当前位置:文档之家› 主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系
主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系2010-01-27 09:51:34| 分类:电脑知识| 标签:|字号大中小订阅

主频、外频、倍频、前端总线频率、内存频率的概念

及它们之间的关系

天蚕收集整理2010-01-27

现在网上对主频、外频、倍频、前端总线频率、内存频率的叫法千奇百怪,对同一种事物的叫法都没有统一,给人感觉好像有很多种类似的,所以很有必要先理清头绪,搞清楚多种不同叫法之间的等价关

系:

1.主频=CPU频率=CPU内部的频率

2.外频=CPU外频=CPU外部的频率

3.倍频=CPU倍频

4.前端总线频率=FSB频率

5.内存频率=DRAM频率

一、参数名称的历史沿革、发展及它们之间的关系概述

我们知道,电脑有许多配件,配件不同,速度也就不同。在286、386和早期的486电脑里,CPU 的速度不是太高,和内存保持一样的速度。后来随着CPU速度的飞速提升,内存由于电气结构关系,无法象CPU那样提升很高的速度,于是造成了内存和CPU之间出现了速度差异,这时就提出一个CPU的主频、倍频和外频的概念。外频顾名思义就是CPU外部的频率,早期也就是内存的频率,CPU以这个频率来与内存联系。CPU的主频就是CPU内部的实际运算速度,主频肯定是比外频高的,高一定的倍数,这个数就是倍频。例如:一个老的INTEL 486 CPU,上面印着486 DX/2 66。这个486的CPU的主频是66MHZ,DX/2代表是2倍频的,于是算出CPU的外频是33MZ,也就是内存的工作频率,这同时也是前端总线(英文Front Side Bus)FSB的频率。因为CPU是通过前端总线来与内存发生联系的,所以内存的工作频率(或者说外频也行)就是前端总线的频率,即前端总线的频率就是33MZ。这样的前端总线结构一直延续到486之后的奔腾(俗话说的586)、奔腾2、奔腾3。

到了奔腾4年代,内存和CPU的工作模式发生了改变,前端总线的概念也变得有些复杂了。奔腾4 CPU采用了Quad Pumped(4倍并发)技术,该技术可以使系统总线在一个时钟周期内传送4次数据,也就是传输效率是原来的4倍,相当于用了4条原来的前端总线来和内存发生联系,即前端总线FSB有效频率=外频X4。在外频仍然是133MHZ的时候,前端总线的速度增加4倍变成了133X4=533MHZ,当外频升到200MHZ,前端总线变成200X4=800MHZ,所以你会看到533 MHZ前端总线的P4和800 MHZ 前端总线的P4,就是这样来的。但他们的实际外频只有133 MHZ和200 MHZ,不过,由于人们保留了以前老的概念——前端总线就是外频,所以习惯了这样的叫法:533 MHZ外频的P4和800 MHZ外频的P4。其实应该叫533 MHZ前端总线P4或533 MHZ FSB的P4才准确。到现在,外频与前端前线的概念则出现了明显的区别:即外频是CPU与主板之间同步运行的速度,是指数字脉冲信号在每秒钟震荡的次数;而前端总线的速度指的是数据传输的速度,即每秒钟CPU可接受的数据传输量。两者的区别就在于,前者是震荡频率的概念,而后者则是传输量的概念。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡1

千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是

100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。

那内存的情况怎么样呢?外频不完全等于前端总线了,那外频还等于内存的频率吗?内存发展到了DDR,跟原来相比,一个时钟周期内可以传送比原来多一倍的数据,DDR就是DOUBLE DATA RATE的缩写,意思就是双倍的数据传输速率,也就是说,内存的有效频率=内存原实际频率×2。在133MHZ的外频下,DDR的传输速度是266,外频提高到200MHZ的时候,DDR的传输速度是400,DDR266的内存

和DDR400的内存就是这个意思。

再看一下现在外频、内存频率、CPU的前端总线频率的关系。在以前P3的时候,133的外频,内存的频率就是133,CPU的前端总线频率也是133,三者是一回事。现在P4的CPU,在133的外频下,前端总线有效频率达到了133×4=533MHZ,内存频率是133×2=266(DDR266)。问题出现了,前端总线是CPU与内存发生联系的桥梁,P4这时候的前端总线达到533之高,而内存只有266的速度,内存比CPU的前端总线慢了一半,理论上CPU有一半时间要等内存传数据过来才能处理数据,等于内存拖了CPU 的后腿。这样的情况的确存在的,845和848的主板就是这样。于是提出一个双通道内存的概念,两条内存使用两条通道一起工作,一起提供数据,等于速度又增加一倍,两条DDR266就有266X2=533的速度,刚好是P4 CPU的前端总线速度,没有拖后腿的问题。外频提升到200的时候,CPU前端总线变为800,两条DDR400内存组成双通道,内存传输速度也是800了。所以要P4发挥好,一定要用双通道内存,865以上的主板都提供这个功能。但845和848主板就没有内存双通道功能了。

当然,现在的主板都支持内存异步技术,就是内存的频率高于或低于外频都可以。内存异步技术则是让内存频率与CPU外频不同,比如200MHz外频的P4 520在内存异步时,内存可以运行在166MHz,也可以运行在266MHz。现今的内存异步技术,可以通过在BIOS中设置内存分频系数,使内存与CPU外频的异步运行甚至可以设定在4:3或2:1等的比例状态下,可以更为灵活的搭配内存,帮助升级用户节省下更换内存的资金。从理论上讲,内存频率低于外频,即使是双通道,也会成为系统瓶径。所以,在异

步情况下,内存频率最好比外频高一些。

刚才说的是INTEL P4的前端总线FSB概念,它的对手AMD的CPU却有所不同。旧的462针脚的AMD CPU,采用ev6前端总线,相当于外频的两倍,即FSB=外频×2,也就是133外频时,AMD 462脚的CPU的FSB是266,使用DDR266内存和他搭配就刚刚好,如果用两条DDR266做成双通道,虽然内存有533的传输速度,但对于266的FSB,作用不大,所以双通道内存对CPU的帮助不明显。新的AMD 754/939 64位CPU,内部就集成了内存管理器(以前内存管理器在主板芯片里),所以AMD 64位CPU

的前端总线FSB频率与CPU实际频率一致。

AMD的K8处理器可说是划时代的,它把内存控制器集成在了CPU里面,通过内建内存控制器让处理器直接调配内存,可以减少处理器需要调用内存数据时,通过前端总线将指令传输到北桥,再由北桥中的内存控制器对内存进行操作的延迟,而且全面引入了HT(Hyper Transport)总线(“超传输”总线)的概念。这是一种高速点对点总线技术,在K8平台上起到传输CPU和主板芯片组之间数据的作用。K8和以往的处理器最大的区别在于:由于CPU已不通过传统的前端总线而是直接从内存获得数据,在AMD发布的Athlon64 CPU规格表以及各个芯片组厂商发布的芯片组原理图上,前端总线这个名词消失了,取而代之的是HT。它和FSB到底有什么具体的区别呢?首先,FSB和外频是密不可分的,外频提高之后,FSB 会随之提高,这是不可调的。但是K8平台的超频就不一样,当提高CPU的外频时,往往要将HT的倍数往下调,以保持HT总线频率不变!用AM2 Athlon64 3000+来打个比方,其默认外频是200MHz,假设主板支持1000MHz的HT总线,外频由200MHz超到250MHz时最好把HT的倍数从5调到4,使HT总线仍然保持在1000MHz上,这样可以提高超频的成功率。而如今,AMD K10的推出,HT技术从原来的1.0发展到现在的3.0,HT 3.0的总线规范提供了1.8GHz、2.0GHz、2.4GHz、2.6GHz几种频率,最高可以支持32通道。32位通道下,单向带宽最高可支持20.8GB/s的传输效率。考虑到其DDR的特性,其总线

的传输效率可以达到史无前例的41.6GB/s。鉴于AMD K8之后的CPU都在内部集成了内存控制器,所以无论搭配什么主板,其内存分频机制都是一定的。每一个确定了硬件配置的AMD平台都有其固定的内存分频系数,这些系数影响内存的运行频率。例如,AM2 接口的Athlon64 3000+搭配DDR2 667内存时在BIOS里把内存频率设置为DDR2 667,而此时内存实际工作在DDR2 600下,这就是由内存分频系数引起的。由于此时BIOS 里的设置值并非内存的实际工作频率,因此我们把BIOS中的设置值设为内存标称频率。AMD平台内存分频系数的计算方法如下:分频系数N=CPU默认主频×2÷内存标称频率,得到的数值再用“进一法”取整数,注意,“进一法”不是四舍五入,而是把小数点后的数字舍掉,在前面的整数部分加一。这时内存实际运行频率F=CPU主频÷分频系数N(CPU主频的提高,会使内存的实际运行频率提高)。以前面提到的AM2接口的Athlon64 3000+搭配DDR2 667内存为例,N=1800×2÷667≈5.397,取整数=6,此时内存的实际运行频率F=1800MHz÷6=300MHz,即DDR2 600。通过上面的计算公式,我们就知道了超频时内存的运行频率,如果已经远高于内存的工作极限频率,那么这时选择较高的分频比,

就能让内存工作在正常的范围之内。

二、参数之间的关系

综上所述,可得出主频、外频、倍频、前端总线、内存频率之间的关系为:

1、CPU主频=外频×倍频(MHz)

2、Intel CPU前端总线=外频×4(MHz)

AMD CPU前端总线=外频×2(MHz)

3、DDR2内存频率=内存原频率×2(MHz)

DDR3内存频率=内存原频率×3(MHz)

AMD K8之后平台的内存频率=主频÷分频系数

4、Intel内存分频系数=前端总线FSB频率:内存DRAM频率

AMD K8之后平台内存分频系数=(CPU默认主频×2÷内存标称频率)用“进一法”取整数+1 (注意,“进一法”不是四舍五入,而是把小数点后的数字舍掉,在前面的整数部分加1)

此时,内存实际运行频率=CPU主频÷分频系数

5、数据带宽=(前端总线×数据位宽)÷8(MB/s)

由于现在的电脑均采用64bit的数据位宽进行数据传输,因此:

CPU数据带宽=前端总线×8(MB/s)

内存带宽=内存等效工作频率×8(MB/s)

(注意单位是字节,这里的8的单位是字节B,不是指的8个bit,是64bit/8=8B得到的,64bit是

计算机每次传输的数据位数)

全面教你认识内存参数

全面教你认识内存参数 内存热点 Jany 2010-4-28

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存 第二代DDR内存

DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片

时钟频率

时钟频率 一、频率是什么? 频率用f表示,基本单位为“1次/秒”,记做Hz(赫兹)。1Hz就是每秒一次,10Hz是每秒10次(图1)。不过,Hz这个单位在电脑里面太小了,因此通常以KHz、MHz或GHz来表示信号频率。随着频率的攀升,若干年以后恐怕需要使用THz作为频率的单位了(表1)。 表1:频率表示法 频率单位kHz MHz GHz THz 换算关系1×10^3Hz 1×10^6Hz 1×10^9Hz 1×10^12Hz 英文名称Kilo Hz Mega Hz Giga Hz Tera Hz 中文名称千赫兹兆赫兹吉赫兹太赫兹 1.周期与频率 在电脑技术中,与频率相对应的一个常用术语是周期。周期是频率的倒数,频率越高,周期越短。譬如时钟频率为1GHz时,其时钟周期为1纳秒(表2)。 表2:频率与周期对照表 时钟频率时钟周期时钟频率时钟周期 5MHz 200ns 133MHz 7.5ns 10MHz 100ns 166MHz 6.0ns 20MHz 50ns 200MHz 5.0ns 25MHz 40ns 250MHz 4.0ns 33MHz 30ns 300MHz 3.3ns 40MHz 25ns 333MHz 3.0ns 50MHz 20ns 400MHz 2.5ns 66MHz 15ns 500MHz 2.0ns 80MHz 12ns 800MHz 1.2ns 100MHz 10ns 1GHz 1.0ns 120MHz 8.3ns 4GHz 0.25ns 2.带宽与频率 与频率相关的另一个参数是数据传输率,也称为“带宽”,用于衡量数据通信速度的快慢。通常情况下,带宽=时钟频率×(位宽÷8)。譬如PCI总线的时钟频率为33.33MH z,因其位宽为32bit,所以其带宽为33.33×(32÷8)=133MB/s。 3.CPU的频率 在286及以前的电脑中,CPU的频率与外部总线的频率相同。Intel 386电脑中采用了时钟分频方式,时钟电路提供给CPU的时钟信号的频率66MHz,而CPU内部则以33MHz的频率工作。Intel 80486 DX2则采用倍频方式,它允许CPU以2倍或3倍于外部总线的速度运行,但仍以原有时钟频率与外界通讯。进入Pentium时代以后,倍频技术获得广泛应用,目前处理器的倍频已达20倍。 系统时钟频率:通常也称作“外频”——CPU外部总线的时钟频率。外频由频率合成器芯片提供,后文将对频率合成器芯片进行详细介绍。主频:主频是CPU内核(整数和浮点运算器)电路的实际运行频率,由外频(或前端总线频率)与倍率共同决定,也即:主频=外频×倍率。 前端总线频率:前端总线(Front Side Bus,FSB)频率是CPU和北桥芯片间进行数据交换

电脑内存时序

举例9-9-9-27,一般1600的条子spd出厂就这么设置的 前面2个9对性能很重要,第2个9又比第1个9重要,比如说 我要超1866或者2133,设置成9-10-X-X基本没有问题,但是 设置成10-9-X-X就开不了机了,很多条子都这样子的,比如说 现在很火的3星金条。 第3位9基本上是打酱油的了,设置成9,10,11都对性能木有太大影响。 第4位数字基本就无视好了,设置21-36对测试都没变化,原来稳定的 还是稳定,原来开不了机的还是开不了。 以前的ddr2时代对内存的小参数很有影响,现在ddr3了,频率才是王道哦。 2133的-11-11-11-30都要比1866的-9-9-9-27测试跑分的多。当然平时用是感觉不出来的。 最后我再鄙视下金士顿的XX神条马甲套装,当年不懂事大价钱买的,就是YY用的, 1.65v上个1866都吃力,还要参数放的烂。 对性能影响最大的是CL 第一个9对性能影响最大。l第二个9对超频稳定性影响最大 最普通的ddr3 1333内存都可以1.5V运行在7-8-6-1666 CR1,77 Z博士: 一般来说,体现内存延迟的就是我们通常说的时序,如DDR2-800内存的标准时序:5-5-5-18,但DDR3-800内存的标准时序则达到了6-6-6-

15、DDR3-1066为7-7-7- 20、而DDR3-1333更是达到了9-9-9-25! 土老冒: 俺想知道博士所说的5-5-5- 18、6-6-6-15等数字每一个都代表什么。 Z博士: 这4个数字的含义依次为: CAS Latency(简称CL值)内存CAS延迟时间,这也是内存最重要的参数之一,一般来说内存厂商都会将CL值印在产品标签上。 第二个数字是RAS-to-CAS Delay(tRCD),代表内存行地址传输到列地址的延迟时间。 第三个则是Row-precharge Delay(tRP),代表内存行地址选通脉冲预充电时间。 第四个数字则是Row-active Delay(tRAS),代表内存行地址选通延迟。 除了这四个以外,在AMD K8处理器平台和部分非Intel设计的对应Intel芯片组上,如NVIDIA nForce 680i SLI芯片组上,还支持内存的CMD 1T/2T Timing 调节,CMD调节对内存的性能影响也很大,其重要性可以和CL相比。 其实这些参数,你记得太清楚也没有太大用处,你就只需要了解,这几个参数越低,从你点菜到上菜的时间就越快。 土老冒: 好吧,俺自己也听得一头雾水,只需要记得它越低越好就行了。那么俺想问,为什么DDR3内存延迟提高了那么多,Intel和众多的内存模组厂商还要大力推广呢?

SDRAM内存详解(经典)

SDRAM内存详解(经典) 我们从内存颗粒、内存槽位接口、主板和内存之间的信号、接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路... 虽然目前SDRAM内存条价格已经接底线,内存开始向DDR和Rambus内存过渡。但是由于DDR内存是在SDRAM基础上发展起来的,所以详细了解SDRAM内存的接口和主板设计方法对于设计基于DDR内存的主板不无裨益。下面我们就从内存颗粒、内存槽位接口、主板和内存之间的信号接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路。 内存颗粒介绍 对于DRAM(Dynamic Random Access Memory)内存我想凡是对于计算机有所了解的读者都不会陌生。这种类型的内存都是以一个电容是否充有电荷来作为存储状态的标志,电容冲有电荷为状态1,电容没有电荷为状态0。其最大优点是集成度高,容量大,但是其速度相对于SRAM (Static Random Access Memory) 内存来说慢了许多。目前的内存颗粒封装方式有许多种,本文仅仅以大家常见的TSSOP封装的内存颗粒为例子。 其各个管脚的信号定义和我们所使用的DIMM插槽的定义是相同的,对于不同容量的内存,地址信号的位数有所不同。另外一个需要注意的地方就是其供电电路。Vcc和Vss是为内存颗粒中的存储队列供电,而VccQ和VssQ是为内存颗粒中的地址和数据缓冲区供电。两者的作用不同。 我们对内存颗粒关心的问题主要是其颗粒的数据宽度(数据位数)和容量(寻址空间大小)。而对于颗粒自检、颗粒自刷新等等逻辑并不需要特别深入的研究,所以对此我仅仅是一笔带过,如果读者有兴趣的读者可以详细研究内存颗粒的数据手册。虽然内存颗粒有这么多的逻辑命令方式,但是由于目前北桥芯片和内存颗粒的集成度非常高,只要在布线和元器件的选择上严格按照内存规范来设计和制造,需要使用逻辑分析仪来调试电路上的差错的情况比较少,并且在设计过程中尽量避免出现这种情况。 168线DIMM内存插槽的信号定义  我们目前PC和Server使用的内存大都是168 Pins的SDRAM,区别只是其工作频率有的可能是100MHz频率,有的可能是133MHz频率的。但是只要是SDRAM,其DIMM插槽的信号定义是一样的。而这些引脚得定义就是设计内存条和主板所必须遵从的规范。 内存引脚主要分为如下几类:地址引脚、数据引脚(包含校验位引脚)、片选等控制信号、时钟信号。整个内存时序系统就是这些引脚上的信号配合产生。下面的表中就是内存插槽的引脚数量和引脚定义,对于一些没有定义或者是保留以后使用的信号就没有列出来。 符号功能详细描述 DQ [0-63] I/O 数据输入/输出 CB [0-7] I/O ECC内存的ECC校验输入/输出 A [0-13] I/O 地址选择 BA [0-1] Control Bank选择 CS [0-3] Control 片选信号 RAS Control 行地址选择信号 CAS Control 列地址选择信号 DQMB [0-7] Control 数据掩码控制(DQ Mask)高有效* WE Control 写允许信号 CK [0-3] Clock 时钟信号 CKE [0-1] Clock 时钟允许信号** REGE Control 寄存器 (Registered) 允许信号

DDR内存时序设置详解

内存时序设置详解 内容概要 关键词:内存时序参数设置 导言:是否正确地设置了内存时序参数,在很大程度上决定了系统的基本性能。本文详细介绍了内存时序相关参数的基本涵义及设置要点。 与传统的SDRAM相比,DDR(Dual date rate SDRSM:双倍速率SDRAM),最重要的改变是在界面数据传输上,其在时钟信号上升缘与下降缘时各传输一次数据,这使得DDR 的数据传输速率为传统SDRAM的两倍。同样地,对于其标称的如DDR400,DDR333,DDR266数值,代表其工作频率其实仅为那些数值的一半,也就是说DDR400 工作频率为200MHz。 FSB与内存频率的关系 首先请大家看看FSB(Front Side Bus:前端总线)和内存比率与内存实际运行频率的关系。 FSB/MEM比率实际运行频率 1/1 200MHz 1/2 100MHz 2/3 133MHz 3/4 150MHz 3/05 120MHz 5/6 166MHz 7/10 140MHz 9/10 180MHz 对于大多数玩家来说,FSB和内存同步,即1:1是使性能最佳的选择。而其他的设置都是异步的。同步后,内存的实际运行频率是FSBx2,所以,DDR400的内存和200MHz的FSB正好同步。如果你的FSB为240MHz,则同步后,内存的实际运行频率为240MHz x 2 = 480MHz。

FSB与不同速度的DDR内存之间正确的设置关系 强烈建议采用1:1的FSB与内存同步的设置,这样可以完全发挥内存带宽的优势。内存时序设置 内存参数的设置正确与否,将极大地影响系统的整体性能。下面我们将针对内存关于时序设置参数逐一解释,以求能让大家在内存参数设置中能有清晰的思路,提高电脑系统的性能。 涉及到的参数分别为: ?CPC : Command Per Clock ?tCL : CAS Latency Control ?tRCD : RAS to CAS Delay ?tRAS : Min RAS Active Timing ?tRP : Row Precharge Timing ?tRC : Row Cycle Time ?tRFC : Row Refresh Cycle Time ?tRRD : Row to Row Delay(RAS to RAS delay) ?tWR : Write Recovery Time ?……及其他参数的设置 CPC : Command Per Clock 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.doczj.com/doc/1d18025236.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

微星970A-G46主板BIOS图文详解教程

微星9系列主板支持AMD推土机。BIOS采用第2代UEFI图形BIOS(Click BIOS II)。AMI BIOS 设置基本都一样,这里以970A-G46为例,讲解BIOS设置。 Version E7693AMS 版BIOS界面如下:Click BIOS II是由MSI开发,它提供了一个图形用户界面。通过鼠标和键盘来设置BIOS参数。最大的改进是提高BIOS首页的信息量。整个页面分为二大部分,信息显示区和BIOS设置区。 通过Click BIOS II 用户可以改变BIOS设置,检测CPU温度、选择设备启动优先权并且查看系统信息,例如:CPU名称,DRAM容量,操作系统版本和BIOS版本。用户可以从备份中导入数据资料也可以与朋友分享导出数据资料。通过Click BIOS II连接英特尔网,用户可以再你的系统中浏览网页,检查MAIL和实用Live Update来更新BIOS。 温度检测 此区域显示了处理器和主板的温度 系统信息 此区域显示日期,时间,CPU名称,CPU频率,DRAM频率,DRAM容量和BIOS版本。 BIOS菜单选择 这些区域用来选择BIOS菜单。下列选项可用的: ▲SETTING主板设置- 使用此菜单指定芯片组功能,启动设备的设置。 ▲OC超频设置- 此菜单包含频率和电压调整选项,增加频率可能获得更好的性能,然而,高频率和高温度可能导致不稳定。我们不建议普通用户超频。 ▲ECO节能设置–此菜单与节能设置相关联。 ▲BROWSER浏览器- 此功能用来进入MSI Winki网页浏览。 ▲UTILITIES适应程序–此菜单包含备份和升级功能。 ▲SECURITY安全设置–此安全菜单用来放置未经许可而做任意更改的设置。你可以使用这些安全功能来保护你的系统。 设备启动优先权栏 此状态栏显示了启动设备的优先权,高亮的图片表示设备是可用的。 高优先权低优先级 按住图标后左右拖曳来指定启动优先权。 启动菜单 此菜单按钮用来打开一个启动菜单。用鼠标点击此选项迅速从设备中启动系统。 模式按钮 此功能允许你预先导入节能或超频功能 BIOS设置常用的功能键: 一、S ETTINGS(主板设置) 点击进入主板设置。 主板设置的选项。

内存和CPU频率匹配方法的探讨

内存和CPU频率匹配方法的探讨 目录 1.CPU频率的概念 (1) 2.前端总线的概念 (2) 3.各种内存频率的名称辨析 (2) 4.内存的类别和属性 (2) 5.Intel平台内存和CPU同步的条件 (3) 6.FSB带宽和内存带宽相匹配条件 (4) 7.Intel平台的内存异步设置方法 (4) 8.AMD平台的内存实际频率的计算方法 (6) 9.关于双通道内存技术 (8) 10. 小结 (11) 11. 后记 (11) 关于内存与CPU搭配的问题,是电脑爱好者最关心的问题之一。怎样搭配?在网上有成百上千篇文章,把人给看得眼花缭乱,如果不仔细分析判断,很难辨别哪个是正确的,哪个是错误的。据我分析,形成这种局面的原因有多种:一是CPU的外频跟前端总线的频率经常混用,有时还把前端总线跟HT总线也混同;二是三种内存(SDRAM、DDR1 SDRAM、DDR2 SDRAM)的特性不 1

同,但是,经常被混同、混用;三是因为同一个频率有多种名称,各种名称经常被混用;四是Intel的CPU和AMD的CPU特性不同,它们跟内存的搭配方法也不相同,但是经常被混同;五是AMD的K8以前的CPU跟K8及以后的CPU 特性不同,经常被混同;六是各个主板厂商对内存的设置经常采用不同的方法和名称,容易使人迷惑;七是文章写作年代不予注明,不知道说的是哪个年代的、用的是什么型号的内存;八是写作者的水平参差不齐,鱼龙混杂,有时很难辨别孰是孰非。因此,我在学习内存知识时,还真的花了不少时间。因为看得多了,想得也多了,当然,也会萌生一些个人的见解。为了巩固我的学习成果,我作了此小结备忘。当然也希望给同是“菜鸟”的网友们以参考,更欢迎“大侠”们指正。 1.CPU频率的概念 CPU的频率就是我们常说的电脑的速度,非常重要。但是,CPU本身只是一个芯片,不会产生频率,频率是电脑的主板外加给它的。它的主频是它能正常工作的频率,如果频率太高,即对它作过度超频使用时,它会“罢工”甚至被烧坏的。CPU的主频等于外频(CPU Host Frequency)乘以倍频(Multiplier),即 有 主频=外频×倍频 其实,倍频并不是频率,只是一个倍数,倍频器是设在CPU中的。外频是计算机主板上的频率发生器产生的,是计算机的时钟标准,也称为系统时钟频率。例如一个CPU的倍频器的倍数是10,加给它的外频是200 MHz时,这个CPU 的主频就等于 200 MHz×10 = 2000 MHz = 2.0 GHz

电脑练习题讲解

单选题 一.单选题 1.第一台电子数字计算机的名称是________。 A、ENIAC B、ENIAVC C、APPLE D、EDSAC 答案(A) 2.第二代计算机其主要器件是由________ 构成。 A、集成电路 B、晶体管 C、电子管 D、大规模集成电路 答案(B) 3.在计算机内部用于汉字存储运算等处理的信息代码是________。 A、汉字输入码 B、汉字机内码 C、汉字字形码 D、汉字交换码 答案(B) 4.________不等于1MB。 A、2的20次方字节 B、1000KB C、1024*1024字节 D、1024KB 答案(B) 5.计算机的存储量是以KB为单位的,1KB表示________。 A、1024个字节 B、1024个二进制信息位 C、1000个字节 D、1000个二进制信息位答案(A) 6.________不是存储容量的单位。 A、bit B、KB C、MB D、GB 答案(A) 7.世界上公认的第一台电子计算机逻辑元件是________。 A、集成电路 B、晶体管 C、电子管 D、继电器 答案(C) 8.16×16点阵的汉字要占用________个字节。 A、8 B、36 C、32 D、256 答案(C) 9.计算机中信息存储的最小单位是________。 A、位 B、字长 C、字节 D、字 答案(C) 10.计算机的存储器容量,常用KB作单位,其中B是表示________。 A、位 B、字长 C、字节 D、字 答案(C) *11.不同型号的计算机,就其工作原理而论都是基于________原理。 A、二进制数 B、布尔代数 C、开关电路 D、存储程序控制 答案(D) 12.CAD是________的英文缩写。 A、计算机辅助教学 B、计算机辅助设计 C、计算机辅助制造 D、计算机辅助控制答案(B) 13.CAM是________的英文缩写。 A、计算机辅助教学 B、计算机辅助设计 C、计算机辅助制造 D、计算机辅助控制答案(C) 14.字符的ASCII码十进制值为71,其十六进制表示为________。

CPU的三个主要参数,主频.总线频率.缓存容量。

要弄明白这些参数的意思,首先要明白MHz(兆赫)是什么东西,MHz(兆赫)是Hz(赫兹)的一个衍生当量级,Hz相应的衍生单位有:kHz(千赫)、MHz(兆赫)、GHz(吉赫)、THz(太赫)、PHz(拍赫) 、EHz(艾赫)。Hz在电子技术中,是指一个按一定电压幅度,一定时间间隔连续发出的脉冲信号(脉冲信号之间的时间间隔称为周期,时间是s(秒)),一秒钟一个周期就是1Hz ,一秒钟1000个周期就是1000Hz。(赫兹频率计算单位为:1 千赫kHz 10^3 Hz =1 000 Hz .1 兆赫MHz 10^6 =Hz 1 000 000 Hz .1 吉赫GHz 10^9 Hz =1 000 000 000 Hz。衍生单位以千进位1000kHz(千赫)=1MHz(兆赫)、1000MHz=1GHz(吉赫))。CPU一般运行在MHz(兆赫)、GHz(吉赫)段,人们偏好用MHz(兆赫)表示。一个cpu 主频如果是1800MHz,也可以叫1.8GHz(吉赫),则表示脉冲信号一秒钟内在这个cpu运行了18亿个周期(一个周期cpu可以完成1次二进制运算)。 以酷睿2双核E8400为例: 主频:3000MHz. 总线频率:1333MHz. 二级缓存容量:6144KB. cpu主频:即CPU内核工作的时钟频率,代表一秒钟内脉冲信号运行了X个周期,主频对于提高CPU运算速度却至关重要,如:CPU在同一个时钟周期内执行同一条运算指令,运行在1000MHz主频时,比运行在2000MHz主频时速度慢一倍,因为2000MHz的时钟周期比1000MHz的时钟周期占用时间减少了一半。同等条件下主频越高运行的速度越快。 但不能精确代表实际的计算速度,因为一颗cpu需要许多技术支持才能有优秀的表现。如:酷睿i3处理器比同频酷睿E快10%以上,AMD闪龙2800+主频1600MHz速度性能却与Intel 的2800MHzCPU相当。CPU的主频代表速度不等同CPU实际的运算能力。 酷睿2双核E8400,主频:3000MHz,就是说一秒钟内脉冲信号可以在E8400中运行30亿个周期。也意味着E8400每秒钟能够完成30亿次二进制运算。 总线频率(FSB):CPU标注的总线频率是指CPU连接到北桥芯片总线的最高频率,CPU 连接到北桥芯片的总线也是CPU与外界交换数据的主要通道,因此前端总线的数据传输能力对整机性能影响很大。最大带宽决定着数据传输速度,而数据带宽的计算公式=总线频率×数据位宽÷8,酷睿2双核E8400,总线频率:1333MHz,(1333x64÷8=10664MB/s),酷睿2双核E4300,总线频率:800(800x64÷8=6400MB/s),计算得知E8400比E4300,数据传输能力强了1.6倍,所以总线频率高的cpu比总线频率低的cpu其数据传输优势不言而喻。高档的cpu一定配有高的总线频率。 酷睿2双核E8400,总线频率:1333MHz,就是说它可以用每秒10664MB带宽传输数据。缓存容量:1L(一级缓存)、L2(二级缓存)、L3(三级缓存)是处理器内部的缓冲存储器,工作在cpu与内存之间,能够大幅度提升CPU的处理速度,缓存大小直接影响CPU性能。缓存作用与内存相仿一同为处理器提供数据,但cpu从缓存上读取数据的速度是内存无法相比拟的。1L与CPU同速运行,L2比一级缓存速度稍慢,但是容量大,三级缓存相对二级缓存速度更慢一些,容量也更大,1L、L2、L3通称为高速缓存。CPU在运行时读取数据的顺序是1L、L2、L3再内存和虚拟内存。只有在缓存中查找不到数据时cpu才会从内存中查找并把这个数据所在的数据块同时调入缓存中,现在大多数CPU缓存读取率可达90%左右,大约10%需要从内存读取,就是说CPU下一次要读取的数据90%都可在缓存中找到,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用。一级缓存制造成本很高生产难度很大,所有cpu一级缓存容量很难扩大。随着CPU制造工艺的发展,二级缓存容量在逐年提升,二级缓存上的差异,往往是同一核心CPU高低端的分水岭。只有高档cpu才具高的二级缓存和三级缓存。 酷睿2双核E8400,二级缓存容量:6144KB,就是说cpu在缓存中一次可以调用一个6144KB

超频内存时序表

内存时序 一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。 在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是 “CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍: 一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置 首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表: Command Per Clock(CPC) 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。 显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。 该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。CAS Latency Control(tCL) 可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。 一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。 CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。 内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。 这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。

如何读懂时序图

https://www.doczj.com/doc/1d18025236.html,/itangcle CPE/EE 421 Microcomputers WEEK #10 Interpreting the Timing Diagram 如何读懂时序图 The 68000 Read Cycle

2 Alan Clements 3 Actual behavior of a D flip - f lop Timing Diagram of a Simple Flip - F lop Idealized form of the timing diagram Data hold time Data setup time Max time for output to become valid after clock 4 An alternative form of the timing diagram General form of the timing diagram

A memory access begins in clock state S0 and ends in state S7 6

The most important parameter of the clock is the duration of a cycle, t C YC.

8 Address Timing 地址时序 ?We are interested in when the 68000 generates a new address for use in the current memory access 我们感兴趣的是当6800芯片能够生成一个新的地址供当前的内存访问 ?The next slide shows the relationship between the new address and the state of the 68000 ’s clock 下面展示的是新的地址跟6800芯片时钟的 关系 Alan Clements

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系2010-01-27 09:51:34| 分类:电脑知识| 标签:|字号大中小订阅 主频、外频、倍频、前端总线频率、内存频率的概念 及它们之间的关系 天蚕收集整理2010-01-27 现在网上对主频、外频、倍频、前端总线频率、内存频率的叫法千奇百怪,对同一种事物的叫法都没有统一,给人感觉好像有很多种类似的,所以很有必要先理清头绪,搞清楚多种不同叫法之间的等价关 系: 1.主频=CPU频率=CPU内部的频率 2.外频=CPU外频=CPU外部的频率 3.倍频=CPU倍频 4.前端总线频率=FSB频率 5.内存频率=DRAM频率 一、参数名称的历史沿革、发展及它们之间的关系概述 我们知道,电脑有许多配件,配件不同,速度也就不同。在286、386和早期的486电脑里,CPU 的速度不是太高,和内存保持一样的速度。后来随着CPU速度的飞速提升,内存由于电气结构关系,无法象CPU那样提升很高的速度,于是造成了内存和CPU之间出现了速度差异,这时就提出一个CPU的主频、倍频和外频的概念。外频顾名思义就是CPU外部的频率,早期也就是内存的频率,CPU以这个频率来与内存联系。CPU的主频就是CPU内部的实际运算速度,主频肯定是比外频高的,高一定的倍数,这个数就是倍频。例如:一个老的INTEL 486 CPU,上面印着486 DX/2 66。这个486的CPU的主频是66MHZ,DX/2代表是2倍频的,于是算出CPU的外频是33MZ,也就是内存的工作频率,这同时也是前端总线(英文Front Side Bus)FSB的频率。因为CPU是通过前端总线来与内存发生联系的,所以内存的工作频率(或者说外频也行)就是前端总线的频率,即前端总线的频率就是33MZ。这样的前端总线结构一直延续到486之后的奔腾(俗话说的586)、奔腾2、奔腾3。 到了奔腾4年代,内存和CPU的工作模式发生了改变,前端总线的概念也变得有些复杂了。奔腾4 CPU采用了Quad Pumped(4倍并发)技术,该技术可以使系统总线在一个时钟周期内传送4次数据,也就是传输效率是原来的4倍,相当于用了4条原来的前端总线来和内存发生联系,即前端总线FSB有效频率=外频X4。在外频仍然是133MHZ的时候,前端总线的速度增加4倍变成了133X4=533MHZ,当外频升到200MHZ,前端总线变成200X4=800MHZ,所以你会看到533 MHZ前端总线的P4和800 MHZ 前端总线的P4,就是这样来的。但他们的实际外频只有133 MHZ和200 MHZ,不过,由于人们保留了以前老的概念——前端总线就是外频,所以习惯了这样的叫法:533 MHZ外频的P4和800 MHZ外频的P4。其实应该叫533 MHZ前端总线P4或533 MHZ FSB的P4才准确。到现在,外频与前端前线的概念则出现了明显的区别:即外频是CPU与主板之间同步运行的速度,是指数字脉冲信号在每秒钟震荡的次数;而前端总线的速度指的是数据传输的速度,即每秒钟CPU可接受的数据传输量。两者的区别就在于,前者是震荡频率的概念,而后者则是传输量的概念。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡1

SDRAM时序控制

SDRAM的时序控制 一、SDRAM的外在物理结构 (1)P-Bank 为保证CPU的正常工作,SDRAM必须一次传输完CPU在一个传输周期内所需要的数据量,也就是CPU数据总线的位宽(bit),这个位宽也就是物理Bank(Physical Bank, P-Bank)的位宽,所以内存需要组成P-Bank来与CPU打交道。 (2)芯片位宽与芯片数量 然而每个内存芯片都有自己的位宽,即每个传输周期能提供的数据量。由于技术要求、成本和实用性等方面限制,内存芯片的位宽一般都小于P-Bank的位宽,这就需要多颗内存芯片并联工作,以提供CPU正常工作时一个传输周期内所需要的数据量。所以,P-Bank实际上就是一组内存芯片的集合,这个集合的位宽总和=P-Bank的位宽=CPU数据位宽,但这个集合的数据容量没有限制。 一个SDRAM只有一个P-Bank已经不能满足容量的需要,所以,多个芯片组可以支持多个P-Bank,一次选择一个P-Bank工作。 (3)SDRAM的封装 SIMM: Single In-line Memory Module,单列内存模组,内存模组就是我们常说的内存条,所谓单列是指模组电路板与主板插槽的接口只有一列引脚(虽然两侧都有金手指pin)DIMM: Double In-line Memory Module, 双列内存模组,所谓双列是指模组电路板与主板插槽的接口有两列引脚,模组电路板的每侧金手指对应一列引脚。 DIMM是SDRAM集合形式的最终体现。前文讲过P-Bank对芯片集合的位宽有要求,对芯片集合的容量则没有任何限制。高位宽的芯片可以让DIMM的设计简单一些(因为所用的芯片少),但在芯片容量相同时,这种DIMM的容量就肯定比不上采用低位宽芯片的模组,因为后者在一个P-Bank中可以容纳更多的芯片。 SDRAM的引脚与封装: 二、SDRAM内部逻辑结构 (1)L-Bank SDRAM的内部实际上是一个存储阵列,就如同表格一样,而每个单元格就称为存储单元,这张表格就成为逻辑Bank(Logical Bank, L-Bank)。考虑到技术、成本、执行效率等方面原因,不可能只需要一个全容量的L-Bank,所以人们在SDRAM内部分割多个L-Bank,目前基本都是4个,内存访问时,一次只能是一个L-Bank。

CPU的频率

当人们想要购买或评价一台计算机时, 最先谈到的往往就是该机器的CPU,如Pentium4 2.8GHz/800MHz FSB, 即2.8GHz的CPU 主频, 8 00 MHz的前端总线频率, 它们都影响着CPU的运算速度, 另外还有外频、倍频等相关指标, CPU的这些工作频率是反映CPU性能的主要指标。 一、计算主频的公式 “主频=外频*倍频”是我们大家熟悉的计算CPU主频的公式, 但现在当我们浏览相关网页时, 我们也会看到另外一个公式——主频=前端总线频率*倍频。而通常计算机厂商会标示出CPU的额定主频和它所能支持的前端总线频率(FSB) , 而倍频和外频一般不直接标示, 如一款Intel Pentium4 CPU 2.80GHz, 前端总线频率是800MHz,假设CPU 的实际工作频率和额定频率一致, 那按照公式——主频=前端总线频率*倍频计算, CPU的倍频是2800MHz/800MHz=3.5吗? 抑或按照公式——主频=外频* 倍频计算?那外频又是多少呢? 前端总线与外频之间有什么关系吗? 下面本文就对主频、外频、倍频、前端总线频率等相关概念的定义及相互之间的关系与区别作一个较为详细的辨析。 二、频率的定义及计算机的时钟频率 在电子技术中, 脉冲信号是按一定的电压幅度, 一定时间间隔连续发出的。我们将第一个脉冲和第二个脉冲之间的时间间隔称为周期, 而将在单位时间(如1秒) 内所产生的脉冲个数称为频率。频率是描述周期性信号(包括脉冲信号)在单位时间内所发出的脉冲数量多

少的计量单位,它的标准计量单位是Hz(赫兹) 。计算机中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。1Hz= 1/ 1秒。计算机内主要震荡的来源来自主板上的时钟频率发生器(负责控制CPU 等配件的频率)。它利用电流刺激石英震荡来计算时间, 并驱使电流状态进行改变。每震荡一次, 电流信号状态就会改变一次, 因为计算机的工作都是通过电流信号状态的传输, 因此震荡越快, 电流信号的改变就越快,计算机工作也就越快。MHZ指频率发生器每秒震荡百万次。例如100MHz、133MHz等,所以100MHz 就是每秒震荡1 00百万次。 三、主频、外频与前端总线频率、倍频 1.主频 CPU的主频(内频) 是指CPU的内部工作频率。单位为MHz或GH z, 1G=1024M。用来表示CPU 的运算速度。一般来说, 主频越高, 一个时钟周期里完成的指令数也越多,CPU的运算速度也越快。CPU的主频已经从8086 的4.77MHz 提高到Pentium 4 的3GHz 以上。 2.外频与前端总线频率 CPU 的外频是指主板的外部总线时钟频率,单位也是MHz, CPU 外频主要由与其相匹配的主板决定, 是CPU 的基准频率。通过主板上的时钟频率发生器(CLK)芯片对旁边的晶体振荡器元件进行锁频控制, 生成66MHz和100MHz和133MHz等几个标准外频,供给处理器和内存。同时, 再经过不同的分频如2/3分频和1/3分频得到的66MHz和33 MHz的时钟频率供给AGP和PCI设备。在AMD的雷鸟系列CPU发布以

cpu频率主板总线频率内存频率的关系 (1)

cpu频率-主板总线频率-内存频率的关系 首先,要说明INTEL和AMD在这方面有些许不同。 带宽=频率x系数x位数/8 里面所指的频率是CPU外频。 Intel的系数是4。也就是说:前端总线=CPU外频X4。前端总线是由CPU外频决定的。主板上的参数是最大值。 例如。Intel的E5200。外频是200MHz,倍频是12.5。主频是 200*12.5=2.5GHz。那一块前端总线额定为1333的主板上这个 E5200时,前端总线就是200*4而不是1333...而这个时候,CPU和前端总线交换数据的速度就是: 200*4*64/8=6400MHz=6.4GB/s...为什么位数为64?那是因为 E5200为64位CPU..现在市面上的CPU大都是64位。 再说内存,例如我一条DDR2 667的内存。其实内存的实际工作频率为333MHz...DDR的意思是Double data rate.. 翻译成中文大概的意思是双倍数据速率。。也就是说1个周期内,内存可以同时进行读取和写入两项工作。以前的 SDRAM只能在一个周期内读取或者写入。。所以DDR2的内存频率是实际工作频率*2....

而内存的带宽公式也带宽=频率x系数x位数/8 667的内存带宽为:667*64/8=5336=5.336GB/s。。这时。内存明显成为了系统的瓶颈。。 而双通道模式下带宽加倍就是10.672GB/s。。所以打开双通道对电脑性能是有不少提高的。。。 这时CPU由于只有6.4GB/s的带宽,明显成为了系统的瓶颈。。所以就产生了超频这个东西。 AMD的CPU由于集成了内存控制器,所以打开双通道没多大意义。HT是HyperTransport的简称。HyperTransport本质是一种为主板上的集成电路互连而设计的端到端总线技术,目的是加快芯片间的数据传输速度。HyperTransport技术在AMD平台上使用后,是指AMD CPU 到主板芯片之间的连接总线(如果主板芯片组是南北桥架构,则指CPU到北桥),即HT总线。类似于Intel平台中的前端总线(FSB),但Intel平台目前还没采用 HyperTransport技术从规格上讲已经用HT1.0、HT2.0、HT3.0、HT3.1 HyperTransport技术。

相关主题
文本预览
相关文档 最新文档