AM )。也可以控制载波的频率或相位,使它们随信号()g t 成比例地变化,它们的原理也是使()g t 的频谱()G ω搬移。

5.傅里叶变换在抽样技术中的应用

抽样定理论述了在一定条件下,一个连续时间信号可以用该信号在等时间间隔上的瞬时值表示。这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原信号。可以说,抽样定理在连续时间信号与离散时间信号之间架起了一座桥梁。由于离散时间信号(数字信号)的处理更为灵活、方便,在许多实际应用(如数字通信系统等),首先将连续信号转换为相应的离散信号,并进行加工处理,然后再将处理后的离散信号转换为连续信号。取样定理为连续信号与离散信号的互相转换提供了理论依据。

通过傅里叶变换可以知道:一定条件下,一个连续时间信号或离散序列均可惟一地用其等间隔的样本值来表示,这种表示是完全和充分的。换言之,这组等间隔的样本值包含了原信号或序列的全部信息,且原信号可以由这组样本值完全恢复出来。

5.1理想抽样

一般地说,在没有任何附加条件下,不能指望一个连续函数都能惟一地由其一组等间隔的样本值来表征,因为在给定的等间隔时间点上,有无限多个信号都可产生一组相同的样本。然而,如果是带限的连续时间信号,且样本取得足够密,那么该信号就能惟一地由其样本值来表征,且能从这些样本值完全恢复出原信号。

设原连续时间信号()x t 是一带限于m ω的连续时间带限信号,即

F [()x t ] = ()X ω, 且 ()X ω= 0 ,m ωω< (18)

如果抽样间隔s T 满足:

s T < m πω 或 s ω= 2s

T π > 2m ω (19) 则()x t 就惟一地由其样本值{x(n s T ),n = 0,±1,±2……}所确定。

抽样脉冲信号()p t 是一冲激信号,即

()()()s T s p t t t nT δδ∞

-∞==-∑ (20)

其时域波形及频谱如图5.1.2示。

已抽样信号()p x t 也是一个冲激串,每个冲激的强度等于()x t 以s T 为间隔的样本值。即

()()()p s s x t x nT t nT δ∞

-∞=-∑ (21)

它是通过图8所示的理想抽样来实现的。带限信号()x t 与周期s T 的冲激串()p t 相乘,便可得到已抽样信号()p x t ,即

()()()p x t x t p t = (22)

图8 理想抽样系统方框图 图9(a )中画出了对某个()x t 理想抽样的时域波形。利用傅里叶变换可以在频域中直观观察该理想抽样过程。图9(b)画出了上述过程的频谱。

抽样脉冲信号()p t 的频谱为 相 乘 ()x t ()

p x t ()p t

2()()s s P n T πωδωω∞

-∞=-∑ (23) 利用频域卷积性质,可得()p x t 的频谱()p X ω为

1()()*()2p s s X X n ωωωδωωπ∞-∞??=-????

∑ 1()s s X n T ωω∞

-∞=-∑ (24) 上示表明()p x t 的频谱()X ω是的周期复制并乘以(1/s T )。

图 9(a )冲激串抽样时的信号波形 (b ) 相应信号的频谱

5.2 抽样的恢复

由图9中可以看出,如果抽样频率s ω不小于2m ω,已抽样信号的频谱()X ω是无重叠地周期重复。只要满足19式的条件,从频域上看,()X ω如实地在抽样频率s ω的整数倍频率上重现,因此,可以用一个低通滤波器,把()x t 从()p x t 中完全恢复或重建出来。该低通滤波器的频率响应()L H ω为

s T ,0ωω<

()L H ω= (25)

0,0ωω>

其中,0ω是理想低通滤波器的截止频率。频率响应如图10所示。

为讨论方便,取相位特性为零,T s 是抽样脉冲序列的周期。

图 10 低通滤波器H(w)的频谱图

滤波器冲激响应()h t 表达式为

()h t =s T 0ωπ

Sa(0t ω) (26) 若已抽样信号?s(t)为

?s(t)=()()s s f nT t nT δ∞-∞-∑ (27)

利用时域卷积关系可求得输出信号,即原连续时间信号?(t)

?(t)= ?s(t)* ()h t

=()()s s f nT t nT δ∞-∞-∑* s T 0ωπ

Sa(0t ω) = s T 0ωπ0()()s a s

f nT s t nT ω∞

-∞-∑ (28) 式28表明,连续时间信号()f t 可展开成Sa 函数的无穷级数,级数的系数等于抽样值?(nTs)。也可以说在抽样信号?s(t)的每个抽样值上画有一个峰值为?(nTs)的Sa 函数波形,由此合成的信号就是?(t)。按照线性时不变系统的叠加性,?s(t)通过理想低通滤波器时,抽样序列的每个冲激信号产生一个响应,将这些响应叠加就可以还原?(t),从而达到由?s(t)恢复?(t)的目的。

5.3零阶抽样保持

设()f t 是原连续时间信号,()p t 为抽样脉冲序列,0()s f t 是已抽样信号,它们

波形图如图11所示。在抽样瞬间,脉冲序列()p t 对()f t 抽样,保持这一样本值直到下一个抽样瞬时为止,由此得到输出信号为已抽样信号0()s f t 具有阶梯状。

0()s f t 经传输到达接收端后需要恢复出()f t 信号,

()s f t = ()f t ()s t nT δ∞

-∞-∑ (29)

()s F ω=1/s T ()s F n ωω∞

-∞-∑ (30)

式中s T 为抽样周期,s ω =2π/s T 是重复角频率,()F ω是?(t)的频谱。

图11零阶抽样保持框

零阶抽样保持系统 f(t) f s o

p(t)

图12零阶抽样保持波形

设零阶保持系统的系统函数为0()h t ,即

0()h t =u(t)-u(t-s T ) (31)

其波形图如图13示。

图13系统函数h (t )的波形

则输出信号0()s f t 可表示如下:

0()s f t = ?s(t)*ho(t)

(32) 式中0()h t 的傅里叶变换式为

F [0()h t ]=s T Sa(ωTs /2)/2s j T e ω-

(33)

由频域关系式: 0()s F ω = F [0()s f t ]

0()s F ω=()s F ω?F [0()h t ]

=∑F(w-n s ω) Sa(ωs T /2)/2s j T e ω- (34) t

t

t

T s

f(t)

fs o

p(t)

fs(t)

1

f s (t)

f so (t)

可以看出,零阶抽样保持信号0()s f t 的频谱的基本特征仍然是F(w)频谱以s ω周期重复,但是要乘上Sa(ωs T /2)函数,还附加了延时因子项/2s j T e ω-。当F(w)频带受限且满足抽样定理时,在接收端引入具有如下补偿特性的低通滤波器 /2s j T e ω/Sa(ωs T /2), (|w|≤s ω/2)

Hor (w )= (35) 0 , (|w|≥s ω/2)

图14补偿低通特性

它的幅频特性| Hor(w)|和相频特性()φω曲线如图14示。当0()s f t 信号通过此补

偿滤波器后,即可恢复出原信号?(t)。从频域解释,将0()s F ω与Hor(w)相乘,

得到F(w)。

一般情况下,在通信系统中,只要求幅频特性尽可能的满足补偿要求,而相频特性只要满足线性相移特性即可。

6.频分复用与时分复用

将若干路信号以某种方式汇合,统一在同一信道中传输称为多路复用。复用技术已经渗透到我们日常生活当中。像手机,它能够接受音频、视频等不同频率的信号,就离不了复用技术的应用。在近代通信系统中普遍采用多路复用技术。多路复用技术主要有频分复用和时分复用两种。

频分复用是指用正弦幅度调制把各种信号的频谱搬移,使它们互不重叠地占据不同的频率范围,也即信号分别附载于不同频率的载波上,这样就可以用同一信道传输。在接收端利用若干滤波器就可以将各路信号分离,再经解调即可还原为各路原始信号,图15示出频分复用原理方框图。通常,相加信号?(t)还要进

实验一 离散时间信号与系统的傅里叶分析

电子信息工程系实验报告 课程名称: 数字信号处理 实验项目名称:实验1 离散时间信号与系统的傅里叶分析 时间: 2012-3-17 班级:电信092 姓名:XXX 学号:910706201 实 验 目 的: 用傅里叶变换对离散时间信号和系统进行频域分析。 实 验 环 境: 计算机、MATLAB 软件 实 验 原 理: 对信号进行频域分析即对信号进行傅里叶变换。对系统进行频域分析即对其单位脉冲响应进行傅里叶变 换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。而传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。 实 验 内 容 和 步 骤: 1、已知系统用下面差分方程描述:y (n )=x (n )+ay (n -1),试在a =0.95和a =0.5 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印|H (e j ω)|~ω曲线。 解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole'); subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole'); subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); 图形如下图1、2所示: 图1 a=0.95时的幅频响应特性 图2 a=0.5时的幅频响应特性 2、已知两系统分别用下面差分方程描述: y 1(n )=x (n )+x (n -1) y 2(n )=x (n )-x (n -1) 试分别写出它们的传输函数,并分别打印|H (e j ω)| ~ω曲线。 解:B=[1,1];A=1;[H,w]=freqz(B,A,'whole'); subplot(1,2,1);plot(w/pi,abs(H),'linewidth',2);grid on; 成 绩: 指导教师(签名):

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

傅里叶与信号与系统

信 号 与 系 统 —走进傅里叶

目录 一.傅里叶生平 (2) 二.傅里叶的成就 (2) 1. 数学方面 (2) 2. 物理方面 (3) 三.傅里叶事迹 (4) 四.傅里叶变换算法的意义 (5) 五.感想.............................. 错误!未定义书签。

一.傅里叶生平 傅里叶全名让·巴普蒂斯·约瑟夫·傅里叶(1768年3月21日-1830年5月16日),法国数学家、物理学家,提出傅里叶级数,并将其应用于热传导理论上,傅里叶变换也以他命名。 傅里叶于1768年3月21日出生于法国约讷省欧塞尔的一个裁缝家庭。很早的时候他的父母就双亡,八岁时就沦为了孤儿,曾在军队中教授数学,在1795年他到巴黎高等师范教书,之后又在巴黎综合理工学院占一教席。1798年他跟随拿破仑东征,被任命为下埃及的总督。由于英国舰队对法国人进行了封锁,所以他受命在当地生产军火为远征部队提供军火。这个时期,他向开罗埃及学院递交了几篇有关数学的论文。1801年,拿破仑的远征军队远征失败后,他便被任命为伊泽尔省长官。1816年他回到巴黎,六年后他当选了科学院的秘书,并发表了《热的分析理论》一文,此文建立是在牛顿的热传导理论的速率和温度差成正比的基础上。1830年5月16日他病逝于巴黎,1831年他的遗稿被整理出版成书。 二.傅里叶的成就 1.数学方面 傅里叶在数学方面的主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文,推导出著名的热传导方程,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/1d5073780.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

信号与系统实验报告3实验3傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()jvt F v f t e dt ∞ --∞ =?。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

信号处理中傅里叶变换简介

傅里叶变换 一、傅里叶变换的表述 在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。 信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。以下将对上述变换进行简述,同时分析它们之间的关系。 1、CFS(连续时间傅里叶级数) 在数学中,周期函数f(x)可展开为 由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为 其中,

为了简写,有 其中, 为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得 故有

令 则 对于D n,有 n≤0时同理。 故 CFS图示如下:

Figure 1 理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。 2、CFT(连续时间傅里叶变换) 连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。当然,从时域上也可以反过来看成x(t)的周期延拓。将x(t)进行CFS展开,有 若令 则 有

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

常用傅里叶变换

常用傅里叶变换 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大, 则会收缩 到原点附近,而 会扩 散并变得扁平.当 |?a?|?趋向无穷 时,成为。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质 7 变换6的频域对应

8 表示和 的卷积—这就是9 变换8的频域对 应。 []平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 和归一化的 11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,是这类滤波 器对冲击的响 应。 12 tri?是 13 变换12的频域对 应

14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是。 21 上一个变换的推广形式;?T n(t)?是。 22 ???? U n?(t)是。

[]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表分布.这个变换 展示了狄拉克δ函数的 重要性:该函数是常函 数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应 用了:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个.δ(n)(ω)是 狄拉克δ函数分布的n 阶微分。这个变换是根 据变换7和24得到的。 将此变换与1结合使 用,我们可以变换所 有。

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

信号与系统傅里叶变换

实验二 连续信号频域分析(FT ) 一、实验目的 1.掌握连续时间周期信号的频谱分析方法; 2.掌握连续时间信号的频域分析方法; 3.熟悉通过调用fft ()函数求解连续信号的傅立叶变换的数值分析方法。 二、实验原理 连续时间周期信号)(t f 可展开成傅立叶级数,即三角函数形式 0001 ()cos sin n n n f t a a n t b n t ωω∞ ==++∑ 其中:dt t f T a T T ?-=2 /2/0)(1, tdt n t f T a T T n 02 /2/cos )(2ω?-= n=1,2,3… tdt n t f T b T T n 02 /2/sin )(2ω?-= n=1,2,3… 当取指数形式: 0()jn t n n f t F e ω∞ =-∞ = ∑ 00a F = 2 n n n jb a F -= n ≠0 则 dt e t f T F T t jn n ? -= 1)(1ω MATLAB 的符号积分函数int()可以帮助我们求出连续时间周期信号的截断傅立叶级数及傅立叶表示。 连续时间信号)(t f 的傅立叶变换定义为 dt e t f F t j ?∞ ∞ --=ωω)()( MATLAB 的Symbolic Math Toolbox 提供了能直接求解傅立叶变换及逆变换的函数fourier()及ifourier()。 另外,连续时间信号的傅立叶变换可以利用MA TLAB 提供的快速傅立叶变换函数fft()进行数值计算。 连续信号)(t f 进行离散化后得到序列)(?k f 记作)(k f ,则N 点离散序列的离散傅立叶变换(DFT )和反变换(IDFT )为: )1(1,2,1,0)()(21 -???==--=∑N n e k f n F kn N j N k π )2(1 ,2,1,0)(1)(21 -???==∑-=N k e n F N k f kn N j N n π

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

典型信号的傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

故有 4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω?? = -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=? ?-=? ? 于是所欲求的傅里叶级数 ()2222 8111 sin sin 3sin 5sin 7357 A f t t t t t ωωωωπ?? = -+-+ ??? 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图 解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。由于 ()022 T A t f t T A t T ?

常见函数的傅里叶级数

∞ ? 2 2 0 0 0 ∑ 24.4. c = f (x )e in π x /L dx = ?1 (a + ib n < 0 ? Definition of a Fourier Series The Fourier series corresponding to a function f (x ) defined in the interval c ÷ x ÷ c + 2L L > 0 are constants, is defined as where c and 24.1. a 0 + ∑ a cos n π x + b sin n π x 2 where n n =1 L n L ?a = 1 c + 2 L n π x f (x ) cos dx 24.2. ? n L ?c 1 c + 2 L L n π x ?b n = L ?c f (x ) s in L dx If f (x ) and f '(x ) are piecewise continuous and f (x ) is defined by periodic extension of period 2L , i.e., f (x + 2L ) = f (x ), then the series converges to f (x ) if x is a point of continuity and to 1{ f (x + 0) + f (x - 0)} if x is a point of discontinuity. Complex Form of Fourier Series Assuming that the series 24.1 converges to f (x ), we have 24.3. f (x ) = ∑ c n e in π x /L n =-∞ where ? 1 (a - ib ) n > 0 1 n 2L c +2 L - c ?2 n n 2 - n - n ? ?1 a n = 0 Parseval’s Identity 1 c +2 L a 2 ∞ 24.5. { f (x )}2 dx = 0 + ∑ (a 2 + b 2 ) L ?c n n n =1 Generalized Parseval Identity 24.6. 1 c +2 L a c ∞ f (x ) g (x ) dx = + (a c + b d ) ∞ ? ) 2

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

常用傅里叶变换

时域 信号 角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当|?a?|?趋向无穷时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交换时域变量和频域变量得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这就是卷积定理 9 变换8的频域对应。 [编辑]平方可积函数

换换 10 矩形脉冲和归一化的sinc函数 11 变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 12 tri?是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是0阶第一类贝塞尔函数。 21 上一个变换的推广形式;?T n(t)?是第一类切比雪夫多项式。 22 U n?(t)是第二类切比雪夫多项式。 [编辑]分布

时域信号角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 23 δ(ω)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到. 33 u(t)是单位阶跃函数,且a?> 0. 34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

常见信号的傅里叶变化

题目:用MATLAB对常见信号的Fourier变换分析 姓名:王聪 学号: 200606302036 专业:电子信息科学与技术 年级: 2006级 院系:物理与电子工程学院 完成日期: 2010年5月 指导教师:潘孟美

本科生毕业论文(设计)独创性声明 本人声明所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注和致谢的地方外,本论文中没有抄袭他人研究成果和伪造数据等行为。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 论文(设计)作者签名:日期: 本科生毕业论文(设计)使用授权声明 海南师范大学有权保留并向国家有关部门或机构送交毕业论文(设计)的复印件和磁盘,允许毕业论文(设计)被查阅和借阅。本人授权海南师范大学可以将本毕业论文(设计)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复印手段保存、汇编毕业论文(设计)。 论文(设计)作者签名:日期: 指导教师签名:日期:

目录 1. 引言 (4) 2. Fourier变换 (5) 2.1周期信号的Fourier变 换 (5) 2.2离散信号的Fourier变 换 (5) 2.3 Fourier变换的意 义 (5) 3.用MATLAB对常见信号的Fourier变换分 析 (6) 3.1 冲激信号 (6) 3.2 余弦信

号 (7) 3.3 频率突变信号 (8) 3.4 高斯信号 (9) 3.5 随机序列 (10) 3.6利用窗函数对信号消燥 (12) 3.7 对太阳黑子数据的分析 (14) 3.8对非平稳信号的时频分析 (15) 3.9 男女声音的辨别和分析 (16) 4.结束语 (17) 4.1 结论………………………………………………… 17 4.2 感言………………………………………………… 18 5.参考文献…………………………………………………

相关主题
文本预览
相关文档 最新文档