当前位置:文档之家› 二氧化氯催化氧化处理高浓度有机废水

二氧化氯催化氧化处理高浓度有机废水

二氧化氯催化氧化处理高浓度有机废水
二氧化氯催化氧化处理高浓度有机废水

常温常压二氧化氯催化氧化处理高浓度有机废水

随着现代工业的迅猛发展,各种废水的排放量逐年增加,且大都具有浓度高、生物降解性

差甚至有生物毒性等特点,国内外对此类高浓度难降解有机废水的综合治理都予以高度重视并

制定了更为严格的标准。目前,部分成分简单、生物降解性略好、浓度较低的废水都可通过传

统的工艺得到处理,而浓度高、难以生物降解的废水却很难得到彻底处理,且在经济上也存在

很大困难,如何去除或转化这类废水中的各种有毒物质,不仅是当前国内外水处理领域非常活

跃的研究方向,也是我国21世纪水问题中迫切需要解决的难题之一。

氧化方法是一种“破坏性”技术,具有广谱的去除毒害有机物效果,氧化法能将废水中的

有机污染物氧化或彻底去除。目前氧化方法有:化学氧化法、光化学氧化法、催化湿式氧化法、超临界水氧化法、光化学催化氧化法、生物氧化法等。

化学氧化法通过化学反应毒害有机物被氧化为微毒或无毒的物质,或者转化为容易与水分离的形态,由于氧化剂的不同可分为臭氧、过氧化氢、二氧化氯及高锰酸钾氧化等。湿式氧化

法是在高温高压下,利用氧化剂将废水中的有机物氧化为二氧化碳和水。超临界水氧化技术是

20世纪80年代中期由美国学者Modell提出的一种能够彻底破坏有机物结构的新型氧化技术,

其原理是在超临界水的状态下将废水中所含的有机物用氧化剂迅速分解成水、二氧化碳等简单

无害的小分子化合物。光化学氧化是通过氧化剂在光的辐射下,产生氧化能力较强的自由基而

进行的,根据氧化剂的种类不同,可分为UV/H2 02,u.u03及UV/H2 02 /03等系统。光催化氧化法主要是指UV/Fenton试剂法和半导体光催化氧化。光化学氧化和光催化氧化处理低浓度废水效果较好,工业化较复杂,实际工程应用不多。湿式氧化和催化湿式氧化,具有使高

浓度难降解有机物氧化或偶合,氧化效率高,分解速度快的优点,但是同时还具有催化剂费用

高,反应装置复杂,需要高温高压设备及配套设施,防腐困难等缺点,而且投资大。超临界水

氧化技术目前还处于实验室阶段,工业应用难度较大,而且投资大,运行成本高。

由于以上各种方法对于污染物处理条件的要求很苛刻和实际推广应用方面存在的局限性,

人们为开发不受上述问题影响的方法付出了许多努力。近年来,常温催化氧化技术受到了人们

的广泛关注。催化氧化法的研究核心是寻找性能优良,具有广谱催化作用的催化剂,提高催化

剂的催化效果,减少催化剂的损耗及中毒现象,使其能在工业废水处理中更好地发挥作用。催

化氧化法由于其极高的氧化性能,可以使许多毒性大、难降解及一般氧化法难以奏效的有机物

氧化分解。因此,引起了国内外环保工作者的广泛重视。

二氧化氯作为氯系氧化剂中氧化性最强的强氧化剂,可以防止有致癌作用的三卤甲烷的形

成,能经济而有效地破坏水中的酚类,二氧化氯在pH较宽的范围内都具有较强的氧化能力,而且氧化效果持续时间长。它们的致突变性比较低,且对人体健康没有危害。二氧化氯与其他

氧化剂相比,氧化能力强,生产过程简单,投资少,价格低。近年已被人们广泛的应用于环保

领域,但过去因其费用高,多作为消毒剂和净水剂使用,在废水处理方面使用并不广泛。如能

结合其本身氧化性方面的优越性并配以适当的催化剂,二氧化氯催化氧化在处理难降解废水方

面必将有广阔的前途。

197

杨旭等人的发明专利CN1569679[3n]“一种催化氧化处理苯甲醚废水方法”,把金属催化剂负载在Al2 03或活性炭上,进行催化氧化。其未能实现常温常压制备,催化效率偏低。江苏工业学院的邱滔、陈志刚[237]发明了一种常温常压二氧化氯催化氧化处理高浓度有机

废水的方法(中国专利:CN 1772648A)。本发明涉及工业废水处理,具体地说是催化剂以膨胀石墨为载体,金属氧化物为活性组分,二氧化氯为氧化剂。下面具体介绍此发明。

4.5.6.1.1技术方案

将一定质量的催化剂装入催化氧化反应器中,废水和Cl02混合后加入反应器中,打开气源鼓入空气,催化氧化th,去除废水中的有机物。反应结束后,关闭气源,将处理好的水从

出水口排出,接着测定其CODCr值。所述催化氧化的催化剂由活性组分和载体组成,活性组分

为铜、钴、镍中一种或几种的氧化物,载体为膨胀石墨;其中金属的质量百分比含量为

0.1%~5%,其余为载体。其中,以钴和镍的氧化物作为活性组分的催化效果最佳。所述常温常压二氧化氯催化氧化处理废水中,二氧化氯加入量为0.1%~1%废水,废水与催化剂的质量比为100~200。

4.5.6.1.2催化氯化催化剂制备方法

按一定质量比称取10~1009 50目的天然鳞片石墨、浓硫酸15~100g、浓硝酸5~15g和双氧水1~5g,将双氧水加入天然鳞片石墨氧化,搅拌使混合均匀,再将石墨与双氧水混合物

加入浓硫酸,同时进行搅拌使混合均匀。搅拌反应一段时间后,加入浓硝酸继续搅拌反应,由

于硝酸容易挥发,此时有大量的黄色烟雾,容器壁发热,由于氧化作用鳞片石墨由黑色渐渐变

为深绿色,同时容器内的鳞片石墨变软成糊状。反应结束后,用蒸馏水洗涤反应液并抽滤,重

复多次至pH为7。

称取一定浓度0. Ol~0. Imol/L的硝酸铜、硝酸钴、硝酸镍中的一种或几种的溶液。

将处

理好的石墨放入溶液中浸泡,浸泡4小时后,将反应产物放在干燥箱内控温(120士1)℃干燥

12h,得到可膨胀石墨。先将箱式电阻炉升温至1000℃。将石英坩埚在箱式电阻炉内预热

2min。迅速取出石英坩埚,加入适量可膨胀石墨并放回炉内,石墨迅速膨胀,体积逐渐增大。不关炉门膨胀约10s,观察膨胀石墨至不再继续膨胀后迅速取出冷却至室温即可。本发明常温

常压制备,污染物处理条件的要求低,催化效果好,适用于工业推广应用,投资较小,运行成

本低。

图4-33催化氧化处理有

机废水装置示意图

1-废水源2-催化剂3出水口

4-催化氧化反应器5-气源

198

4.5.6.1.3装置示意图I见图4-33)

4.5.6.1.4具体实施方式

(1)单个催化剂的制备按一定质量比称取天然鳞片石墨

10g(50目)、浓硫酸35g、浓硝酸9g和双氧水1.2g。将双氧

水加入天然鳞片石墨氧化,搅拌使混合均匀。将石墨与双氧水

混合物加入浓硫酸,同时进行搅拌使混合均匀。搅拌反应一段

时间后,加入浓硝酸继续搅拌反应,由于氧化作用鳞片石墨由

黑色渐渐变为深绿色,同时容器内的鳞片石墨变软成糊状。反

应结束后,用蒸馏水洗涤反应液并抽滤,重复多次洗涤至滤液

pH为7。

取0. 0156mol/L的Cu(N03)2溶液lOOmL。将氧化处理的

石墨放人Cu (N03)2溶液中浸泡搅拌,放置12h后,将反应

产物抽滤后在干燥箱内控温120℃干燥10h,得到可膨胀石墨。

先将箱式电阻炉升温至1000℃。将石英坩埚在箱式电阻炉内预

热2min。迅速取出石英坩埚加入适量可膨胀石墨并放回炉内,石墨迅速膨胀,体积逐渐增大。

不关炉门膨胀约10s,观察膨胀石墨至不再继续膨胀后迅速取出冷却至室温,装入产品袋中备

用,得催化剂A,,催化剂Ai中金属组分的质量分数:Cu为1%,其余为载体膨胀石墨;同法,取0. 078mol/L的Cu (N03)z溶液lOOmL,制备催化剂A2,催化剂A2中金属组分的质

量分数:Cu为5%,其余为载体膨胀石墨。

同法,分别取0. 0169mol/L的Cu (N03)2溶液lOOmL、取0.0847mol/L的Co (N03)z 溶液lOOmL,制备催化剂Bi,B2。催化剂Bi中金属组分的质量分数为Co为1%,B2中金属组分的Co质量分数为5%。

同法,分别取0. 0169mol/L的NiN03溶液lOOmL、取0.0847mol/L的NiN03溶液lOOmL。制备催化剂Cl,C2。催化剂C,中金属组分的质量分数为Nil%,C2中金属组分Ni 为5%。

(2)单个催化剂对有机废水的处理效果将催化剂10g填充至如图4-33所示的反应器中,在常温常压下,有机废水300mL (CODo值为4300mg/L)和1.5g二氧化氯混合后,从废水

源1处进入反应器,打开气源5鼓人空气,催化氧化th,去除废水中的有机物。反应结束后,

关闭气源,将处理好的水从出水口3排出,采用水质化学好氧量的测定重铬酸盐法

(GB11914-89)测定其CODCr值。处理结果见表4-14。

(3)混合催化剂制备表4-14单个金属催化氧化处理效果

①按单个催化剂的制备(1),取

0. 078mol/L的Cu( N03)2溶液50mL和

0. 0847mol/L的Co(N03)2溶液50mL混合,

制备催化剂D;催化剂D中金属组分的质量

分数:Cu为2.5%,Co为2.5%。

②按单个催化剂的制备(1),取

0. 078mol/L的CLI(NQ)2溶液50mL和0.0847

催化剂出水COD&/(mg/L) 去除率/%

Ai 1850 57.0

A2 1540 64.1

Bl 1280 70.2

B2 1035 75.9

Ci 1030 76 0

c2 750 82.6

mol/L的NiN03溶液50mL混合,制备催化剂E;催化剂E中金属组分的质量分数:Cu为

2. 5%,Ni为2.5%。

③按单个催化剂的制备(1),取0.0847mol/L的Co (N03)2溶液50mL和0.0847mol/L 的NiNOa溶液50mL混合,制备催化剂F;催化剂F中金属组分的质量分数:Co为2.5%,

Ni为2.5%。

④按单个催化剂的制备(1),取0.0156mol/L的Cu(N03)2溶液50mL,0.0169mol/L的Co(N03)2溶液50mL和0.0169mol/L的NiN03溶液lOOmL混合,制备催化剂G;催化剂G 表4-15混合金属催化氯化处理效果中金属组分的质量分数:Co为2.5%,Ni为

催化剂出水CODo/(mg/L) 去除率

/%

D 1510 64.9

E 1020 76.Z

F 560 87.O

G 550 87.3

2. 5%,Cu为2.5%。

⑤按单个催化剂对有机废水的处理效果

(2),考察混合金属催化剂对有机废水的处理

效果,处理结果见表4-15。

由实验结果得出,在常温常压下,以二氧

化氯作为氧化剂,催化荆以铜、钻、镍中一种

或几种的氧化物作为活性组分,膨胀石墨为载体,处理高浓度有机废水,通入一定量的空气,CODCr去除率较高,处理效果较好。其中,以钴和镍的氧化物作为活性组分的催化效果

最佳。

199

4.5.6.2臭氧十二氧化氯高效氧化法对污水的联合杀菌除藻工艺

水体富营养化是当今世界面临的最主要的水污染问题之一。随着城市化进程和社会经济的发展,水质急剧恶化,富营养化程度加剧,水华频频爆发,水体功能受到极大损坏。藻类的大

量繁殖给生产生活带来诸多不利影响,因此研究开发有效可行的杀藻技术是我国目前有待解决

的一个问题。

现有杀菌灭藻并抑制藻类大量繁殖的技术主要有:滤网捞集、超声技术、高压灭藻、生物

治理、生态治理和氧化除藻等。其中,首推化学氧化法,且用于杀菌除藻的化学氧化剂非常多,如液氯、臭氧、二氧化氯、次氯酸钠等。液氯虽然能使藻细胞死亡,但并不能分解藻细胞

的尸体和藻毒素,产生消毒副产物三卤甲烷、卤代烃等对人体及环境有害的三致物质,且有氯

臭味和腥臭味,因此尽管价格便宜,也应当慎重使用。臭氧作用速度快,不具有抑制藻类大量

繁殖的效果,在灭藻一段时间之后,其中的藻细胞又开始生长。二氧化氯难以解决大量的藻类

死亡之后沉积在水底被微生物分解消耗水中的溶解氧而导致水体变质的问题。次氯酸钠的杀菌

除藻效果低于二氧化氯,而且其杀生能力随pH的升高而明显下降,因此,目前在国内外都没

有得到广泛的应用。周俊波等‘373]人为克服现有化学氧化法杀菌除藻技术的不足,研究发明了

一种适用于大面积污染水体藻类的联合处理工艺(专利公开号:CN 101353199)。

(1)高效氧化法对污水的联合杀菌除藻工艺步骤如图4-34所示。①制备Oa气体:将空气或02通人臭氧发生器中制备03气体;②一级处理:将待处理的水和步骤①中制得的03气

体通人气液混合器中室温静置48h后,进行充分搅拌,以消除剩余03气体的影响,其中,03

气体的通人量为2~lOmg/L水;③制备Cloz气体:在电解装置中电解饱和食盐水,制备

c10z气体;④二级处理:将步骤②中的出水和步骤③中制得的Cl02气体通人气液混合器中,室温静置48h,Cl02气体的通入量为6~lOmg/L水;⑤过滤:将步骤④中的出水经活性炭过

滤,即完成杀菌除藻工艺,得到合格水。

(2)臭氧十二氧化氯高效氧化法优点与现有化学氧化杀菌除藻技术相比较,本发明具有以下优点:①本发明采用臭氧和二氧化氯气体联合杀菌除藻,避免了单一使用二氧化氯时藻类

死亡而消耗水中的溶解氧,导致水体变质的问题(臭氧增加了水体中的溶解氧);同时,二氧

化氯气体杀菌除藻时效长,具有延续灭活效果,避免了单一使用臭氧抑制时效短的缺点,有效

抑制藻类再生,预防水华。②本发明工艺不产生消毒副产物三卤甲烷、卤代烃等对人体及环境

有害的三致物质,也不会产生腥味、臭味?而且无残毒,不会造成二次污染。③本发明工艺简

单,成本低廉。

高浓度有机废水处理技术

高浓度有机废水处理技术 朱艳霞 摘要:对国内外目前高浓度有机废水的主要处理技术进行综述, 主要包括物化、化学、生物处理技术并分析了各种方法和工 艺的优缺点及其研究现状。重点对生物处理技术中MBR、A-B工艺、UASB、SBR工艺进行重点研究、归纳总结其优缺点,并提 出应用几种处理技术连用的方法来处理高浓度有机废水,用综合治理的理念既要大力发展处理技术, 还要从源头防治, 以减 轻污染。 关键字:有机废水;高浓度;处理技术;前景 1 水资源状况 当前,水资源是世界各国普遍面临急需解决的问题之一。据联合国世界资源研究所研究报道,世界水资在质和量的方面都面临着比其它资源和比以往都更为严峻的局面。据统计全球2006年全球工业用水量为2.07万亿立方米,而这一现象世界各地状况极不相同,需求量与有限的可以用水资源极不适应,并且全世界每年排向自然水体的工业和生活废水为4200亿立方米,造成35%以上的淡水资源受到污染,因而治理水体污染将尤为重要。在一定意义上说世界各地经济发展的快慢将依据可利用水资源的状况而确定。 我国的水资源也面临严重的污染问题。大量工业废水不达标外排,绝大部分生活污水不经处理直接排放,广大农村地区不合理使用化肥、农药等农用化学物质,对地表水影响日趋严重。全国大部分城市和地区的淡水资源己受到水质恶化和水生态系统被破坏的威胁。由于全国80%左右的污水未经任何处理直接排入水域,造成全国1/3以上的河段受到污染,90%以上的城市水域污染严重,近50%的重点城镇水源地不符合饮用水标准。我国城市水资源质量也较差,大部分城市和地区地下水位连续下降,形成了不同规模的地下水降落漏斗,形势相当严峻。造成水资源受到严重污染的根本原因是大量生产生活废水未经处理或虽经处理但未达标。这些未得充分利用的废水即污染环境,又浪费资源,迫切需要进行资源化利用。水中的各种污染物中,有机污染物,尤其是高浓度的有机污染物,不仅在水中存在时间长、迁移范围广,而且危害大、处理难度大,一直是环保领域的一个重要研究课题。 2 高浓度有机废水 2.1 高浓度有机废水来源 高浓度有机废水一般是指由造纸、皮革及食品等行业排出的COD 在2 000 mg/ L 以上的废水。这些废 水中含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物,如果直接排放,会造成严重污染。高浓度有 机废水按其性质来源可分为三大类: [1] (1) 易于生物降解的高浓度有机废水; (2) 有机物可以降解,但含有害物质的废水; (3) 难生物降解的和有害的高浓度有机废水。

二氧化氯催化氧化处理高浓度有机废水

常温常压二氧化氯催化氧化处理高浓度有机废水 随着现代工业的迅猛发展,各种废水的排放量逐年增加,且大都具有浓度高、生物降解性 差甚至有生物毒性等特点,国内外对此类高浓度难降解有机废水的综合治理都予以高度重视并 制定了更为严格的标准。目前,部分成分简单、生物降解性略好、浓度较低的废水都可通过传 统的工艺得到处理,而浓度高、难以生物降解的废水却很难得到彻底处理,且在经济上也存在 很大困难,如何去除或转化这类废水中的各种有毒物质,不仅是当前国内外水处理领域非常活 跃的研究方向,也是我国21世纪水问题中迫切需要解决的难题之一。 氧化方法是一种“破坏性”技术,具有广谱的去除毒害有机物效果,氧化法能将废水中的 有机污染物氧化或彻底去除。目前氧化方法有:化学氧化法、光化学氧化法、催化湿式氧化法、超临界水氧化法、光化学催化氧化法、生物氧化法等。 化学氧化法通过化学反应毒害有机物被氧化为微毒或无毒的物质,或者转化为容易与水分离的形态,由于氧化剂的不同可分为臭氧、过氧化氢、二氧化氯及高锰酸钾氧化等。湿式氧化 法是在高温高压下,利用氧化剂将废水中的有机物氧化为二氧化碳和水。超临界水氧化技术是 20世纪80年代中期由美国学者Modell提出的一种能够彻底破坏有机物结构的新型氧化技术, 其原理是在超临界水的状态下将废水中所含的有机物用氧化剂迅速分解成水、二氧化碳等简单 无害的小分子化合物。光化学氧化是通过氧化剂在光的辐射下,产生氧化能力较强的自由基而 进行的,根据氧化剂的种类不同,可分为UV/H2 02,u.u03及UV/H2 02 /03等系统。光催化氧化法主要是指UV/Fenton试剂法和半导体光催化氧化。光化学氧化和光催化氧化处理低浓度废水效果较好,工业化较复杂,实际工程应用不多。湿式氧化和催化湿式氧化,具有使高 浓度难降解有机物氧化或偶合,氧化效率高,分解速度快的优点,但是同时还具有催化剂费用 高,反应装置复杂,需要高温高压设备及配套设施,防腐困难等缺点,而且投资大。超临界水 氧化技术目前还处于实验室阶段,工业应用难度较大,而且投资大,运行成本高。 由于以上各种方法对于污染物处理条件的要求很苛刻和实际推广应用方面存在的局限性, 人们为开发不受上述问题影响的方法付出了许多努力。近年来,常温催化氧化技术受到了人们 的广泛关注。催化氧化法的研究核心是寻找性能优良,具有广谱催化作用的催化剂,提高催化 剂的催化效果,减少催化剂的损耗及中毒现象,使其能在工业废水处理中更好地发挥作用。催

PAC、PAM处理废水的原理

PAC、PAM处理废水的原理 PAC是常用的无机盐混凝剂,是聚合氯化铝,,分子量150万-900万,商品浓度一般为8%。PAC的作用是通过它或者它的水解产物的压缩双电层、电性中和、卷带网捕以及吸附桥连等四个方面的作用完成的,将能被氧化剂氧化造成COD的颗粒物质沉淀下来过滤掉,从而降低了COD,颗粒物质的沉淀,毫无疑问的降低了ss,所谓BOD是指水中有机物被好氧微生物分解时所需要的氧量,它反应了在有氧的条件下水中可生物降解的有机物量,如果说这些有机物被沉淀去除的话BOD就会降低。而PAM是高分絮凝剂,有机高分子絮凝剂具有在颗粒间形成更大的絮体由此产生的巨大表面吸附作用。降低水中的各项指标的原理同上。 值得注意的是,任何水处理的方法都是有局限性的,也就是说不一定利用絮凝和混凝剂都能降低水中的各项指标,如果水中的有机物质全部溶解,不成为胶体,也没有以颗粒状形式存在的情况下,投加絮凝剂和混凝剂作用甚微。 PAM为聚丙烯酰胺,PAM的现在主要有3种,阴离子,阳离子,阴阳离子它们根据离子种类不同,要求的溶液环境也不同,阴离子在偏碱性的条件下效果会好一点,阴阳离子在酸性条件下会好一点,另外根据离子种类不同,用途和效果也不一样,阴离子主要是助凝的。 聚丙烯酰胺polyacrylamide 性质:白色粉末或半透明珠粒和薄片。密度1.30g/cm3(23℃)。玻璃化温度153℃。软化温度210℃。溶于水,水溶液为均匀清澈的液体。水溶液黏度随聚合物分子量的增加明显升高,并与聚合物的浓度变化呈对数增减。除乙酸、丙烯酸、氯乙酸、乙二醇、甘油、熔融尿素和甲酰胺少数极性溶剂外,一般不溶于有机溶剂。由丙烯酰胺单体通过溶液聚合或分散相聚合的方法制取。具有絮凝、增稠、减阻、黏结、稳定胶体、成膜和阻垢等多种功能。广泛地用于造纸、采矿、洗煤、冶金、石油开采等工业部门,是水处理的重要化学品。能与多种试剂反应,使其导入其他基团,而成非离子型、阴离子型和阳离子型等,控制不同分子量、离子型和取代度,在造纸工业可分别用作干增强剂、表面施胶剂、助留 页脚内容1

湿式催化氧化法处理工业废水

环境保护科学第27卷总第103期2∞1年2月 湿式催化氧化法处理工业废水 ndustrialWastewaterTreatmentwithWettingCatalyticOxidizeMethod 委英半月雨虹(大连市沙河口区环境监洲站大连116021) 鹿政理(大连市环境科学设计研究院) 摘要舟培了有机虞水催化氧化处茬的进展情况庭科研^果. 关■铜穑化曩化催化剂有机废水 A嗨t哺ctTh亡scient讯c弛sHrchanddevelopmentono‘gaIIicwastewatertre^tmentby∞tal”证oxidi钟w强intro-ducedinthepaper. Keyword8cataI”lcoxIdatI佣CataIy8tOr口anIcwastewat钾 1前育 湿式氧化法是将溶解和悬浮在废水中的有机物及还原性无机物通过液相氧化的方法促进氧化降解或水解来降低水中CoD和BOD含量的化学处理方法。由于反应时需加热刭适宜温度以及需在密封容器内进行,故有时也称此法为水热分解法。 湿式催化氧化法是湿式氧化法的发展方向,国外在催化剂的筛选、评价、回收、再生等方面开展了大量的研究工作,并开发建立了一系列的工业规模生产装置。 使用本方法处理工业废水时,需要在较高的温度(约200~250℃)和较高的压力(约50~70大气压)下以水为介质对有机物进行氧化降解的,所以选择适当的耐压反应容器(反应釜)是实验的主要条件之一。设备投资费用较大,要求较高是本法主要不足之一,而运转费用低。处理效率高是本法得以推广的原因. 2研究动态 自从80年代以来一些主要国家如美、德、日等国先后对此工艺及设备进行了系统研究,日本1985年起京都大学、公害资源研究所、大阪工业试验所以及大阪煤气工程公司等单位均参加该项研 收藕日期2000~03—22 —22一究.其主要研究项目有: (1)高浓度悬浮有机物的催化剂的研制及耐用性试验,对高浓度coD及氨类的古悬浮物较步的废水进行长期连续性试验。已进入实用阶段,使用的值化剂为球形或无定型颗粒}对古悬浮钉多的高浓度cOD工业废水研制蜂窝状催化荆,对其成型方法、强度、活性、耐用性等进行研究。 (2)在中试装置内用蜂窝状催化剂以及空塔条件下,研究难分解组分的分解特性。 (3)对湿式催化氧化处理后的工业废水进行膜分离和厌氯处理试验。 湿式催化氧化工艺从设备结构来看主要有固定床和流化床两种,同定床又分气相和液相两种。气相固定床催化氧化工艺是在反应器内进行气液分离。优点是反应压力较低,可避免设备堵塞,转化率较高,一般可达90%以上。液相同定床催化氧化工艺简单,操作方便,使用压力较高,催化剂分离回收有一定困难.漉化床催化氧化工艺可以使催化剂与废水混合均匀,增加反应物与催化剂的接触,设备利用事高I其催化剂的分离回收方法有离子交换法和液相旋流分离法。为了充分利用反应热,使用两殷换热器和气液分离反应器。 通常中问试验的流程见图1。  万方数据

高浓度综合有机废水处理工程设计方案

目录 第一章:概述 第二章:设计依据 一、设计依据 二、废水水质水量 三、废水处理设计排放标准 第三章:设计方案说明 一、设计原则 二、废水处理工艺流程的选择 三、废水处理工艺流程方框图 四、废水处理主要工艺简解 五、废水处理主要工艺设计参数 六、废水处理效果分析 七、电器控制与仪表 八、工程总占地面积 第四章:工程投资概算 一、土建、构筑物部分 二、工艺主、辅机设备部分 第五章:废水处理工艺设计特点 第六章:环境影响评价 第七章:运行费用估算 第八章:工程售后服务 第九章:工艺平面图

第一章概述 昆明滇虹药业有限公司在生产合成车间排放出大量的高浓度制药有机废水,给周围环境造成一定的污染,该公司一贯重视环保工作,为了实施可持续发展战略,在当地环保主管部门要求和配合下,果断决定建立一套污水处理站拟对本公司生产废水进行集中处理,达标排放。 我厂近年来在各种废水处理工程实践中积累了丰富的经验,本着实事求是的原则,结合实际水质特性,现提出以下设计方案,以供甲方参考。 第二章设计依据 一、设计依据 1、业主生产废水及生活污水处理工程的设计委托。 2、业主提供的废水水质、水量等有关资料。 3、GB8978-96《国家综合污水排放标准》 4、GBJ13-86《室外排水设计规范》 5、GB3096-93《城市区域环境噪声标准》 二、废水水质、水量 1、高浓度生产废水来源及构成 废水来源于生产合成车间排水、生活污水、废水中可能含有砷、氰、苯、双键、醛基、氯取代基、抗生素及结构酱素有机有毒物等。 2、生产废水水质(由甲方提供) (1) PH (2) 色度≤250 (倍)

(3) NH3-N ≤mg/l (4)CODcr ≤9500 mg/l (5) BOD5≤4800 mg/l (6) S S ≤708 mg/l (7) TP ≤mg/l (8) LAS ≤1049 mg/l 3、混合废水水质 (1) PH (2) 色度≤100 (倍) (3) NH3-N ≤35 mg/l (4) CODcr ≤2000 mg/l (5) BOD5≤1000 mg/l (6) S S ≤300 mg/l (7) TP ≤mg/l (8) LAS ≤150 mg/ 4、废水水量 日排放废水量120m3,(其中高浓度生产废水20m3/d, 生活污水100m3/d),可按每小时5m3/h设计,24小时运转。 三、废水处理设计排放标准 按GB8978-1996《国家综合污水排放标准》二级标准执行。(1) PH (2) 色度≤80 (倍) (3) NH3-N ≤25 mg/l (4) CODcr ≤150 mg/l (5) BOD5≤30 mg/l (6) S S ≤150 mg/l

城市污水处理专用聚丙烯酰胺

聚丙烯酰胺应用在城市污水处理领域 城市污水处理一般分为三级,通常城市污水处理以一级处理为预处理,二级处理为主体,三级处理很少使用。一般工厂排出的污水,至少应采取两级处理。 一级处理,系应用物理处理法去除污水中不溶解的污染物和寄生虫卵; 二级处理,系应用生物处理法将污水中各种复杂的有机物氧化降解为简单的物质; 三级处理,系应用化学沉淀法、生物化学法、物理化学法等,去除污水中的磷、氮、难降解的有机物、无机盐等。至于采取哪级处理比较合理,应视对最终排出物的处理要求而定。 污水一级处理应用物理方法,如筛滤、沉淀等去除污水中不溶解的悬浮固体和漂浮物质。一级处理:建议使用中高分子量中水解度的阴离子聚丙烯酰胺产品。污水二级处理主要是应用生物处理方法,即通过微生物的代谢作用进行物质转化的过程,将污水中的各种复杂的有机物氧化降解为简单的物质。生物处理对污水水质、水温、水中的溶氧量、pH值等有一定的要求。一般大型污水处理厂多采用以沉淀为中心的一级处理和以活性污泥法(SBR工艺)为中心的废水二级处理,再进行污泥消化处理,对污泥进行浓缩消化和脱水。活性污泥处理(污泥脱水):一般使用中、高电量,中等分子量的阳离子聚丙烯酰胺,建议使用中高、高离子度的阳离子聚丙烯酰胺产品。

由于城市污水中包含有工业废水,根据地区的不同及工业集中度的不同,水质也大不相同,在使用聚丙烯酰胺作为絮凝剂使用最好根据实验选型来确定。中国水资源人均占有量少,空间分布不平衡。随着中国城市化、工业化的加 速,水资源的需求缺口也日益增大。在这样的背景下,污水处理行业成为新兴产业,目前与自来水生产、供水、排水、中水回用行业处于同等重要地位。

高浓度废水处理)

第一节高浓度有机废水的处理 高浓度有机废水的处理技术取决于废水的性质,根据高浓度有机废水的性质和来源可分为三类,每一类再选择适宜的处理方法。 1.易于生物降解的高浓度有机废水,它一般来自以农牧产品为原料的工业废水,如食品工业废水,它们是一种宝贵的资源,可用来生产细胞蛋白和或用厌氧消化回收能源。 2.高浓度有机废水中有机物是可以生物降解的,但废水中含有有害物质,这类废水主要来自制药工业和化学工业等。它们可以采取适当的预处理控制和去除废水中的有害物质后再采用微生物处理,这样做比物化方法处理经济。 3.难于生物降解的和有害的高浓度有机废水,它主要来自有机合成化学工业和某些农药厂等,这类废水首先通过焚烧或湿法氧化等理化手段处理,再进行补充的生物处理。 一、酒糟废液生产饲料酵母 1.糖蜜和淀粉原料酒糟的化学成分酒糟的化学组成随原料的品种、质量和酒精生产工艺的不同而有较大的变化。下列组成(表9-1,表9-2)只是参考值。 2.糖蜜酒糟生产干饲料酵母工艺流程见图9-1。 3.淀粉原料酒糟生产干饲料酵母工艺流程见图9-2。干燥以下的工艺同糖蜜酒糟生产干饲料酵母工艺流程。 4.酒糟生产饲料酵母工艺过程说明 (1)菌种应采用繁殖迅速,无毒和营养成分好的菌株,常用的有:产朊假丝酵母(Candida utilis)、热带假丝酵母(C.tropicalis)和球拟酵母(Torulopsis pinus)等。 (2)培养液制备 ①糖蜜酒糟制备培养液的工艺流程见图9-3。 ②淀粉原料酒糟制备培养液的工艺流程见图9-4。 ③有关操作条件酒糟浓度在6.8%~7.2%之间,冷却温度25℃左右,酵母增殖罐温度在33℃~35℃,酵母培养最适pH在4.0~4.2。培养液中投入营养盐的数量为磷酸0.9kg/m3~1.0kg/m3、尿素1.0kg/m3~1.1kg/m3或者磷酸二氢铵1.3kg/m3、尿素0.5kg/m3。

催化氧化法处理有机废水催化剂的选择应用

?防治技术? 催化氧化法处理有机废水催化剂的选择应用 李启良,陈建林 (南京大学环境学院,江苏南京 210093) 摘 要:催化氧化法是处理难降解有机废水的一项重要的新技术。在对化学氧化法的不断改进中,逐步发展出湿式催化氧化法、光催化氧化法、均相催化氧化法和多相催化氧化法。不同的氧化方法所用的催化剂不相同,有机化合物的种类和结构不同,催化剂与氧化剂之间存在匹配问题,因此对催化剂要进行筛选评价。 关键词:废水处理;催化氧化;催化剂 中图分类号:X703.5;O643.36 文献标识码:A 文章编号:1004-695X(2003)02-0034-03 R evie w on Selection of C atalysis in C atalytic Oxidation LI Qi2liang,CHE N Jian2lin (School o f the Environmental,Nanjing Univer sity,Nanjing,Jiangsu210093,China) Abstract:The treatment of organic wastewater with catalytic oxidation methods is a totally new technology.The paper introduces the progress in the selection of catalysts in the treatment of organic wastewater with four basic catalytic oxidation methods(wet catalytic oxida2 tion,photo catalytic oxidation,hom ogeneous catalytic oxidation and heterogeneous catalytic oxidation).The different kinds and different compositions of organic wastewater should be treated with different catalytic oxidation method,s o it is necessary to study on catalysts match2 ing with different oxidants in treating with specific organic wastewater. K ey w ords:Wastewater treatment;Catalytic oxidation;Catalysts review 对有机化工行业每天排放大量有机废水的处理中,催化氧化法具有独有的优势而成为研究的重点。该法不仅可以改善废水的可生化降解性,在物化和生化处理之间架设了一座桥梁,而且可以作为单独处理工艺来应用,是废水处理的一项新技术,国内外已进行了广泛深入的研究。其中,研究较多的是寻找新型、高效、稳定性好、成本低廉的催化剂。 在对化学氧化法不断改进的过程中,逐步发展了湿式催化氧化等方法[1]。不同的氧化方法应用的催化剂不相同,而且由于氧化催化剂具有选择性,有机化合物的结构和种类不同以及催化剂与氧化剂存在匹配问题,因此要对催化剂进行筛选评价。催化剂一般分为光敏化半导体材料、过渡金属盐及其氧化物和复合氧化物四大类(表1)。在形态上可分为均相和非均相两种;从催化剂的组成又分贵金属和非贵金属两种。作者将分别作评述,并简介催化作用的机理。 1 湿式催化氧化催化剂 湿式催化氧化技术始于20世纪70年代。它 表1 催化氧化法常用催化剂[2] 类 别催化剂 金属盐 PCl2,RuCl3,RbCl3,IrCl4,K2PtO4,NaAuCl4,NH4ReO4, AgNO3,Na2CrO7,Cu(NO3)2,CuS O4,C oCl2,NiS O4, FeS O4,MnS O4,ZnS O4,SnCl2,Na2CO3,Cu(OH)2, Cu(Ⅱ),CuCl2,FeCl2,CuS O4-(NH4)2S O4,MnCl2, Cu(BF4)2,Mn(AC)2 氧化物 W O3,V2O5,M oO3,Z rO4,T aO2,Nb2O5,H fO2ΠOsO4,CuO, Cu2O,C o2O3,NiO,Mn2O3,CeO2,SnO2,Fe2O3 复合 氧化物 CuO-Al2O3,MnO2-Al2O3,CuO-S iO2,CuO-ZnO- Al2O3,RuO2-CeO2,RuO2-Al2O3,RuO2-Z rO2,RuO2 -T iO2,Mn2O3-CeO2,Rh2O-CeO2,PtO-CeO2,IrO2- CeO2,PdO-T iO2,C o3O4-BiO(OH),C o3O4-CeO2, C o3O4-BiO(OH)-CeO2,C o3O4-BiO(OH)-Ln2O3, CuO-ZnO,“OG”,SnO2-Sb2O4,SnO3-M oO3,Fe2O3- Sb2O4,SnO2-FeO3,Fe2O3-Cr2O3,Fe2O3-P2O5,Cu- Mn-Fe氧化物,Cu-Mn氧化物,Cu-Mn-Zn氧化 物,C o-Mn-Zn氧化物,C o-Cu氧化物,Cu-Mn-C o 氧化物 光敏化 半导体T iO2,ZnO,CdS,W O3,Fe2O3 是在高温高压和催化剂作用下,使氧化剂迅速反应分解出活性基团(自由基),进而氧化分解有机物, 最终产物为C O 2 ,H2O及N2等无害物质。其技术的关键是研制高氧化活性、高稳定性的催化剂。 收稿日期:2002-12-13;修订日期:2003-02-18 作者简介:李启良(1973—),男,湖北黄岗人,南京大学在读硕士研究生,主要研究废水处理技术与资源化。 43 第16卷 第2期污染防治技术2003年6月

高浓度有机废水处理技术

高浓度有机废水处理技术 目前,工业废水和城市污水是我国水环境污染的污染源之一,特别是随着生产规模的不断扩大和工业技术的迅速发展,含高浓度有机废水的污染源日益增多。但是,由于高浓度有机废水的性质和来源不同,其处理工艺也不尽相同。 一般来说,根据高浓度有机废水的性质和来源,可分为三类:第一类是高浓度有机废水,不含有害物质,易生物降解,如食品工业废水;二是有害物质,易生物。降解高浓度有机废水,如某些化学工业和制药工业废水;第三类是含有有害物质且不易生物降解的高浓度有机废水,如有机化学合成工业和农药废水。 废水处理工艺的组成可分为四类:生物处理、化学处理、理化处理和物理处理。对于高浓度有机废水的处理,通常采用上述两种或三种方法进行综合处理。以下简要介绍了高浓度有机废水的各种处理技术。 一、高浓度有机废水生物处理技术 生物处理技术是一般有机废水处理系统中最重要的工艺之一。它利用微生物(主要是细菌)的代谢来氧化,分解和吸附废水中的可溶性有机物和部分不溶的有机物,并将其转化为无害的。一种稳定材料并因此净化水的技术。以

下是固定化微生物技术和厌氧消化技术的应用介绍。 固定化微生物技术是利用优势菌以特定底物处理高浓度有机废水,特别是制药工业难降解有机废水的技术。其作用机理是将微生物固定在载体上,培养特定的细菌,使其高度浓缩,维持其对高浓度有机废水定向处理的生物功能。 其中,适用于高浓度有机废水处理的优势菌株固化剂应具有以下特点:(1)微生物固着具有良好的耐久性;(2)渗透性好,不被高浓度有机物或溶解氧溶解;(3)具有一定的强度。在原有生物膜法的基础上,引入细胞固定化技术,进一步提高生物处理结构中有效生物量的浓度,大大提高了反应速率和处理效率,降低了基建投资成本。这一技术引起了学术界的广泛关注。 厌氧消化技术是指在厌氧条件下有机物的消化和降解。与传统的好氧处理技术相比,后者由于有机物浓度高,难以进行水中缺氧处理,好氧处理没有能量回收,但厌氧消化处理技术有以下几点:优点:1无需曝气所需能量; 2甲烷是一种产品,是一种有用的最终产品;减少3个污泥产生;生产的4种生物污泥易脱水; 5个活性厌氧污泥可以存放数月;在更高的负载下运行。该技术可以处理含有大量碳水化合物,脂肪,蛋白质,纤维素等的高浓度有机废水,在造纸,皮革和食品工业中排放,并取得了良好的效果。

聚丙烯酰胺在工业废水处理中的应用

广西轻工业 GUANGXI JOURNAL OF LIGHT INDUSTRY 资源与环境 2009年7月第7期(总第128期) 聚丙烯酰胺(polyacrytamide ,简称PAM )是丙烯酰胺均聚或与其它单体共聚而成的含量在50%以上的线型水溶性高分子化学品的总称。缘于分子结构上的特性,PAM 具有特殊的物理化学性质,结构单元中含有酰胺基,易形成氢键,具有良好的水溶性。 易通过接枝或交联得到支链或网状结构的多种改性物,具有增稠、絮凝和对流体、流变体有调节作用。在石油开采、水处理、纺织印染、造纸、选矿、洗煤、医药、制糖、养殖、建材、农业等行业具有广泛的应用,有“百业助剂”、“万能产品”之称,尤其是聚丙烯酰胺作为高分子无毒的絮凝剂,可广泛用作工业废水和城市污水的处理,是我国聚丙烯酰胺的第二大消费领域[1-3]。本文采用聚丙烯酰胺作絮凝剂对株洲某工厂的工业废水进行处理,探讨了投药量、溶液pH 值、搅拌时间、反应温度对废水处理的影响,获得了优化工艺并取得满意的结果。 1材料和方法 1.1材料 HJ-I 磁力加热搅拌器(江苏医疗仪器厂)、7220可见光分光光度计(北京瑞利分析仪器公司)、sp-3808原子吸收分光光度计(上海光谱仪器有限公司)。1.2试剂 300万聚丙烯酰胺(AR ),氢氧化钠,盐酸均为分析纯。1.3方法 1.3.1投药量的试验 取废水200mL 分别加入不同用量的聚丙烯酰胺溶液,在水温下原始pH 值下置于磁力加热搅拌机上以恒定搅拌速度搅拌约3min , 静置15min 。立即过滤,然后取滤液,在可见光分光光度计610nm 处测其吸光度[4],确定最佳投药量。1.3.2pH 值的试验 取废水200mL ,加入1mL 聚丙烯酰胺溶液(0.1%),在水温下置于磁力加热搅拌机上以恒定搅拌速度搅拌约3min ,调pH 值到设定值后静置15min 。立即过滤,然后取滤液,在可见光分光光度计610nm 处测其吸光度,由此确定最佳pH 值。1.3.3搅拌时间的试验 取废水200mL ,加入1mL 聚丙烯酰胺溶液(0.1%),在水温下原pH 值下置于磁力加热搅拌机上以恒定搅拌速度搅拌,并 分别将搅拌时间定至设定值,静置15min 。立即过滤,然后取滤液,在可见光分光光度计610nm 处测其吸光度。由此确定最佳搅拌时间。 1.3.4反应温度的试验 取废水200mL ,加入1mL 聚丙烯酰胺溶液(0.1%),到水浴锅上加热到温度设定值后,置于磁力加热搅拌机上以恒定搅拌速度搅拌约3min ,静置15min 。立即过滤,然后取滤液,在可见光分光光度计610nm 处测其吸光度。由此确定最佳反应温度。 2结果与分析 2.1投药量对絮凝效果的影响 研究了投药量对絮凝效果的影响,结果如图1所示。 图1投药量对絮凝效果的影响 由图1可以看出,投药量过少时絮凝效果不明显,当投药量为5mg/L 时, 絮凝效果最好,而当投药量增加时,絮凝效果变差。产生这一现象的原因是因为聚丙烯酰胺絮凝剂的絮凝机理属吸附架桥机理,当投药量适当时污水中悬浮的胶体粒子之间就会产生有效的吸附架桥作用,并形成絮凝体,若过量,则架桥作用所必须的粒子表面吸附活性点少了,架桥因而变得困难,同时,由于粒子间的相互排斥作用而出现分散稳定现象。所以,当投药量过多时,滤液吸光度会略有上升。投药量增加还会使絮凝剂溶解性不好,也会导致絮凝效果降低。所以,聚丙烯酰胺絮凝剂最佳投药量为5mg/L 。2.2pH 值对絮凝效果的影响 研究了聚丙烯酰胺在不同pH 的反应体系中对废水絮凝效果的影响,结果如图2所示。 【作者简介】刘军(1969-),男,湖南邵阳人,中南大学在职硕士,讲师,从事水处理及生物化工专业的教学与研究工作。 聚丙烯酰胺在工业废水处理中的应用 刘军 (湖南化工职业技术学院应用化学系,湖南株洲412004) 【摘 要】采用聚丙烯酰胺絮凝剂对某工厂的工业废水进行处理, 探讨了投药量、溶液pH 值、搅拌时间、反应温度对废水处理的影响,找出了最佳处理条件。结果表明,采用聚丙烯酰胺絮凝剂对工业废水有很好的絮凝效果,最佳条件为:聚丙烯酰胺用量为5mg/L 、pH 值为8.00、搅拌时间为3min 、絮凝温度为40℃。 【关键词】聚丙烯酰胺; 絮凝剂;废水处理【中图分类号】X703【文献标识码】A 【文章编号】1003-2673(2009)07-98-02 98

高浓度有机废水处理技术典型案例

高浓度有机废水处理技术典型案例 厌氧浮动生物膜反应器处理高浓度有机废水 由上流式厌氧污泥床(UASB)与厌氧过滤器(AF)两种工艺结合的反应器近年来应用较多,其积累微生物能力强,启动速度快,运行中填料上附着的生物膜对降解有机物起着相当的作用,同时可避免滤池堵塞,是一种高效、稳定、易于管理的厌氧处理系统。一般将保留了UASB三相分离器的污泥床加填料的装置称为污泥床过滤器,将不带三相分离器的污泥床-滤层反应器称为厌氧复合床反应器。 1 试验材料与方法 1.1 悬浮生物膜填料 FBM用天津市科林思有限公司的聚丙烯材料制成,其密度为 0.92kg/m3,可在水中漂浮或随水体流动。该填料形似拉西环,但环内有十字形支撑,外侧沿径向有许多长约0.5mm的芒刺,环的直径为11mm,高度10mm,比表面积约为527m2/m3。 1.2 试验装置及工艺流程 厌氧浮动床生物膜反应器用有机玻璃柱制成,直径14.7cm,总高度100cm,有效高度79.5cm,总容积17.01L,有效容积13.48L。AFBBR内填料的填充率为50%,即FBM占据了一半的有效容积。 AFBBR处理高浓度有机废水试验的工艺流程如图1所示。泵入高位槽的废水经过计量阀由底部进AFBBR,处理后的水由上部排出,在生物降解过程中产生的气体从反应器顶部排出,悬浮在上部的填料由于上向水流和气体的作用而不停地上下浮动或轻微滚动。

2 试验方法 2.1 挂膜与启动 厌氧生物膜反应器存在的一个突出问题是挂膜困难,启动时间长。在本试验中,首先将填料进行好氧预挂膜,利用好氧微生物繁殖快并生成多糖物质的性能,在较短时间内填料表面形成一层生物膜即膜基,改善了填料的表面性能,有利于厌氧微生物的附着、生长、缩短了反应器的启动时间。 好氧污泥取自邯郸市东郊污水厂氧化沟。污泥与填料静态接触24h后,将污泥全部排掉,投加生活污水连续运行5~6d后,填料内外表面形成一层均匀生物膜。经好氧预挂膜后的填料与5 L厌氧污泥静态接触24h,然后将污泥排掉,连续投加葡萄糖废水。反应器启动开始采用的有机负荷为2kgCOD/(m3?d),水力负荷为1m3/(m3?d)。2~3d后,好氧膜脱落,填料表面变黑,1周后发现填料内表面形成一薄层生物膜。将水力负荷控制在0.5m 3/(m3?d),有机负荷为 1kgCOD/(m3?d),经过2周培养,膜生长均匀良好,COD去除率可

高浓度含盐废水生化处理

高浓度含盐废水处理 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。 2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。这是盐度对微生物的一种选择。将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。因此,当盐度超过20g/,一般认为用不同淡水微生物无法进行处理。 3 适盐微生物的分类与利用 耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。 嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。按照最佳生长盐度范围可以分为三类。

高浓度有机废水处理

废水来源: 企业在进行生产时会产生高浓度有机废水,高浓度有机废水特点就是悬浮物高、色度高、有刺激性异味,另外有机浓度也比较高。高浓度有机废水的成分比较复杂,在处理时还容易进行生物降解,处理难度非常大。苏州毅达机电工程有限公司可根据您的需求提供废水低温蒸发浓缩解决方案。 处理方案: 采用蒸发浓缩处理,废水进入低温真空蒸发器,在真空低温条件下蒸发,水蒸气在抽真空过程中冷凝形成蒸馏水,收集至清水储存罐中;剩余的微量废物做下一步处理。 经过废水处理系统真空蒸馏后残留物最低可减少到原有废水量的5%,水蒸气冷凝后几乎不含任何杂质,可作为工艺水送回到生产过程中。 蒸发处理优势: 1、相较于传统蒸发技术,热泵蒸发技术在能耗上可以节约90%以上; 2、其唯一的热源为电。无需任何蒸汽供热或者作为辅助热源,因而大大节省设备的配套设施的投资及消耗;

3、由于热泵其自身可以同时输出冷媒对物料产生的蒸汽进行冷凝,所以无需任何外部的冷却水供应,因而大大节省设备的配套设施及冷却水和电的消耗; 4、模块化设计。设备结构更加紧凑,占地面积小,组装运行快速方便; 5、超低温蒸发。真空度达45mbar,蒸发温度最低可达32℃。更加适合热敏性物料。对于腐蚀性物料对设备的腐蚀程度降到最低,延长设备的寿命; 6、全自动化控制及运行。相较于MVR蒸发器,其操作简单,控制点少,自动化程度更高,故障率低,运行稳定,维修及保养成本极低; 7、由于其规模效应,热泵蒸发器适用于蒸发量低于1000公斤/小时的工况。这很好的解决了中小型企业在污水处理方面投资大,运行维护成本高等的窘境,为我们中小型企业长远健康发展提供了一个非常经济有效的解决方案; 意大利废水浓缩系统应用广泛,包含: ●废水蒸馏 ●废水浓缩 ●机加工乳化液处理 ●机加工冷却液处理 ●切削液废水处理

含油废水处理聚丙烯酰胺的使用

含油废水处理聚丙烯酰胺的使用 聚丙烯酰胺被广泛应用于污水处理,但对于一些含油废水,大家都比较头疼,究竟聚丙烯酰胺能不能成功处理,含油废水使用哪种聚丙烯酰胺处理效果好?下面小编就为大家详细介绍一下! 含油废水如果不加以回收处理,会造成浪费;排入河流、湖泊或海湾,会污染水体,影响水生生物生存;用于农业灌溉,则会堵塞土壤空隙,妨碍农作物生长。我们通常采用pam作为水处理药剂。聚丙烯酰胺厂家通常也采用聚合氯化铝作为处理的药剂配合pam使用。最常用的化学物理方法是混凝法,可用铝盐或铁盐作混凝剂,构筑物可采用加速澄清池,处理效果与上浮法基本相同。含油废水处理设施采用上浮法时,往往也投加混凝剂,以提高净化效果。在经过过滤净化就可以达到相对比较干净的排水。 含油污水的产量大,涉及的范围广,例如石油开采、石油炼制、石油化工、油品贮运、油轮事故、轮船航运、车辆清洗、机械制造、食品加工等过程中均会产生含油污水。聚丙烯酰胺https://www.doczj.com/doc/1d3692293.html,产品在工业水处理中一般体现为助凝剂、絮凝 剂两个方面,主要应用行业如下:啤酒行业污水、制药行业污水、涂在食品肉类加工污水、造纸行业污水、冶金行业污水、石化行业污水、含油污水处理、纺织印染行业污水、化工类污水等。工业废水涉及的行业众多,聚丙烯酰胺在选择药剂时可根据污水性

质和污水工艺来定。含油废水中所含的油类物质,包括天然石油、石油产品、焦油及其分馏物,以及食用动植物油和脂肪类。从对水体的污染来说,主要是石油和焦油。不同工业部门排出的废水所含油类物质的浓度差异很大。如炼油过程中产生的废水,含油量约为150~1000毫克/升,焦化厂废水中焦油含量约为500~800毫克/升,煤气发生站排出的废水中的焦油含量可达2000~3000毫克/升。

浅谈高浓度有机废水四种处理技术

浅谈高浓度有机废水四种处理技术 来源:活力2009年15期 一、引言 目前,工业废水和城市生活废水是我国水环境污染的污染源之一,尤其是随着生产规模的不断扩大及工业技术的飞速发展,含有高浓度有机废水的污染源日益增多。但由于高浓度有机废水的性质和来源不一样,其治理技术也不一样。通常根据高浓度有机废水的性质和来源可以分为三大类:第一类为不含有害物质且易于生物降解的高浓度有机废水,如食品工业废水;第二类为含有有害物质且易于生物降解的高浓度有机废水,如部分化学工业和制药业废水;第三类为含有有害物质且不易于生物降解的高浓度有机废水,如有机化学合成工业和农药废水。本文针对上述三大类高浓度有机废水的典型治理技术进行评述,有助于高浓度有机废水治理技术的选择。 废水处理过程的各个组成部分可以分类为生物处理法、化学处理法、物理化学处理法、物理处理法等四种。对于高浓度有机废水的治理方法,往往是上述两种或三种方法进行综合处理。以下就高浓度有机废水的各种处理技术作以简要评述。 二、高浓度有机废水的生物处理技术 生物处理技术是一般有机废水处理系统中最重要的过程之一,是利用微生物,主要是细菌的代谢作用,氧化、分解、吸附废水中可溶性的有机物及部分不溶性有机物,并使其转化为无害的稳定物质从而使水得到净化的技术。以下就固定化微生物技术及厌氧消化技术的应用作以简介。 固定化微生物技术是利用优势菌种对特定底物的高浓度有机物废水,特别是制药行业难降解有机物废水等进行处理技术。其机理是将微生物固定在载体上培养特异菌种,使其高度密集并保持其生物功能,用于高浓度的有机废水的定向处理。其中,适合于处理高浓度有机废水的优势菌种固化剂应具备以下特征:①对微生物的固定具有良好的耐久性;②具有良好的渗透性,且不被高浓度有机物或溶解氧溶解;③具有一定的强度。固定化微生物技术在原有的生物膜法的基础上引进了细胞固定化技术,进一步提高了生物处理构筑物中高效生物量的浓度,可以大大提高反应速率和处理效能,降低基建投资费用,该技术已引起学术界的关注。 厌氧消化技术是指有机物在厌氧条件下消化降解。与传统的好氧处理技术相比,后者因有机物浓度过高而导致水中缺氧过程难于进行,同时好氧处理也无能量回收,但厌氧消化处理技术有以下优点:①不需曝气所需能量;②甲烷是一种产物,一种有用的终产物;③剩余污泥产生量少;④产生的生物污泥易于脱水;⑤活性厌氧污泥能保存几个月;⑥能在较高的负荷

生活污水处理用聚丙烯酰胺

生活污水处理用聚丙烯酰胺 一、生活污水简介: 生活污水生活污水是指城市机关、学校和居民在日常生活中产生的废水,包括厕所粪尿、洗衣洗澡水、厨房等家庭排水以及商业、医院和游乐场所的排水等。人类生活过程中产生的污水,是水体的主要污染源之一。主要是粪便和洗涤污水。城市每人每日排出的。 二、生活污水水质分析: 生活污水其量与生活水平有密切关系。生活污水中含有大量有机物,如纤维素、淀粉、糖类和脂肪蛋白质等;也常含有病原菌、病毒和寄生虫卵;无机盐类的氯化物、硫酸盐、磷酸盐、碳酸氢盐和钠、钾、钙、镁等。总的特点是含氮、含硫和含磷高,在厌氧细菌作用下,易生恶臭物质。 三、生活污水的危害 病原物污染 主要来自城市生活污水、医院污水、垃圾及地面径流等方面。病原微生物的特点是:①数量大;②分布广;③存活时间较长;④繁殖速度快;⑤易产生抗性,很难消灭;⑥传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活;此类污染物实际上通过多种途径进入人体,并在体内生存,引起人体疾病。 需氧有机物污染 有机物的共同特点是这些物质直接进入水体后,通过微生物的生物化学作用而分解为简单的无机物质二氧化碳和水,在分解过程中需要消耗水中的溶解氧,在缺氧条件下污染物就发生腐败分解、恶化水质,常称这些有机物为需氧有机物。水体中需氧有机物越多,耗氧也越多,水质也越差,说明水体污染越严重。 富营养化污染 是一种氮、磷等植物营养物质含量过多所引起的水质污染现象。水生生态系统的富营养化能通过化学污染物由两种途径发生:一种是通过正常情况下限定植物的无机营养物质的量的增加;另一种是通过作为分解者的有机物的增加。 恶臭 恶臭是一种普遍的污染危害,它也发生于污染水体中。人能嗅到的恶臭多达4000

催化湿式氧化催化剂处理有机废水

催化湿式氧化催化剂处理有机废水 在过去的几十年里,快速的工业化和城市化进程导致石油、化工、制药、纺织等行业大量高毒性难降解的有机化合物废水排放到自然界,对环境安全和人类健康造成严重威胁。随着世界各国对环境治理的日益重视,废水的深度处理技术成为研究的热点。高级氧化技术包括芬顿、湿式空气氧化、双氧水氧化和光催化等是处理高毒性难降解有机污染物的日渐成熟的技术,在废水处理领域应用广泛。 湿式空气氧化(W AO)技术是一种废水处理的高级氧化技术。W AO技术在高温高压下产生诸如径基自由基等活性物种,被认为在处理高浓度有机物废水(化学需氧量(COD)10-100g/L)或难生物直接降解有毒污染物方面具有很大的潜力。W AO工艺可将高毒性难生物降解有机化合物在它们被释放到环境中之前分解成毒性较低、易于处理的小分子有机物。一般来说,这个反应过程在较高温度(200-3259)和压力(5-15MPa)下通过产生活性氧物种来进行。废水在气液固三相反应器中的停留时间在15分钟到120分钟的范围内,COD的去除程度可以通常为75%-90%。 W AO工艺的一个主要缺点是无法实现有机物的完全矿化。一些最初存在于废水中或氧化过程中积聚在液相中的小分子量含氧化合物(例如甲醇、乙酸和丙酸等)很难进一步转化为二氧化碳和水,达到完全矿化。此外,废水中有机氮化合物的主要转化产物为氨,而氨在WAO的运行条件下也很稳定,难以进一步转化处理。这些物质如果想完全转化可能需要更高的反应温度和压力。因此,W AO过程在一些情况下被认为是废水预处理步骤,需要额外的处理过程配合。 为了缓和W AO工艺中严苛的温度和压力操作条件,研究者将催化剂引入到W AO体系中一起使用,这种含催化剂的操作过程被称为催化湿式氧化(CWAO)。在CW AO中,难降解有机化合物在催化剂存在下可以在温和的操作条件(低温和低压)下实现更深度的氧化,从而相比WAO减少了投资和运营成本。与传统的湿空气氧化法相比,催化湿式氧化(CW AO)由于催化剂的存在,反应可以达到较高的氧化速度和程度,人们可以使用较为缓和的反应条件将化学需氧量降低到与非催化过程相同的程度。 一、催化湿式氧化机理 催化湿式氧化是一种在温和条件下处理毒性难降解有机污染物废水最常见的方法。其工艺流程如图1所示。废水加压预热与同等压力的压缩空气混合后进入到反应器中,在反应器内催化剂的作用下发生催化氧化分解。装置开始运行时,在加热设备的作用下达到反应的起始温度,当反应器中催化湿式氧化反应持续进行后,可利用氧化反应放出的热量取代加热来维持反应温度。反应后的气液混合物经过热回收、气液分离后排出。

相关主题
文本预览
相关文档 最新文档