当前位置:文档之家› 提高混凝土弧形梁成型高质量

提高混凝土弧形梁成型高质量

二O一六年度工程建设优秀

QC成果申报资料

单位名称(盖章):海通建设集团

课题名称:提高混凝土弧形梁成型质量工程名称:汉融研发办公楼

课题正、副组长:黄亚兵、徐凯、周芸联系:

提高混凝土弧形梁成型质量

海通建设集团

汉融研发办公楼工程项目部QC小组

二O一六年十二月

目录

一、工程概况 2

二、小组概况 3

三、选题理由 3

四、现状调查 4

五、确定目标及可行性分析: 5

六、原因分析: 6

七、确定要因 6

八、制定对策 8

九、对策实施 8

十、效果检查 11 十一、巩固措施 13 十二、总结及今后打算 13

标准

提高混凝土弧形梁成型质量

一、工程概况

汉融研发办公楼工程位于市栖霞区,主要使用功能为办公楼;总建筑面积23410.77m2(地上19710.59 m2,地下3700.18 m2)地上18层(局部19层、无裙房),地下1层。建筑高度:78.300m;结构类型为框架-核心筒结构

组成本工程主楼平面犹如一个椭圆形,建筑外侧面为弧形,造形独特。工程的混凝土弧梁很多,尤其外边梁基本上均为弧梁,混凝土弧梁施工技术攻关是本工程中的重点和难点。

本工程于2016年5月2日开工,主体结构施工155天,质量目标是确保市优质工程“金陵杯”,争创省优质工程“扬子杯”。

汉融研发楼平面布置图

二、小组概况

QC小组成立于2016年6月5日,小组成员共9人,小组概况详见下表1-1、1-2。

QC小组概况表表1-1

表1-2

三、选题理由

3.1本工程弧形梁数量较多,直接影响工程质量及建筑效果,必须加强质量管理。

3.2工程为开发区重点工程,工程质量的优劣关系到公司的社会影响。

3.3公司确定该工程质量管理目标为:省优质工程“扬子杯”。

标准

选定课题

提高混凝土弧形梁

成型质量

四、现状调查

QC小组于2016年6月07日举行了第一

次会议,并于2016年6月10日~2016年

06月17日对我公司施工的南广学院同类型

工程进行了现状调查,获得500条实测资料,

其中不合格点95个,合格率81%。

序号检查项目频数累计频数频率(%) 累计频率(%)

1 弧形位移71 71 74.74 74.74

2 混凝土露筋、烂根10 81 10.5

3 85.27

3 钢筋偏移8 89 8.42 93.69

4 蜂窝、麻面 4 93 4.21 97.90

5 其它 2 95 2.10 100

合计95 100

制表人:徐凯制表时间:2016年06月18日根据调查表,做出排列图:

关于预应力混凝土简支箱梁桥设计分析

关于预应力混凝土简支箱梁桥设计分析 [摘要]桥梁作为公路的重要组成部分之一,在工程项目中,设计方案的合理性与规划指标的正确性是衡量整个道路工程施工质量、成本控制和使用功能的关键。本文就预应力混凝土简支箱梁桥设计要点分析,结合工程实例进行了全面的探讨和阐述。 【关键词】桥梁;预应力混凝土;简支箱梁桥 伴随着时间的不断推移,国民经济发展不断加快,各类交通荷载也在逐年增加。我国现有运营的早期设计修建的预应力混凝土桥梁和钢筋混凝土桥梁,受到过去国情、经济水平和人类认识水平的限制,在投入使用之后经常出现无法满足使用要求,出现了较为严重的裂缝、耐久性不足等重要问题,同时桥梁老化、陈旧和荷载能力不足的现象也日益凸显。结合现有工程中存在的这些问题,我们在工作中应当注重对混凝土简支箱梁桥设计的相关重点探讨,结合先进科学技术水平合理提高设计方法和观念,进而确保工程项目的质量和耐久性,提高工程效益。 1、工程概况 本工程项目位于某高速公路中段,桥梁在建设中总体长度为35m,桥面宽9.5m。在设计的过程中是对桥梁采用C40的混凝土进行施工的,而桥栏杆和桥面在铺设中是通过采用C20的混凝土。预应力在控制和设计中分别采用的是ASTM270级1524的底松弛钢绞线,在这设计过程中钢绞线的选择为12mm和R235的热轧光圈钢筋。在桥梁桥面施工的过程中是采用5cm厚的C20钢筋混凝土进行铺设和施工的,而最后又铺设了5cm厚的沥青混凝土。在设计的过程中,对桥梁的等级和应力化进行计算和分配,桥梁等级设置为1级,而汽车等相关荷载要求为3.535kN/m2,梯度温度引起的效按照T1=20℃,T2=6.7℃进行考虑。这种设计方法和手段的应用有效的确保了桥梁的使用寿命和耐久性。 2、桥梁总体设计 在桥梁设计的过程中,应当以安全、经济、实用、美观和环保为基础原则进行总体规划,以可持续发展和功能的良好发挥为最终目标进行全面设计。在桥梁设计的过程中,其设计方案的选择要具备相应的合理性,并且对其中存在的相关环节要严肃处理,要做到在设计中毫厘不差的设计要求。对于桥梁结构构造的处理,应当遵循相关的设计规范和国家的法律制度来全面协调和规范,同时合理的控制桥梁各个细小部位的尺寸和构造细节,使得桥梁设计能够满足强度、刚度.稳定性和耐久性的要求。 2.1在桥梁设计的过程中对线条的选择一般都选选择直线和标准跨径,这样能够提高桥梁工程的施工效率和降低施工成本。 2.2桥面净空应确保保证车辆、行人安全通过桥梁上方的空间界限。在该净

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

预应力混凝土曲线箱梁设计论文

预应力混凝土曲线箱梁设计 摘要:简述预应力砼弯箱梁的受力特点与计算方法,并以厦安高速厦门互通a匝道桥第三联r=110m 、跨径(35+42+35)m的预应力砼箱梁设计为例,探讨了小半径大跨度预应力箱梁设计的计算与构造措施。 关键词:预应力砼弯梁,小半径大跨度,桥梁设计 中图分类号:tu528.571文献标识码:a 文章编号: abstract: briefly prestressed concrete curved box the mechanical characteristics, and the calculation method, and with a high share of tall ann xiamen ramp bridges part 3 r = 110 m, span length (35 + 42 + 35) m prestressed concrete box girder of design as an example, this paper discusses the small radius of the design of large span prestressed concrete box girder calculation and structural measures. keywords: prestressed concrete beam bending, small radius big span, bridge design 1引言 随着高速公路与城市快速路的兴建以及城市建设的进一步发展,社会对交通设施的要求越来越高,互通式立体交叉日益增多。互通式立体交叉中的匝道很多是单车道或双车道的小半径弯桥,常用半径为50~150m,常用桥梁上部结构形式为钢筋混凝土或预应力

浅谈预应力混凝土连续箱梁桥设计中的问题

浅谈预应力混凝土连续箱梁桥设计中的问题 摘要桥梁设计是一项综合的工程,设计过程中会遇到一些问题,如桥位选择、桥面标高的确定、确定桥梁分孔、主梁截面选择、确定墩台基础形式、墩台基础埋置深度、结构尺寸的拟定,以及有关桥梁的其他问题,如主梁截面普通钢筋及预应力钢筋的布置、桥墩、桥台和桩基的配筋设计、桥面系的布置等。 关键词桥梁设计,预应力结构,连续箱梁桥,总体布置,结构计算 相对于简支梁桥,连续梁桥结构体系和受力特点具有明显的优势,其跨中正弯矩降低很多,同时支点出现负弯矩。混凝土材料耐久性较好,能够适应桥梁结构后期运营使用过程中产生的磨损,钢结构在使用过程中,应做好防腐措施,工程造价过高。在桥梁结构形式选择过程中,大多数设计单位会优先考虑混凝土连续箱梁桥,设计过程中遇到的问题,可以通过查阅桥梁规范,或者借鉴相似工程在设计过程中的经验取值,能够对设计具有指导作用。 1.桥梁总体布置 1.1 桥位设计 桥位的选择常与桥梁结构体系、原有或新建道路线形及周围环境等众多方面。桥位设计应能够保证原有或既定交通的正常运营,能够通过设计的洪水流量,满足通航要求,并与桥址周围的工农业、自然环境等相协调。桥位选择需要注意保护文物、保护生态环境,同时要注意尽量少占用耕地和农田,尽量做到对有意义及有价值的建筑物的保护。 桥位确定后,应进行桥孔布置。桥孔的大小和长度,应与天然状态桥下河槽或河滩流量分配相协调,并能满足泄洪排沙的要求。桥孔的布置,应该针对不同桥位进行不同的设计,河槽稳定不会扩宽或河槽不稳定时,桥孔布置需考虑以上因素。桥孔布置后桥墩的选择也应满足一定的要求,尽可能小的减小对河流的影响,充分考虑桥墩阻水的影响。 桥面标高的确定,应该根据该桥的使用要求进行选择,注意与既定道路之间的衔接。若桥面标高与既定道路高差过大,可以考虑设置引桥以克服高差。且河流通过设计水位时,须保证支座不受水流侵袭,同时还需要考虑桥墩阻水等各种因素引起的各类升高值,若桥梁结构有通航要求,还应该满足通航净空的要求。 1.2结构形式

混凝土结构设计规范41864

《混凝土结构设计规范》GB50010-2010主要修订内容 1.完善规范的完整性,从以构件计算为主适当扩展到整体结构的设计,补充结构抗倒塌设计的原则,增强结构的整体稳固性。 2. 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 3. 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4.增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5. 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。 6. 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。 7. 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。 8. 补充并筋(钢筋束)的配筋形式及相关规定。 9. 结构分析内容适当得到扩展,提出非荷载效应分析原则。 10. 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11. 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12. 补充、完善材料本构关系及混凝土多轴强度准则的内容。 13. 构件正截面承载力计算:“任意截面”移至正文,“简化计算”移至附录。 14. 截面设计中完善了构件自身挠曲影响的相关规定。 15. 修改了受弯构件的斜截面的受剪承载力计算公式。 16. 改进了双向受剪承载力计算的相关规定。 17. 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。 18. 修改了受冲切承载力计算公式。 19. 补充了预应力混凝土构件疲劳验算的相关公式。 20. 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21. 宽度大于0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22. 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。 23. 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。 24. 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣环境下大幅度增加。 25. 提出钢筋锚固长度修正系数,考虑厚保护层、机械锚固等方式控制锚固长度。 26. 框架柱修改为按配筋特征值及绝对值双控钢筋的最小配筋率,稍有提高。 27. 大截面构件的最小配筋适当降低。 28. 增加了板柱结构及现浇空心楼板的构造要求。 29. 在梁柱节点中引入钢筋机械锚固的形式。 30. 补充了多层房屋结构墙体配筋构造的基本要求。 31. 补充了二阶段成形的竖向叠合式受压构件(柱、墙)的设计原则及构造要求。 32. 完善装配式混凝土结构的设计原则以及装配式楼板、粱、柱、墙的构造要求。 33. 提出了预制自承重构件的设计原则;增补了内埋式吊具及吊装孔有关要求。 34. 补充、完善了各种预应力锚固端的配筋构造要求。 35. 调整了预应力混凝土的收缩、徐变及新材料、新工艺预应力损失数值计算。 36. 调整先张法布筋及端部构造,后张法布筋及孔道布置的构造要求。

连续曲线梁桥设计探析

连续曲线梁桥设计探析 文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。 标签:曲线梁桥;受力特点;结构设计 1 概述 曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。对于那些互通型的立交匝道来讲,它的使用更是非常的明显。在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。 2 曲线梁桥的平面及纵、横断面布置 最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。 3 曲线梁桥结构受力特点 3.1 梁体的弯扭耦合作用 一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。因为存在耦合作用,所以在桥上方会存在翘曲现象。 3.2 内外梁无法均匀受力 对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。

《混凝土结构设计规范》

为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述如下:为方便了解规范修订的变化并提出意见,将本次修订的主要内容简述 1 完善规范的完整性,完善规范的完整性从以构件计算为主适当扩展到整体结构的设计,补充结完整性,从以构件计算为主适当扩展到整体结构的设计,适当扩展到整体结构“ 构方案”和“结构抗倒塌设计”的原则,增强结构的整体稳固性。构方案”结构抗倒塌设计” 的原则,增强结构的整体稳固性。 3 完善承载力极限状态设计内容,增加以构件分项系数进行应力设计等内容。 钢筋混凝土构件按荷载效应准永久组合计算裂缝宽正常使用极限状态设计,钢筋混凝土构件按荷载效应准永久组合计算裂缝宽 度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。度,预应力构件稍放松;调整了裂缝宽度计算中的构件受力特征系数取值。 4 增加楼盖舒适度要求,规定了楼板竖向自振频率的限制。 5 完善耐久性设计方法,除环境条件外,提出环境作用等级概念。完善耐久性设计方法,除环境条件外,提出环境作用等级概念除环境条件外,提出环境作用等级概念。 6 增加了既有结构设计的基本规定。增加了既有结构设计的基本规定。既有结构设计的基本规定 7 淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求。淘汰低强钢筋,纳入高强、高性能钢筋;提出钢筋延性(极限应变)的要求 8 补充并筋(钢筋束)的配筋形式及相关规定。补充并筋(钢筋束)的配筋形式及相关规定及相关规定。 9 结构分析内容适当得到扩展,提出非荷载效应分析原则。结构分析内容适当得到扩展提出非荷载效应分析原则。适当得到扩展, 10

对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。侧移二阶效应,提出有限元分析及增大系数的简化10 对结构侧移二阶效应,提出有限元分析及增大系数的简化方法。 11 完善了连续梁、连续板考虑塑性内力重分布进行内力调幅的设计方法。 12 补充、完善材料本构关系及混凝土多轴强度准则的内容。 “ 任意截面”“ 简化计算”13 构件正截面承载力计算:任意截面”移至正文,简化计算”移至附录。 截面设计中完善了构件自身挠曲影响的相关规定。14 截面设计中完善了构件自身挠曲影响的相关规定。 修改了受弯构件的斜截面的受剪承载力计算公式。15 修改了受弯构件的斜截面的受剪承载力计算公式。 改进了16 改进了双向受剪承载力计算的相关规定。 17 补充在拉、弯、剪、扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定。扭作用下的钢筋混凝土矩形截面框架柱设计的相关规定 修改了受冲切承载力计算公式。18 修改了受冲切承载力计算公式。 19 补充了预应力混凝土构件疲劳验算的相关公式。 20 增加按开裂换算截面计算在荷载效应准永久或标准组合下的截面应力。 21 宽度大于 0.2mm 的开裂截面,增加按应力限制钢筋间距的要求。 22 挠度计算中增加按荷载效应准永久组合时长期刚度的计算公式。挠度计算中增加按荷载效应准永久组合时长期刚增加按荷载效应准永久组合时长期刚度 23 增加了无粘结预应力混凝土受弯构件刚度、裂缝计算方法。增加了 24 考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣考虑耐久性影响适当调整了钢筋保护层厚度的规定,一股情况下稍增,恶劣适当调整了钢筋保护层厚度的规定,一股情况下稍 环境下大幅度增加。

30m预应力混凝土简支箱型梁桥设计

30m预应力混凝土简支箱型梁桥设计 1.1上部结构计算设计资料及构造布置 1.1.1 设计资料 1.桥梁跨径及桥宽 标准跨径:30m;主梁全长:29.96m;计算跨径:28.66m;桥面净宽:净—9+2× 1.5m。 2.设计荷载 车道荷载:公路—I级;人群荷载:3kN/㎡;每侧人行道栏杆的作用力:1.52kN/㎡;每侧人行道重:3.75kN/㎡。 3.桥梁处河道防洪标准为20年一遇设计,50年一遇校核,桥下通过流量1000/s时,落差不超过0.1m。 4.桥下净空取50年一遇洪水位以上0.3m。 5.材料及工艺 混凝土:主梁采用C50混凝土;钢绞线:预应力钢束采用Φ15.2钢绞线,每束6根,全梁配5束;钢筋:直径大于等于12mm的采用HRB335钢筋,直径小于12mm的采用R235钢筋。 采用后张法施工工艺制作主梁。预制时,预留孔道采用内径70mm、外径77mm的预埋金属波纹管成型,钢绞线采用T双作用千斤顶两端同时张拉,锚具采用夹片式群锚。主梁安装就位后现浇600mm宽的湿接缝,最后施工混凝土桥面铺装层。 6.基本计算数据 基本计算数据见表5-1 表5-1 材料及特性 名称项目符号单 位 数据 C40 混凝土立方强度 弹性模量 轴心抗压标准强度 轴心抗拉标准强度 轴心抗压设计强度 轴心抗拉标准强度 f cu,k E c f ck f tk f cd f td MP a MP a MP a MP a MP a 40.00 3.45 ×104 32.40 2.65 22.40 1.83

MP a 短暂状态容许压应力0.7f'ck MP a 20.72 容许拉应力0.7f'tk MP a 1.76 持久状态 标 准荷载 组合 容许压应 力 0.5f ck MP a 16.20 容许主压 应力 0.6f ck MP a 19.44 短 期效益 组合 容许拉应 力 σst - 0.85σpc MP a 0.00 容许主拉 应力 0.6f tk MP a 1.59 名称项目符号单 位 数据 Φ s15.2 钢绞线 标准强度f pk MP a 1860 弹性模量E p MP a 1.95 ×105抗拉设计强度f pd MP a 1260 最大控制应力σcon0.75f pk MP a 1395 持久状态应 力 标准荷载组合0.65f pk MP a 1209 普通钢筋HRB335 抗拉标准强度f sk MP a 335 抗拉设计强度f sd MP a 280 R235 抗拉标准强度f sk MP a 235 抗拉设计强度f sd MP a 195

预应力混凝土连续梁桥及例子

4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

条件腹板宽度Bmin(cm) 腹板内无纵向或竖向后张预应力钢筋时20 腹板内有纵向或竖向后张预应力钢筋之一时30 腹板同时有纵向和竖向后张预应力钢筋时38 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m(对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m 抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于

桥墩对曲线连续梁桥自振特性的影响

桥墩对曲线连续梁桥自振特性的影响 摘要多次桥梁脉动试验结果揭示连续箱型梁桥的竖向自振频率与理论分析结果吻合较好而纵向和横向自振频率吻合不好。理论分析时桥墩的简化是关键影响因素。本文以某六跨连续弯梁桥为基础分析了桥墩对于桥梁自振特性的影响,结果表明桥墩对于桥梁的纵向及横向自振频率具有较大的影响,而对桥梁竖向的自振特性影响不明显。 关键词连续箱梁桥自振特性桥墩 1 前言 所谓固有振动是指弹性系统在没有外部动力的作用下形成的振动。固有振动反映系统的固有特性,是研究一切振动问题的基础[1]。因此准确求解桥梁结构的自振特性是桥梁振动问题的首要环节。在成桥后的荷载试验也往往通过脉动法测试桥梁的自振特性,通过与理论结果对比揭示桥梁的刚度情况。然而多次实践表明连续箱型梁桥的竖向自振频率实测与理论分析结果吻合较好而纵向和横向自振频率吻合不好。分析认为,桥墩是关键影响因素。本文通过对某桥的实体建模分析支持了该观点。 该桥总长170m,整座桥梁位于半径220m的平曲线。孔垮布置为25m+4×30m+25m,如图1所示。上部构造为等截面预应力混凝土箱型连续梁,单箱单室直腹板箱梁,梁高1.6m,顶板宽8.1m,底板宽4m,两侧翼缘悬臂长度2.05m,该桥跨中箱梁截面如图2所示。下部构造3号桥墩为独柱墩,其余桥墩为门式刚架墩、钻孔灌注桩基础。 图1连续梁桥总体布置图 图2跨中箱梁截面 2 有限元模型建立 为了研究桥墩对该桥自振特性的影响,分别按两种情况建立了有限元模型,第一个模型不考虑桥墩的影响,第二个模型考虑桥墩和梁的共同作用。Ansys为构建有限元模型提供了丰富的单元选择,具体到该问题可以选用梁单元也可以选用实体单元。使用梁单元分析时模型构建简单,求解速度较快,但是不能直观的反应梁的振型特性。使用实体单元构建模型虽较复杂,求解速度较慢,但是可以获得较高的精度,振型直观。经综合考虑最后决定采用Ansys实体单元Solid45。在墩台附近箱梁截面形式有所改变,采用实体单元可以精确的反映这种截面的变化。考虑桥墩的有限元模型图3所示。

预应力混凝土连续弯箱梁桥设计

预应力混凝土连续弯箱梁桥设计 摘要:老龙沟二号桥为山西运(城)-三(门峡)高速公路上的一座跨深谷桥梁,为预应力混凝土单箱单室等截面连续弯箱梁。文中以该桥施工图设计为根据,对其设计特点及施工顺序进行了简单介绍。 关键词:预应力混凝土弯箱梁斜腹板设计 一、概述运平至三门峡高速公路是国道主干线209(二连浩特至河口)公路山西境内的一部分,是山西省quot;大quot;字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5m。两幅桥之间的分离带为50cm。设计行车速度为60km /h。桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035。该桥位于平曲线为圆曲线内,路线中心线半径为25lm,左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R=13000m的竖曲线内。竖曲线两边纵坡分别为3.8%和3%,竖曲线半径为R=13000m,T=117m,E=0.526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。 二、技术及工程用材(表1)设计荷载:汽车-超20级挂车-120。地震基本烈度:Ⅶ度。温度:极端最高温度43℃,最低温度-13.2℃,常年

平均温度14.6℃。支座沉降:0.015m。 三、桥址区自然概况1.地形、地貌老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈quot;Vquot;字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m。2.气象桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14.6℃,最冷一月平均气温-1℃,极端最低气温-13.2℃,最热平均气温27.6℃,极端最高气温43℃。最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。3.水文桥梁跨越老龙沟为V字型沟,两边基岩裸露,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1~1.5m,枯水期流量减少,水位只有1.5~0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。4.工程地质桥址区分布的主要是太古界涑水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。 四、主要材料1.混凝土上部结构主桥箱梁采用50号混凝土;防撞护栏采用30号混凝土。下部结构桥墩采用40号混凝土;基础采用25号混凝土;桥头搭板、桥台耳墙、背墙均采用25号混凝土。2.钢材钢筋:直径12mm者,均采用Ⅱ级(20MnSi)热扎螺纹钢筋;直径<12mm者,采用Ⅰ级(A3)光圆钢筋。钢板:应符合GB700-65规定的A3钢材。3.其

第六章 曲线梁桥

6 曲线梁桥 6.1一般规定 6.1.1本章适用于平面曲线钢筋混凝土、预应力混凝土、钢-混凝土联合梁式桥。 6.1.2本章仅就曲线梁桥特有的问题做出规定,其它有关问题参照相关规定执行。 6.1.3在选择曲线梁桥的结构形式及截面形状时,必须考虑有足够的抗扭刚度以适应扭转效应的影响。 6.1.4在保证结构体系受力合理的前提下兼顾桥梁美观的要求,分联处公用墩和桥梁宽度大于10m的曲线梁桥中墩宜设置为双柱;不应设置隐盖梁结构形式;箱梁的悬臂不宜过大,特别是多跨连续曲线匝道桥梁。 6.2结构体系 6.2.1曲线梁桥更需选择合理跨径,以有利于控制扭矩峰值,控制负反力的发生。 1

6.2.2曲线梁桥支座设置原则 (1)梁端支座宜设置橡胶支座,以保证适当的垂直方向的弹性约束; 沿弯梁径向应设置水平方向约束,以防止过大的径向水平位移; (2)结构中墩在满足结构受力的情况下,尽可能与主梁固结或设置固定支座、抗震型盆式支座。当采用沿曲线切线的滑动支座时, 必须保证支座具有可靠的滑动能力。中墩不应设置球形支座、球 冠支座或双向滑动支座。 6.2.3曲线梁桥中墩应设置适当的偏心值,以调整全梁的扭矩分布。其偏心值应与中墩支座选用形式相适应。 2

6.2.4曲线梁桥中墩不采用墩、梁固结时,应设置适当的径向水平限位措施,其强度应满足水平力强度要求。 6.3结构分析 6.3.1曲线梁桥结构静力分析模型的建立应满足以下要求: (1)当扭跨所对应的圆心角φ<5o时,可作为以曲线长为跨径的直线桥进行分析。 (2)当5o<φ≤30o时,弯矩及剪力可按直线桥进行分析,反力及扭矩需按空间程序进行分析,并且应考虑由于预应力、混凝土收 缩、徐变及温度作用所产生的效应。 (3)当30o<φ≤45o时,所有截面内力均应按空间程序进行分析。 (4)当φ>45o时,除按空间程序分析外,还应考虑翘曲约束扭转的影响。 (5)当采用具有相当抗扭刚度的闭口截面曲线梁桥,其扭转跨径所对应的(曲跨梁段)圆心角小于12o时,可以按直线桥进行分 3

曲线连续梁桥的结构设计

曲线连续梁桥的结构设计 曲线梁桥是高速公路和城市立交中普遍应用的一种桥型。文章根据曲线梁桥的结构受力特点,论述了曲线梁桥在施工及成桥运营阶段出现病害的原因,论述了曲线梁桥在设计中应注意的问题,并提出了该类型桥梁设计中的一些经验做法和解决方案。 标签:曲线梁桥;结构设计;受力特点 1 概述 目前在高等级公路及城市立交中曲线梁桥的应用得到了普遍的认可,尤其在城市立交匝道设计中最为广泛。曲线梁桥的设计中常采用箱型截面,因其具有材料用量少、结构自重小、抗扭刚度大、整体稳定性好、截面应力分配合理等优点,而在曲线梁桥中应用非常普遍。 现阶段曲线梁桥的设计和理论研究已经取得了很多成果,但由于曲线梁桥结构受力复杂、施工过程中标高不能准确的控制,由于设计的原因导致在项目的施工或使用过程中已多次发生过事故。常见问题主要为:曲梁内侧支座脱空;主梁横向侧移量过大;横向刚度不足引起扭曲变形;固结墩墩身开裂;梁体的外移和翻转进一步导致支座、伸缩缝的剪切破坏和平曲线超高的丧失等。故在曲线梁桥的设计与施工过程中应充分考虑结构的弯、剪、扭受力特性,对结构内力进行准确分析及合理优化,消除设计带来的不安全隐患。 2 曲线梁桥受力特点 2.1 “弯-扭”耦合作用 曲梁由于自身及外荷载的作用下会同时产生弯矩和扭矩,并且相互作用。表现为曲梁内外侧尺寸不同、支座反力不等、外荷载偏心及预应力径向作用共同引起较大的扭矩,使梁截面处于“弯-扭”耦合作用的状态,其截面主拉应力比相应的直梁桥大得多,这是曲梁所独有的受力特点。 在变形方面,强大的扭矩作用致使曲线梁桥产生扭转变形;曲线外侧的竖向挠度要大于同等跨径的直桥;由于“弯-扭”耦合作用,在梁端可能出现“翘曲”;当梁端处横桥向约束较弱时,梁体有向曲线外侧“爬移”的趋势。 在受力方面,由于存在较大的扭矩,通常会使外梁超载、内梁卸载,尤其当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,即“支座脱空”现象,这种现象在小半径的宽桥中特别明显。 2.2 下部墩台受力复杂

预应力混凝土连续箱梁桥施工方案设计.docx

市政管道工程施工 预应力混凝土连续箱梁桥施工方案设计姓名:李雅倩 学号: 30140141 班级:市政14-1 专业:市政工程技术 学校: 浙江建设职业技术学院 指导老师:刘江

目录 一、工程概况 (3) 1.1. 工程基本概况 (3) 1.2. 工期 (3) 1.3. 建设条件 (3) 1.4. 设计标准 (4) 1.5. 材料规格: (5) 二、编制依据 (5) 三、桥梁主要部位施工工艺、施工方案 (6) 3.1钻孔灌注桩基础施工 (6) 3.2桥面施工 (8) 3.3桥面铺装 (9) 3.4伸缩缝 (9) 3.5防撞护栏 (10) 四、安全文明施工措施 (10) 4.1安全保障措施 (10) 4.2文明施工 (11) 五、桥面系施工 .................................................. 错误!未定义书签。 5.1 桥面铺装 (12) 5.2伸缩缝 (12) 5.3防撞护栏 (12) 七、总结 (10)

一、工程概况 1.1.工程基本概况 (1)工程名称:华硕施工总承包工程 (2)施工单位:华硕建设建筑有限责任公司 (3)设计单位:华硕建设建筑设计有限公司 (4)监理单位:华硕工程监理有限公司 (5)建设单位:华硕建设交通局 1.2.工期 计划开工工期2015年11月11日,完成时间2017年11月11日,总工期24个月。 1.3.建设条件 ⑴自然条件 ①地形、地貌 本标段地区属亚热带季风气候,具有气温温和、雨量充沛、热量丰富、光照充足、夏冬季长、春秋季短、春寒夏热、秋冬干阴和无霜期长等特点。气温的季节性变化显著,最高月平均气温33.0℃,最低月平均气温4℃,历年极端最高气温41.2℃,历年极端最低气温-18.9℃。 ②本地区降水年内分配不均,主要集中在4~6月,该时期降水量约占全年降水量的48%,易产生地区性的洪涝灾害;降水量最少时期是10月~次年1月,4个月的降水量仅占年降水量的16%左右。年平均降水量1347~1440mm。多年平均风速2.0~3.1m/s,年最大风速7.7~20.0m/s。年平均相对湿度:77%~80%。地层岩性、地震 ③区域范围内基岩为泥质粉砂岩,覆盖层从上至下为含碎石浅灰色、褐色砂质淤

预应力混凝土连续梁桥

6.2 预应力混凝土连续梁桥 6.2.1力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 6.2.2立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图6.1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图6.1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小主要取决于经济分跨和

独柱支撑曲线连续梁桥稳定性分析

独柱支撑曲线连续梁桥稳定性分析 独柱支撑曲线连续梁桥稳定性分析 [摘要] 文章通过对崇左市某互通立交工程独柱墩曲线连续梁桥进行有限元建模及计算,分析曲线半径、桥长、边界墩支座间距、独柱墩支座预偏心等因素对独柱墩曲线连续梁桥稳定性的影响;指出只调整梁的扭矩而忽略梁的扭转变形是不全面的。通过调整墩顶处支座的位置保证梁在结构自重以及预应力荷载作用下的扭转变形达到最小,同时梁端的支座处不产生脱空现象,这样才会使整个梁体结构处于平衡;并分析构造要求及施工方法对独柱墩曲线梁桥稳定性的影响。对同类工程设计及施工有一定指导作用。 [关键词] 曲线连续梁桥;独柱支承;偏心距 [作者简介] 张艳东,中铁四院集团南宁勘察设计院有限公司桥隧所助理工程师,研究生,广西南宁,530003;李凤芹,中铁四院集团南宁勘察设计院有限公司,广西南宁,530003 [中图分类号] U448 [文献标识码] A [文章编号] 1007-7723(2012)10-0071-0003 曲线梁桥目前已广泛应用于现代桥梁工程,在城市立交工程的匝道设计中更为普遍。匝道桥的宽度较窄,一般多为两车道,宽度在9~11m;为了实现道路的转向功能,匝道桥多为小半径的曲线梁桥,平曲线最小半径可在30m;匝道桥多设有较大纵坡;匝道桥长度较大,以跨越下面的非机动车道或主干道。由于曲线梁桥相对于普通直线梁桥的特殊性,产生了一系列新的问题,如独柱支座预偏心距的设置,梁体的预应力损失、梁体腹板开裂、整体扭转、变形等[1],没有很好地解决。规范中对曲线梁桥的设计规定也较少。相关研究的不足,导致独柱墩曲线梁桥较普通直线梁桥发生的病害、事故更多。查阅已建成的独柱墩曲线桥梁的检查资料可知,大部分梁体都存在着不同程度的病害,如梁端支座脱空、产生位移、梁体开裂等现象,甚至导致严重的交通事故,造成巨大的生命财产损失。 一、有限元模型

预应力混凝土连续刚构箱梁桥

浅谈预应力混凝土连续刚构箱梁桥几种常用受力分析方法的对 比 【摘要】随着我国交通事业的迅速发展,公路桥梁与城市桥梁的修建也日益增多。同时由于技术的进步与成熟,桥型也由之前的简支转变为结构受力比较先进,跨度更大的连续梁或者连续刚构。当桥梁跨径加大时,结构性能优良的箱形截面往往是合宜的横截面选择。因此,对箱梁桥的受力分析方法的研究就显得很有必要。本文首先对箱梁截面的优点进行简要阐述,然后重点针对学者们对预应力混凝土连续钢构箱梁公路桥梁受力的几种常用分析方法进行阐述并加以对比,着重阐述了解析法和数值法在预应力箱梁受力分析中的原理和应用,并进一步得出相应结论。 1前言 箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。在国内外得

到了十分迅速的发展和广泛的应用。 预应力混凝土的研究已有一百余年的历史。近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。 2 解析法在预应力箱梁受力分析中的原理及应用 解析法是为了把问题简化,往往采用一些假定和近似处理方法。如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。通过这些荷载分解,就单项问题进行较深入的探讨。采用若干假定,是解析法的另一特点,如对位移模式的假定等。 箱形梁剪力滞的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。对于箱形梁的横向弯曲,分析方法有影响面法和框架分析法。影响面法计算较为繁琐,而框架分析法是一种颇为简便的方法。

《混凝土结构设计规范》GB50010

《混凝土结构设计规范》GB50010-2002 3基本设计和规定 1.1.8未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 1.2..1根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级。设计 时应根据具体情况,按照表3.2.1的规定选用相应的安全等级。 表3.2.1 建筑结构的安全等级 1.1.3混凝土轴心抗压、轴心抗拉强度标准值?ck、?tk应按表4.1.3采用。 表4.1.3 混凝土强度标准值(N/mm2) c t 表4.1.4 混凝土强度设计值(N/mm2) 的强度设计值应乘以系数0.8;当构件质量(如混凝土成型、截面和轴线尺寸等)确有保证时,可不受此限制; 2.离心混凝土的强度设计值应按专门标准取用。 1.2.2钢筋的强度标准值应具有不小于95%的保证率。热轧钢筋的强度标准值系 表示。预应力钢绞线、钢丝和热处理钢筋的强度标根据屈服强度确定,用? yk 准值系根据极限抗拉强度确定,用? 表示。 ptk 普通钢筋的强度标准值应按表4.2.2-1采用;预应力钢筋的强度标准值应按

表4.2.2-2采用。 各种直径钢筋、钢绞线和钢丝的公称截面面积、计算截面面积及理论重量应按附录B 采用。 表4.2.2-1 普通钢筋强度标准值(N/mm 2) 2 当采用直径大于40mm 的钢筋时,应有可靠的工程经验。 表4.2.2-2 预应力钢筋强度标准值(N/mm 2) 称直径Dg ,钢丝和热处理钢筋的直径d 均指公称直径; 2 消除应力光面钢丝直径d 为4~9mm ,消除应力螺旋肋钢丝直径d 为4~8mm 。 4.2.3普通钢筋的抗拉强度设计值?y 及抗压强度设计值?′y 应按表4.2.3-1采用;预应力钢筋的抗拉强度设计值?py 及抗压强度设计值?′py 应按表4.2.3-2采用。 当构件中配有不同种类的钢筋时,每种钢筋应采用各自的强度设计值。 表4.2.3-1 普通钢筋强度设计值(N/mm 2) 300 N/mm 2取用。 表4.2.3-2 预应力钢筋强度设计值(N/mm 2)

最新多跨简支箱型梁桥设计计算说明

多跨简支箱型梁桥设计计算说明

多跨简支箱型梁桥毕业设计计算说明书 第一章桥梁设计概况 1、设计技术标准 (1)设计荷载:公路Ⅱ级; (2)桥梁宽度:净-7m+2×0.5m; (3)桥梁跨径:32+40+32; (4)路面横坡:2%; 2、结构形式:上部结构为预应力混凝土箱梁; 3、材料:混凝土采用C40以上混凝土;钢筋采用热轧R235、HRB235即HRB400钢筋;预应力混凝土构件中的箍筋应选用其中的带肋钢筋;按构造配置的钢筋网可采用冷轧带肋钢筋;预应力混凝土构件中的预应力钢筋应选用钢绞线,钢丝; 3、地震动参数:地震动峰值加速度0.05g; 4、桥址条件:桥址区内场地可划分为可进行建筑的一般地段,场地类别属Ⅰ类; 第二章桥跨布置方案比选及尺寸拟定 2.1方案比选 本设计桥梁的形式可考虑拱桥、简支梁桥、连续梁桥三种形式。从实用、安全、经济、美观、环保以及占地与工期多方面比选,最终确定桥梁形式。桥梁设计原则:

(1)实用性。桥梁必须实用,要有足够的承载力。能保证行车的畅通、舒适和安全。既满足当前的需要,又要考虑今后的发展。要能满足交通运输本身的需 要,也要考虑到支援农业等等。 (2)安全性。桥梁的设计要能满足施工及运营阶段的受力需要,能够保证其耐久性和稳定性以及在特定地区的抗震需求。 (3)经济性。在社会主义市场经济体制的今天,经济性是不得不考虑的重要因素。在能够满足桥两个方面需求的情况下要尽量考虑是否经济,是否以最少的投入获得最好的效果。 (4)美观性。在桥梁设计中应尽量考虑桥梁的美观性。桥梁的外形要优美,要与周围环境相适应,合理的轮廓是美观的主要因素。 (5)环保性。随着经济的发展,生活水平的不断提高,人们对环境保护提出了更高的要求,在建筑领域,一个工程的建设不能以牺牲环境作代价,在保证顺 利工的前提下要尽量避免对环境的破坏以实现经济的可持续发展。 应根据上述原则,对桥梁作出综合评估: (1)梁桥: 梁式桥是指其结构在垂直荷载的作用下,其支座仅产生垂直反力,而无水平推力的桥梁。预应力混凝土梁式桥受力明确,理论计算较简单,设计和施工的方法日臻完善和成熟。预应力混凝土梁式桥具有以下主要特征:(a)混凝土材料以砂、石为主,可就地取材,成本较低; (b)结构造型灵活,可模型好,可根据使用要求浇铸成各种形状的结构;

相关主题
文本预览
相关文档 最新文档