当前位置:文档之家› 生物物理学概述

生物物理学概述

生物物理学概述
生物物理学概述

生物物理学( Biological Physics)是物理学与生物学相结合的一门交叉学科,是生命科学的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。

17世纪A.考伯提到发光生物荧火虫。

1786年L.伽伐尼研究了肌肉的静电性质。

1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度 E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。

1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。

1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。

1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起

的。

19世纪显微镜的应用导致细胞学说的创立。以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。电子显微镜的发展则提供了生物超微结构的更多信息。

应用

早在1920年 X射线衍射技术就已列入蛋白质结构研究。W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。

1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X 射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学

的概念和方法进行微观和宏观的系统分析。

生物的物理性质

20世纪20年代开始陆续发现生物分子具有铁电、压电、半导体、液晶态等性质,生命体系在不同层次上的电磁特性,以及生物界普遍存在的射频通讯方式。但许多物理特性在生命活动过程中的意义和作用,则远没有搞清楚。比如几乎所有生物,体内的蛋白质都是由L型氨基酸组成,而组成核酸的核糖又总是D型。为什么有这样的旋光选择性,与生命起源和生物进化有何关系,就有待探讨。1980年发现两个人工合成DNA片段呈左旋双螺旋,人们普遍希望了解自然界有无左旋 DNA存在。1981年人们在两段左旋片段中插入一段A-T对,整个螺旋立即向右旋转,能否说明自然界不存在左旋DNA呢?这种特定的旋光性对生命活动的意义现仍无答案。根据生物的物理特性可以测出各种物理参数。但是由于生命物质比较复杂,在不同的环境条件下参量也要改变。已有的测试手段往往不适用,尚待技术上的突破,才有可能进一步阐明生命的奥秘。

生命活动的物理及物理化学过程

活跃在生物体内的基本粒子(目前研究到电子和质子)的研究,也是探索生命活动的物理及物理化学过程的一个主体部分。生物都是含水的,研究水溶液中电子的行为,对了解生命活动的理化过程极为重要。人们已经发现了生物的质子态、质子非定域化和质子隧道效应等现象,因此需进一步开展量子生物学的研究,探索这些基本粒子在活体内的行为。光合作用中叶绿素最初吸收光子只在10-15秒瞬间完

成,视觉过程和高能电离辐射最初始的能量吸收也都是瞬间完成的,这些能量在体内最初的去向和行为,从吸收到物理化学过程的出现,究竟发生了什么物理作用,这就需要既灵敏又快速的测试技术。生命活动过程中过去不被注意的组分,包括甲基、酰基这样的基团,水分子和金属离子,它们恰恰活跃地作用于大分子之间,在生物大分子相互作用时,不仅是搭桥牵线以引发大分子的构象变化,而且它们自身就参与结构和功能变化。如甲基化与神经传导、生物信号传递、基因开关等均有密切关系。酰化作用、金属离子如钙、镁等的作用也早被注意。在膜通道研究过程中,发现了钙和钙调素的作用。生物体内的游离子(自由水)可以由氢键缔合成水化层,它不是结合水,但对生物结构有关并参与生命活动。生物水既是质子供体,也是质子受体,因此水在生物体内决不是简单的介质。蛋白质在56℃左右变性,但我们能在70℃以上的温泉中找到生物;人工培养的细胞保存在-190℃,解冻后细胞仍与正常态一样,这些生物体内水的结构状态是怎样?如果能把这些极端状态的水的结构与性质阐明,将有助于对生命规律的理解。

生物在亿万年进化过程中,最终选择了膜作为最基本的结构形式。从通透、识别、通讯,到能量转换等各种生命活动几乎都在膜上进行,膜不仅提供场所,它本身也积极参与了活动。

物理及物理化学技术的发展和应用

对生物大分子及大分子体系结构分析的有:

①近红外显微镜。反差大,生物材料无需染色即可观察。由于近

红外能量极小,因此基本上不损伤生物样品,对光敏系统如暗适应的感受器细胞的观察就十分有利。有人预计有可能用来观察生活状态的活样品;②闪光X射线显微镜。每个脉冲为60毫秒,打在聚甲基异丁烯酸甲酯薄膜窗口,由于所射出的是软X射线(23~44埃)正是水透明区,因此提供了可以进行水湿样品研究的条件。同步辐射中的软 X 射线对生物学研究将带来极大的好处;③光散射显微镜。能测定细胞的大小与形状,绝对灵敏度高达0.01~0.1微米,并且不怕杂质干扰,不需要样品制备直接提供信息;④利用吸收超声能量后引起温度瞬间变化来进行超声回声图象术进行诊断,用声学显微镜显示人染色体,样品在-188℃液氮中由透镜记录到超声信号再转换成像;⑤低角X射线衍射研究活细胞。用钕玻璃激光光源50~600ps脉冲,聚集在100微米有机玻璃靶上。由于主要来自15Cl离子的4.45埃激光源,因此有利于活细胞观察;⑥核磁共振。研究生物大分子结合重金属离子后结构变化,二价阳离子在膜结构与功能关系中的作用,盐菌紫膜光照后内膜酸碱度变化等等。除了常用的13C、31P、1H等外还用19F测定酶与底物的相互作用。用2D测定膜中的分子动力学。另一方面,二维核磁已可用来测定溶液中大分子内氢原子之间的距离,核磁成像作为无损伤成像技术,将远优于超声的应用,在某些方面优于X射线断层成像技术。此外如利用全反射衰减红外光谱观察水溶液中膜蛋白及红细胞结构;拉曼差光谱测定肌红蛋白三级及四级结构;X射线散射研究溶液构像测定原子间短程涨落状态,如蛋白质α-螺旋510埃区域的动态变化;利用磁圆二色研究生物分子可以和荧光偏振、线性

圆二色互补测定高粘度下或非荧光分子样品。有时一种技术的出现将使生物物理问题的研究大大改观。如 X射线衍射技术导致了分子生物物理学的出现。因此虽然技术本身并不一定就代表生物物理,但它对生物物理学的发展是非常关键的。

意义

农业方面为防止环境污染,取代农药和化肥除考虑生物途径(主要是微生物)外,更重要的是寻找作物生长的内在规律,根据作物本身的物理或物理化学规律,来控制作物生长和能量的合理利用。例如中国利用线粒体互补方法来揭示杂交品种是否有杂种优势,这就是利用科学规律提出节省时间的育种方法。有些中国科学家提出线粒体中电子传递途径的改变和调节有可能是多种方式的。这就为使更多的C3型植物能转化到代谢更有效的C4型开辟了道路。提高光合作用的效率关键之一是如何控制暗反应中关键酶的活力;用物理方法暂时性的抑制酶活力显然要比化学方法有利得多。细胞利用环境中饱和和不饱和脂肪酸与温度有关。在15~20℃时利用油酸,而在20~25℃时则主要利用亚油酸,从而提供了不同温度条件下控制作物能量转换途径来提高作物的营养价值。70年代末全球耗地为1.5×109公顷土地,其中盐碱地占4×108公顷。能否利用某些好盐菌来改良土壤,尤其是具有视紫红质的好盐菌,借助它能将光能直接转换成化学能,是值得考虑的。辐射育种、激光育种由于没有掌握生物物理规律,工作盲目性较大,急待改进,以期获得更好效果。

医学方面 X射线断层照相(CT)、超声、核磁成象能精确地进行肿

瘤定位等。电子成像,如利用同位素标记的脱氧葡萄糖,可以清晰地显示出在休息、学习、听音乐、边学习边听音乐等情况下脑活动的不同状态。表明脑在不同情况下代谢活动是完全不同的。这就是神经性障碍的病患者的理想诊断方法。人工脏器或假肢等领域,如果不能首先从生物体引出固有信号,然后使信号转换,再进行模拟是无法完成的。

工业方面为实现工业改造中高灵敏度条件下小型化自动化,生物原型(模板)是取之不尽的源泉。生物是个十分复杂的化工厂,无需加温加压即以无比短暂的速度,全部自动化地合成与分解。几乎没有三废需要处理。生物又是最精密的电子工厂,厂里零部件之小、灵敏度、精确度之高无与伦比。不仅全部都是自动控制,而且代偿性强。例如螳螂的测速绝技──在0.05秒内测准掠过它眼前小虫的大小、方向与飞行速度──的装置只是它的一对大复眼和颈部的本体感受器。生物物理学把原型加以研究,然后进行数学模拟和电子模拟,先后制成了电子蛙眼跟踪器──跟踪移动目标、水母风暴预报装置、高清晰度的电视(仿鲎眼侧抑制原理)等。目前人们已开始探索以分子为元件的计算机的可能性。一方面物理及物理化学技术的应用促进了生物物理学的发展;另一方面技术在应用于生物对象时必须有所改进。比如最早电子顺磁共振波谱仪(ESR)应用于生物材料,首先碰到含水、恒温等问题。一般研究活物质的技术都要求满足:低能量、无损伤、小样品、短时间、最迫近生活状态等条件。这些条件难度都较高,因此,生物物理学对技术的发展也有很大的促进。生物物理学

是研究活物质的物理学。尽管生命是自然界的高级运动形式,也仍然是自然界3个量(质量、能量和信息)综合运动的表现。只是在生理体内这种运动变化既复杂又迅速,而且随着生物物质结构的复杂化,能量利用愈趋精密,信息量愈来愈大。虽然难度很大,但从另一方面看,研究活物质的物理规律,不仅能进一步阐明生物的本质,更重要的是能使人们对自然界整个物质运动规律的认识达到新的高度。

书籍摘要

介绍了生物物理学的定义、产生和发展的简史、研究内容,并指出了物理学和生物学交叉的必要性和必然性。学科交叉是当前最富活力的领域之一,科学的协同作用及相互激励作用逐渐被人们所认识。生命科学与医用生物物理学

物理学的交叉所形成的一门新的学科——生物物理学,日益受到人们的关注。一方面,物理学在以往的年代对简单系统的研究已经积累了十分丰富的经验、成熟的理论和先进的技术。生物是物,生物有理,为了真正揭示生命过程的本质,深入掌握生命过程的基本规律,从而达到控制生物、改造生物的目的,生物学的发展离不开物理学的理论和技术。另一方面,物理学研究宏观物质世界的核心问题,是从基本的物质结构和相互作用出发,阐明种种复杂现象的由来和机理。人类所知的最复杂的物质存在和运动形式,莫过于地球上经过几十亿年进化而形成的生命现象。生命物质和生命现象必定是21世纪物理学研究的重要对象。

生物物理学的定义

生物物理学的定义是生物物理学领域几乎每一本教科书都无法回答的问题。许多课本中对什么是生物物理学几乎都只能含糊其词的而没有给出正面的回答:生物物理学是那么一个领域没有明确的内容范围;生物物理学还不是一个成熟学科;它的主要内容还不定型;生物物理学只是个别生物物理学家按照他们自己的设想来规定的,等等。因此与其去讨论他的定义或者是强调它的定义,还不如用讨论物理科学与生物科学之间的关系来明确生物物理学的概念。

1.1生物学和物理学

物理学和生物学互相促进,共同发展。物理学和生物学在两方面有联系:一方面,生物为物理提供了具有物理性质的生物系统,另一方面,物理为生物提供了解决问题的工具。生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理定律同样也适用于生命世界,无须赋予生活物质一种神秘的活力。对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。

生命科学研究不仅依赖物理知识、它所提供的仪器,也依靠它所提供的思想方法。生命科学学家也是由各个学科汇聚而来。学科间的交叉渗透造成了许多前景无限的生长点与新兴学科。

1.2各种生物物理学的定义

关于生物物理学的定义,有许多不同的看法。现列举文献中或网络上出现的四种定义。定义一:生物物理学是由物理学与生物学相互结合而形成的一门交叉学科。它应用物理学的基本理论、方法与技术研究生命物质的物理性质,生命活动的物理与物理化学规律,

以及物理因素对机体的作用。定义二:生物物理学是生物学和物理学之间的边缘学科,它用物理学的概念和方法研究生物各层次的结构与功能的关系,以及生命活动的物理过程和物理化学过程.定义三:生物物理学是物理学与生物学相结合的一门边缘学科,是生命科学的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。定义四:生物物理学是运用物理学的理论、技术和方法,研究生命物质的物理性质、生命过程的物理和物理化学规律,以及物理因素对生物系统作用机制的科学。上面的四个定义表述方法虽各有不同,但都认为生物物理学是一门生物学和物理学相互作用的学科,也都是从生物物理学的研究对象上来阐述其定义的。关于生物物理学属于生物学的分支还是物理学的分支,一些生物学家认为他们研究生命现象时只是引入了物理学的理论和方法,属于生物学的一个分支。但有些物理学家认为,研究生命的物质运动,只是物理学研究对象由非生命物质扩展到生命物质。应该属于物理学的分支。不同研究领域的学者处于不同的角度,也就有了不同的定义。

生物物理学的形成与发展

从16世纪末开始,人们就开展了生物物理现象的研究,直到20世纪40年代薛定谔(Schrödinger)在都柏林大学关于“生命

是什么”的讲演之前,可以算是生物物理学发展的早期。

19世纪末叶,生理学家开始用物理概念如力学、流体力学、光学、电学及热力学的知识深入到生理学领域,这样就逐渐形成一个新的分支学科,许多人认为这就是最初的生物物理学。实际上物理学与生物学的结合很早以前就已经开始。例如克尔肖(Kircher)在17世纪描述过生物发光的现象;波莱利(Borrelli)在其所著《动物的运动》一书中利用力学原理分析了血液循环和鸟的飞行问题。

18世纪伽伐尼(Galvani)通过青蛙神经由于接触两种金属引起肌肉收缩,从而发现了生物电现象

19世纪,梅那(Mayer)通过热、功和生理过程关系的研究建立了能量守恒定律。本世纪40年代,《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。著名的量子物理学家薛定谔专门作了“生命是什么”的报人体的生物物理学效应告中提出的几个观点,如负熵与生命现象的有序性、遗传物质的分子基础,生命现象与量子论的协调性等,以后陆续都被证明是极有预见性的观点,而且均得到证实。这有力地说明了近代物理学在推动生命科学发展中的作用。

20世纪50年代,物理学在各方面取得重大成就之后,物理学实验和理论的发展为生物物理学的诞生提供了实验技术和理论方法。例如,用X射线晶体衍射技术对核酸和蛋白质空间结构的研究开创了分

子生物学的新纪元,将生命科学的许多分支都推进到分子水平,同时也把这些成就逐步扩大到细胞、组织、器官等,为生物物理学的诞生创造了生物学条件,成为微观生物物理学发展的一条主干。此外,信息论、控制论、计算机科学技术、非线性科学的发展,还为生物物理学的发展提供了数学工具和信息论基础。应用生物信息论与控制论、非平衡态热力学、非线性与复杂性等的研究从宏观角度对生命现象进行了探讨,成为宏观生物物理学发展的基础。这两方面的结合使生物物理学以崭新的面貌出现在自然科学,特别是生命科学的行列之中,成为一门需要较多数学与物理基础,研究生命问题的独立发展的边缘学科。

物理概念对生物物理发展影响较大的除了薛定谔的讲演还有N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学的概念和方法进行微观和宏观的系统分析。

国际纯粹与应用生物物理学联合会(简称IUPAB)于1961年建立,以后每3年召开1次大会,至今已成为包括40余个国家和地区的生物物理学会,我国已于1982年参加了这个组织。从国际生物物理学

会成立到现在,虽然只有30多年的历史,但生物物理学作为一门独立学科的发展是十分迅速的。美、英、俄、日等许多国家在高等学校中设有生物物理专业,有的设在物理系内,有的设在生物系内,也有的设在工程技术类的院校。目前发达国家均投入很大的力量致力于这门学科的研究工作。我国开展生物物理科研与教学工作的历史更短些,但发展较快。尽管许多方面与国外的进展有较大差距,但是由于受到国家和科学工作者的重视,我们将会迅速地赶上去。

生物物理学的研究内容和现状

3.1生物物理学的研究内容生物物理学研究的内容十分广泛,涉及的问题则几乎包括生物学的所有基本问题。由于生物物理学是一门正在成长着的边缘学科,其具体内容和发展方向也在不断变化和完善,它和一些关系特别密切的学科(生化、生理等)的界限也不是很明确。现阶段,生物物理的研究领域主要有以下几个方面:

3.1.1分子生物物理。分子生物物理是本学科中最基本、最重要的一个分支。它运用物理学的基本理论与技术研究生物大分子、小分子及分子聚集体的结构、动力学,相互作用和其生物学性质在功能过程中的变化,目的在于从分子水平阐述生命的基本过程,进而通过修饰、重建和改造生物分子,为实践服务。

生物大分子及其复合物的空间结构与功能的关系是分子生物物理的核心问题。自从50年代X射线衍射晶体分析法应用于核酸与蛋白质获得成功,奠定了分子生物学发展的基础,至今已有40余年历史。

在这段时期中,有关结构的研究大体上经历了3个主要阶段:①晶体结构的研究;②溶液中生物分子构象的研究;③分子动力学的研究。分子构象随时间变化的动力学,分子问的特异相互作用,生物水的确切作用等是分子生物物理今后的重要课题 3.1.2膜与细胞生物物理。膜及细胞生物物理是仅次于分子生物物理的一个重要部分。要研究膜的结构与功能,细胞各种活动的分子机制;膜的动态认识,膜中脂类的作用,通道的结构及其启闭过程,受体结构及其与配体的特异作用,信息传递机制,电子传递链的组分结构及其运动与能量转换机制都是膜生物物理的重要课题。细胞生物物理目前研究的深度还不够,随着分子与膜生物物理的进展,细胞各种活动的分子机制也必将逐步阐明。

3.1.3感官与神经生物物理。生命进化的漫长历程中出现了能对内、外环境作出反应的神经系统。神经系统连同有关的感觉器官在高等动物特别是在人体内已发展到了高度复杂的程度,其结构上的标志是出现了大脑皮层,功能上大脑是最有效的信息处理、存贮和决策机构。因此感官和脑的问题已经成为神经生物学注意的中心。研究的主要问题有:①离子通道;②感受器生物物理;③神经递质及其受体;

④神经通路和神经回路研究;⑤行为神经科学。这是生物物理最早发展,但仍很活跃的一个领域,特别应该指出的是目前“神经生物物理”受到极大重视,因为这是揭开人类认识、学习、记忆以至创造性活动的基础。

3.1.4生物控制论与生物信息论。主要用控制论的理论与方法研

究生物系统中信息的加工、处理,从而实现调节控制机制。它从综合的、整体的角度出发,研究不同水平的生物系统各部分之间的相互作用,或整个系统与环境之间的相互作用,神经控制论和生物控制系统的分析和模拟是其两个重点。

3.1.5理论生物物理。是运用数学和理论物理学研究生命现象的一个领域,既包括量子生物学和分子动力学等微观研究,也包括对进化、遗传、生命起源、脑功能活动及生物系统复杂性等宏观研究。目前已从药物、毒物等简单分子逐步向复杂体系过渡,试图从电子水平说明生命现象的本质,涉及各种生命活动的基础。但在方法上还必须不断发展以适应需要。 3.1.6光生物物理。光生物物理是研究光生物学中的光物理与原初光化学过程,即研究光的原初过程的学科。主要研究问题有:①光合作用;②视觉;③嗜盐菌的光能转换;

④植物光形态建成:⑤光动力学作用;③生物发光与化学发光。

3.1.7自由基与环境辐射生物物理。研究各种波长电磁波(包括电离辐射)对机体和生物分子的作用机制及其产生效应的利用与防护基础研究。主要内容有:①自由基;②电离辐射的生物物理研究;③生物磁学与生物电磁学。

3.1.8生物力学与生物流变学。它的兴起是由于人们对认识生命运动规律、保护人类健康、生物医学工程和生物化学工程的需要。主要内容有:①生物流体力学;②生物固体力学;③其它生物力学问题;

④生物流变学。其中血液流变学占主导地位,这是因为它与临床密切结合,所以发展特别迅速。

3.1.9生物物理技术。生物物理技术在生物物理中占有特殊的地位,以致成为该学科中不可缺少的一个重要组成部分。这是因为每一项重要技术的出现常常使生物物理的研究进到一个新的水平,推动学科迅速发展。X射线衍射分析、核磁共振技术及常规波谱分析都是很典型的例子。生物物理技术和仪器的另一重要任务就是根据研究课题的需要设计新的仪器。如为了研究细胞膜上的脂和蛋白分子的侧向扩散运动而设计的荧光漂白恢复技术(FPR)等。 3.2生物物理学研究的现状

(1)分子生物物理学是整个生物物理学的基础,也是当前研究的重点,占主导地位(占1/3)

(2)膜与细胞生物物理学是把分子生物物理学原理应用到生物活体系的第一个目标,即用分子的语言描述膜与细胞的结构与功能(占1/3)

(3)开展动态的、活体的检测与研究,发展相关检测技术。

(4)对更高的复杂层次的研究,如对视觉、脑和神经活动的研究。生命科学各个领域的研究中,几乎都需要生物物理学的参与;与此同时,生物物理学自身也在不断发展,充实新内容,开拓新领域。

物理学和生物学交叉的必要性和必然性

4.1生物学的发展需要引入物理学的思想和方法物理学在生物学领域的应用,不仅包括物理学技术,实验方法的应用,还包括物理学理论和物理学思维方式的应用。是物理学在新的对象(生命体)上的应用。物理学从哥白尼及伽利略以来就逐渐明确它的特点而成为

一门精确而系统的科学。他的威力就在于它的精确性系统性,简练的概括性的给出事物的基本原理和相互关系,而且能够从原理来指导实践。早先人们努力致力于描述性科学(例如对于天体运动的描述),后来才发展成更精确的科学(例如牛顿运动定律的发现)。现在的生物学更多是处于描述性科学的阶段,它局限于叙述生命运动的现象和事实,没有上升到理论指导实践的阶段。它现在还不是一个完备的科学。它在解释一些根本的问题上,仅仅依靠描述现象来解释,是违背科学的方法的。所以生物学有待运用物理学基本原理来解释生命的现象和本质,进而成为一门精确而系统的科学。

人们很早就对动植物的形态生理进行了记载和描述,从那时起就产生了早期的生物学。随着生物学的发展,人们对生物学的研究已经深入到了细胞和分子阶段,但仍然逃脱不了描述性的研究。他们能够描述这些生物生理活动的现象,却不能说明产生这些运动变化的最基本的原因。例如,对于细胞分泌蛋白质的过程,生物学家可以描述在此过程中各种可能的膜交换途径,但是,是什么控制着膜性细胞器的定向的流动?现在还没有人确切知道这个答案,这是细胞生理学中尚未完全了解的奇迹之一。

人们越来越认识到,要更深刻地理解复杂的生物系统,需要有一种与物理学更密切整合在一起的定量生物学。分子生物学的许多内容已经依靠物理学家发明的技术了,如核磁共振与X射线。但现在生物学的数据更丰富了,它越来越需要那种作为物理学特点的分析和计算方法。

普林斯顿大学的第一位女校长,人类基因图谱破译的功臣雪莉.蒂尔曼说:“在生物学界人们越来越感到,我们需要认真考虑如何培养下一代生物学家这一问题。”她认为,这种培训应该包括更多的数学、物理学和化学。

4.2物理学进军生物学领域的必然性

19世纪末,很多物理学家认为,物理学的大厦已经建成, 仅剩下一些缝缝补补的工作。经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了。在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。我们能不能说,现代物理学的大厦已经建成了呢?物理学理论能够去解释宇观、宏观和微观的几乎所有非生命物质的运动,但是在复杂的生命物质和生命现象的对象面前却显得极其力不从心。所以它现在还远远不是一个完善的科学。可以仿照打个比方:现在的物理学家或许正为新的物理学大厦的建成而欣喜若狂,但当他们低下头,有没有看到地基里的生命呢?说不定地基里的生命蚂蚁正在啃噬大厦的地基,造成物理学大厦的又一次崩塌。于是他们又尝试重新建立起一个适合生命现象的物理学大厦。生物物理学是物理学派生出来的,到一定发展阶段去研究更复杂的生命现象的学科。物理学是自然科学的主力军,它在解释复杂的生命体和化合物面前无能

为力,于是它避开精锐,先向非生命物质进军。而把研究很多复杂的物质运动和生物体的任务交给了留给化学家和生物学家暂时主要去描述性地研究。现在它已发展到一定时期,非生命物质的堡垒即将被攻破,是它的大部队大反攻的时候了。它可以从宏观和微观两面夹人体的生物物理学生物膜

击,来研究生命现象了。构成生物体的物质与非生命物质是统一的,支配着无生命世界的物理定律同样也适用于生命世界。所以生命物质和生命现象必然成为物理学研究的重要对象。

生物物理学的任务

生物物理学的不断发展和完善,一定会极大地促进生命科学的发展,并将带来对于生命现象的本质新的突破。二十一世纪是生命科学的世纪,更是学科交叉、科学走向统一的世纪。新的世纪留给生物物理学的任务有:

(1)发掘非平衡开放系统特性的主要规律,也就是找出生命的热力学基础

(2)从理论上解释进化和个体发育的现象。

(3)解释自身调节和自我复制的现象(自组织现象)。

(4)从原子、分子水平上揭露生物过程的本质也就是找到活跃在细胞内的蛋白质、核酸及其他物质的结构和生物功能的联系;此外,还要在研究生命体在更高的超分子水平上、在细胞的水平上及在构成细胞的细胞器的水平上的物理现象。

(5)设计出研究生物功能物质及由这类物质构成的超分子结构的

物理方法和物理化学方法,并对利用这种方法所得到的结果提供理论解释。

(6)对神经脉冲的发生和传播、肌肉收缩、感觉器官对外部信号的接收及光合作用等高度复杂的生理现象,提供物理的解释。

(7)解释怎样由物质形成了意识。

生理心理学总结

第一章导论 1、生理心理学是心理学科学体系中的重要基础理论学科,它以心身关系为自己的基本命 题,力图阐明各种心理活动的生理机制。 2、学科性质:生理学是一门边缘学科(是心理学、神经科学和信息科学之间的边缘学科) 交叉学科、综合学科 动作电位:是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。 3、细胞生理学的概念:兴奋和抑制这两种基本的神经过程的活动,是神经系统反射活动的 基础,利用生理学技术能够记录动作电位和神经冲动的发放,作为兴奋和抑制这两种神经过程在细胞水平的表现。刺激达到一定程度将导致动作电位的产生,神经元的兴奋过程表现为单位发放的脉冲频率加快,抑制过程表现为频率降低。无论频率如何变化,同一个神经元的每个脉冲幅值不变。 4、“全或无”:神经元对刺激强度是按着“全或无”的规律进行调频式或数字化编码。这 里的“全或无”是指每个神经元都有一个刺激阈值,对阈值以上的刺激无论其强弱均给出同样幅值的脉冲发放。 5、干预脑功能和记录生理参数的传统方法: (1)传统生理心理学方法; (2)传统心理生理学方法; (3)灵长类动物的电生理学方法; (4)传统神经心理方法 6、干预与记录脑功能的当代认知神经科学方法: ①透颅磁刺激技术(有创):是近十多年来采用的新仪器。利用脉冲磁场对头皮和颅骨 的穿透力,通过头皮外的磁力线圈产生的脉冲磁刺激作用于大脑皮层描边,对其产生局部刺激作用。通过调节刺激强度和脉冲磁刺激作用于大脑皮层表面,对其产生局部刺激作用,用以观察大脑皮层局部兴奋或抑制对某些心理活动的影响。 ②无创性脑代谢成像技术(名词解释): 主要包括:功能性磁共振成像技术和正电子发射层描技术。 两者均通过显示认知活动中,与脑代谢过程相关生理参数的变化,研究认知过程的脑机制。 功能性磁共振成像技术是测定血氧水平信号在认知活动中不同脑区的变化。正电子发射层描技术是测定含放射性同位素18F的脱氧葡萄糖在脑区域代谢率,以此作为脑认知功能的生理指标。 ③无创性脑生理成像技术:(名词解释) 主要包括高分辨率脑电信号(脑电图)分析和脑磁信号分析技术。 他们测量脑活动所产生的微弱电磁场信号的变化。电场与磁场变化互为90°,脑电信号较好的反映出大脑皮层与深层之间的功能变化;脑磁信号反映大脑表面切线方向的功能变化。脑电图,事件相关点位和脑磁图的共同特点是较高的时间分辨率,在毫秒数量级的时间尺度上检测脑功能的变化,但其弱点是空间分辨率差。 ④实验设计:减法法则、一致性分析。

生物物理学发展史

生物物理学的发展史 从16世纪末开始,人们就开展了生物物理现象的研究,直到20世纪40年代薛定谔(Schr?dinger)在都柏林大学关于“生命是什么”的讲演之前,可以 算是生物物理学发展的早期。19世纪末叶,生理学家开始用物理概念如力学、流体力学、光学、电学及热力学的知识深入到生理学领域,这样就逐渐形成一个新的分支学科,许多人认为这就是最初的生物物理学。实际上物理学与生物学的结合很早以前就已经开始。例如克尔肖(Kircher)在17世纪描述过生物发光的现象;波莱利(Borrelli)在其所著《动物的运动》一书中利用力学原理分析了血液循环和鸟的飞行问题。18世纪伽伐尼(Galvani)通过青蛙神经由于接触两种金属引起肌肉收缩,从而发现了生物电现象。19世纪,梅那(Mayer)通过热、功和生理过程关系的研究建立了能量守恒定律。 20世纪40年代,《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。著名的量子物理学家薛定谔专门作了“生命是什么”的报告中提出的几个观点,如负熵与生命现象的有序性、遗传物质的分子基础,生命现象与量子论的协调性等,以后陆续都被证明是极有预见性的观点,而且均得到证实。这有力地说明了近代物理学在推动生命科学发展中的作用。 20世纪50年代,物理学在各方面取得重大成就之后,物理学实验和理论的发展为生物物理学的诞生提供了实验技术和理论方法。例如,用X射线晶体衍射技术对核酸和蛋白质空间结构的研究开创了分子生物学的新纪元,将生命科学的许多分支都推进到分子水平,同时也把这些成就逐步扩大到细胞、组织、器官等,

生物化学总结 蛋白质

蛋白质 一、概述 1.蛋白质:一切生物体中普遍存在的,由天然氨基酸通过肽键连接而成的生物大分子;其种类繁多,各具有一定的相对分子质量,复杂的分子结构和特定的生物功能;是表达生物遗传性状的一类主要物质。 2.元素组成:CONH。基本组成单位:氨基酸(氨基酸通过肽键连接为无分支的长链,该长链又称为多肽链)。一些蛋白质含有非氨基酸成分. 3.分类:按形状和溶解性:纤维状蛋白质(形状呈细棒或纤维状,多不溶于水);球状蛋白质(形状接近球形或椭球形,可溶于水);膜蛋白(与细胞的各种膜系统结合而存在。“溶于膜”)。 4.性质:生物大分子;胶体性质;带电性质;溶解性与沉淀;灼烧时可以产生特殊气味;颜色反应;可以被酸、碱或蛋白酶催化水解。 5.为什么加热降低了蛋白质的溶解性? 二、氨基酸 1.α-氨基酸结构: 2.分类:必需/半必需/非必需~~ 根据R基团的化学结构:脂肪族/芳香族/杂环~~ 根据R基团的极性和带电性质: a.非极性氨基酸:Gly、Ala、Val、Leu、Ile、Phe、Met、Pro、Trp b.极性氨基酸: 不带电:Ser、Thr、Tyr、Asn、Gln、Cys; 带正电:His、Lys、Arg; 带负电:Asp、Glu *非极性氨基酸:R基团为一个氢原子/R基团为脂肪烃/R基团为芳香环。 *不带电荷的极性氨基酸:R基团含有羟基/R基团含有巯基(SH)/R基团含有酰胺基。 *带负电荷的极性氨基酸,R基团带有负电。 *带正电荷的极性氨基酸,R基团带有正电。

3.酸碱化学:氨基酸是两性电解质,氨基酸在水溶液中或在晶体状态时都以不带电形式和兼性离子形式离子形式存在,在同一个氨基酸分子上带有能放出质子的-NH3+正离子和能接受质子的-COO-负离子。 氨基酸完全质子化时,可以看成是多元酸,侧链不解离可看作二元酸(阳离子—兼性离子—阴离子)。氨基酸的解离常数K1/K2可用测定滴定曲线的实验方法求得,二元酸的滴定曲线可大致分解为2条一元酸的滴定曲线。 4.等电点:在某一pH值下,氨基酸所带正电荷和负电荷相等,即净电荷为零,此时的pH值称为氨基酸的等电点,用pI表示。氨基酸在等电点时主要以兼性离子形式存在。 当氨基酸所处环境pH值等于该氨基酸等电点时,氨基酸净电荷数等于零,在电场中不能移动;氨基酸在等电点可以解离,解离成阳离子和阴离子的数目和趋势相等。 pI值等于等电兼性离子两边的pK值的算术平均值,pI=(pKa1+pKa2)/2。 5.α-氨基、α-羧基参加的反应: 共同参加的反应:茚三酮显色反应。二者的聚合反应(成肽反应)。 侧链R基参加的反应:二硫键的形成和打开 6.氨基酸巨星: Pro—亚氨基酸;影响蛋白质的空间结构和蛋白质的折叠。 Phe,Trp,Tyr—侧链具有芳香环;有特殊的光谱性质,是生物物理学家的宠儿。 Cys—巯基是很活跃的化学基团;在蛋白质内部和蛋白质之间形成二硫键;影响蛋白质的结构和功能。Asp,Glu,Arg,Lys—侧链带电荷、可解离;影响氨基酸与蛋白质的酸碱性质;参与许多酶的催化作用。His—侧链可解离;可带正电荷;解离常数接近生物体液pH;供出和接受质子的速率很大;在酶和其它蛋白的功能中具有重要地位。 三、肽 1.一个氨基酸的氨基与另一个氨基酸的羧基之间脱水缩合形成的共价键称为肽键。 两个或两个以上氨基酸通过肽键共价连接形成的聚合物即称为肽,组成肽的氨基酸单元称为氨基酸残基。 2.肽键是一种酰胺键。由于酰胺氮原子上的孤电子对离域与羰基碳轨道重叠,因此在酰胺氮和羰基氧之间发生共振相互作用。 肽键共振产生几个重要结果: a.肽键具有部分双键性质。 b.限制绕肽键的自由旋转。 c.组成肽键的4个原子和2个相邻的C原子处于同一酰胺平面。 d.在肽平面内,两个C可以处于顺式构型或反式构型,反式构型比顺式构型稳定,肽链中的肽键绝大多数都是反式构型。 e.肽键具有永久偶极,肽基具有较低的化学反应性。 3.肽链具有方向性:N-端氨基酸残基为起点,C-端氨基酸残基为终点。 4.命名:12~20寡肽,后为多肽。 5.肽的物理和化学性质:小肽的理化性质与氨基酸类似。肽的酸碱性质与带电性质取决于肽的末端氨基、羧基和侧链上的基团。肽的等电点可以通过取等电兼性离子两边的pKa的平均值,算出其pI值。 6.双缩脲反应:含有两个或两个以上肽键的化合物都能与CuSO4碱性溶液发生双缩脲反应而生成紫红色或蓝紫色的复合物。可利用这个反应测定多肽与蛋白质的含量。 7.多肽的人工合成方法:多肽的人工合成有两种类型,一种是由不同氨基酸按照一定顺序排列的控制合成,另一种是由一种或两种氨基酸聚合或共聚合。 四、一级结构 1.每一种天然蛋白质都有自己特有的三维空间结构,这种三维结构通常被称为蛋白质的构象。一个给定的蛋白质理论上可采取多种构象,但该蛋白质在生理条件下占优势的构象只有一种或很少几种,它们在热力学上是最稳定的,处于这种有生理功能的构象状态的蛋白质称为天然蛋白质 2.一级结构:多肽链的氨基酸序列。 二级结构:多肽链借助氢键排列成的局部规则结构(如α螺旋)。 三级结构:多肽链借助多种非共价键折叠成的特定三维空间结构。 四级结构:指寡聚蛋白质中各亚基之间在空间上的相互关系和结合方式。

医学生物物理学最终版

1、一级结构(Primary Structure):多聚体中组成单位的顺序排列。含义主要包括 1、链的数目; 2、每条链的起始和末端组分; 3、每条链中组分的数目、种类及其顺序; 4、链内或链间相互作用的性质、位置和数目。测定方法:1、生化方法:肽链的拆开、末段分析、氨基酸组成分析、多肽链降解、肽顺序分析 2、质谱技术(Mass Spectrometer)和色谱层析分析技术。 2、二级结构(Secondary Structure)是指多聚体分子主链(骨架)空间排布的规律性。测定方法:1、圆二色技术(Circular dichroism CD)、红外光谱(Infrared spectrum)和拉曼光谱(Raman spectrum )技术。 3、水化作用 (Hydration):离子或其他分子在水中将在其周围形成一个水层。 笼形结构(cage structure):疏水物质进入水后水分子将其包围同时外围水分子之间较容易互相以氢键结合而形成笼形结构。 4、能量共振转移(energy resonance transfer): 将分子视为一个正负电荷分离的偶极子,受激发后将以一定的频率振动,如果其附近有一个振动频率相同的另一分子存在,则通过这两个分子间的偶极-偶极相互作用,能量以非辐射的方式从前者转移给后者,这一现象称为~。 5、脂多形性(lipid polymorphism):不同的磷脂分子可形成不同的聚集态或不同的结构,称为“相”,同一磷脂分子在不同的条件下也可以形成不同的聚集态,这一性质称为脂多形性。 6、相分离(phase separation):由两种磷脂组成的脂质体,当温度在两种磷脂的相变温度之间时,一种磷脂已经发生相变处于液晶态,另一种磷脂仍处于凝胶态,这种两相共存的现象称为相分离。 7、相变:(phase transition):是指加热到一定稳定时脂双层结构突然发生变化,而脂双层仍然保留的现象。这一温度成为相变温度,温度以上成为液晶相,相变温度以下称为凝胶相。 8、协同运输(cotransport):细胞利用离子顺其跨膜浓度梯度运输时释放的能:量同时使另一分子逆其跨膜浓度梯度运输。 9、被动运输(passive transport):是指溶质从高浓度区域移动到一低浓度区域,最后消除两区域的浓度差,是以熵增加驱动的放能过程。这种转运方式称为被动运输。 10、主动运输(active transport):主动运输是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞膜的过程。Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。 11、易化扩散(facilitated diffusion):在双层脂分子上存在一些特殊蛋白质能够大大增加融资的通透性,溶质也是从高浓度侧向低浓度侧运输,这种运输方式被称为易化扩散。这些蛋白质被称为运输蛋白。 12、离子通道(ion channel):是细胞膜的脂双层中的一些特殊大分子蛋白质,其中央形成能通过离子的亲水性孔道,允许适当大小和适当电荷的离子通过。 13、长孔效应(longpore effect):当一个离子从膜外进入孔道,要与孔道内的几个离子发生碰撞后才能通过孔道,这种现象称为长孔效应。 14、双电层(electrical double layer ):细胞表面的固定电荷与吸附层电荷的净电荷总量与扩散层电荷的性质相反,数值相等,形成一个双电层。 15、自由基( free radical FR ):能独立存在的、具有不配对电子的原子、原子团、离子或分子。 16、基团频率( group frequency ):一些化学基团(官能团)的吸收总在一个较狭窄的特定频率范围内,是红外光谱的特征性。在红外光谱中该频率表现基团频率位移,即特征吸收峰。 17、infrared spectroscopy(红外光谱):以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。 18、圆二色谱(circular dichroism spectrum, CD):记录的是物质对紫外光与可见光波段左圆偏振光和右圆偏振光的吸收存在的差别与波长的关系,是分子中的吸收基团吸收电磁波能量引起物质电子能级跃迁,其波长范围包括近紫外区、远紫外区和真空紫外区。 19、圆二色性(activity of circular dichroism):手性物质对左右圆偏振光的吸收度不同,导致出射时左右圆偏振光电场矢量的振幅不同,通过样品后的左右圆偏振光再次合成的光是椭圆偏振光,而不再是线性偏振光,这种现象称为~。 20、旋光性(activity of optical ratation):左右圆偏振光在手性物中行进(旋转)速度不同,导致出射时的左右圆偏振光相对于入射光的偏振面旋转的角度不同,通过样品后的左右圆偏振光再次合成的光相对于入射光的偏振面旋转了一定的角度,称为~。 21、荧光(fluorescence):受光激发的分子从第一激发单重态的最低振动能级回到基态所发出的辐射。寿命为10-8~ 10 -11s。由于是相同多重态之间的跃迁,几率较大,速度大,速率常数kf为106~109s-1。分子产生荧光必须具备的条件(1)具有合适的结构(2)具有一定的荧光量子产率。

生物学概论

生物技术概论复习题及答案 一、名词解释 1、生物技术:是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。 2、基因工程:是指在基因水平上的操作并改变生物遗传特性的技术。即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。 3、细胞工程:是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。 4、食品添加剂:是指为改善食品的品质(色、香、味)以及有防腐和加工工艺的需要而加入到食品中的化学合成物或天然物质。 5、湖泊的富营养化:由于环境的污染,象农业上的化肥、工业废水等大量排放使水中含有大量的营养元素象氮磷钾等非常丰富,使微生物生长迅速,造成富营养化。 6、生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。 7、转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。 8、细胞融合:是指促融因子的作用下,将两个或多个细胞融合为一个细胞的过程。 9、抗原:凡能刺激机体免疫系统发生免疫应答的物质均称为抗原。 10、组织培养:指在无菌和人为控制外因(营养成分、光、温、湿)的条件下,培养研究植物组织、器官,甚至进而从中分化发育出整个植株的技术。 11、原生质体培养:是关于原生质体分离,原生质体纯化、原生质体培养、原生质体胞壁再生,细胞团形成和器官发生,等技术。 12、有益微生物:指对人类有帮助,能满足人们需求的某些微生物。 13、供体:提供一些手续操作需要的东西地生物体或器官等总供体。

高中生物科学史总结

高中生物科学史总结 必修1 第1 章 1.19 世纪30 年代,德国植物学家施莱登(M.J.Sehleiden,18o4— 1881)和动物学家施旺(T.Schwann, 1810— 1882)提出了细胞学说,指出细胞是一切动植物结构的基本单位。论证生物界的统一性(细胞的统一性和生物体结构的统一性) 2.细胞学说的建立过程 1543 年比利时的维萨里发表巨著《人体构造》揭示人体器官水平的结构法国比夏指出器官是由低一层次的结构——组织构成 1665 年英国科学家虎克(R·Hooke)用显微镜观察植物木栓组织并发现由许多规则的小室组成,并把“小室”称为——细胞 荷兰著名磨镜技师列文虎克,用自制显微镜观察到不同形态的细菌、红细胞和精子等。 意大利的马尔比基用显微镜广泛观察了动植物的微细结构。但是他们并没有用“细胞”来描述其发现。 1838 年施莱登提出细胞是构成植物的基本单位,施旺发现研究报道《关于动植物的结构和一致性的显微研究》 耐格里用显微镜观察了多种上植物分生区新细胞的形成,发现新细胞的产生原来是细胞分裂的结果。 1858 年,德国的魏尔肖总结出“细胞通过分裂产生新细胞” 第2 章 英国科学家桑格经过10 年努力,终于在1953 年测得牛胰岛素全部氨基酸的排列顺序 1965 年我国科学家完成结晶牛胰岛素的全部合成 第3 章 1、美国细胞生物家克劳德摸索出采用不同转速对破碎的细胞进行离心的方法,将细胞内的不同细胞分开。——定性定量分离细胞组分的经典方法 2、比利时的德迪夫发现了溶酶体 3、罗马尼亚的帕拉德,改进了电子显微镜,发现了核糖体和线粒体结构,1960 年,帕拉德向人们描绘了一幅生动的细胞“超微活动图”。形象地揭示出分泌蛋白质合成并运输到细胞外的过程 第4 章 1、19 世纪末,欧文顿提出膜是由脂质组成的 2、1925 年,两位荷兰科学家用丙酮从人的红细胞中提取脂质,得出细胞膜中的脂质必然排列为连续的两层

生物物理学课后习题及答案详解-袁观宇编著

第一章 1为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 答:因为蛋白质中氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础。蛋白质的含量计算为:每克样品中含氮克数×6.25×100即为100克样品中蛋白质含量(g%)。(P1) 2.蛋白质有哪些重要的生物学功能?蛋白质元素组成有何特点? 答:蛋白质是生命活动的物质基础,是细胞和生物体的重要组成部分。构成新陈代谢的所有化学反应,几乎都在蛋白质酶的催化下进行的,生命的运动以及生命活动所需物质的运输等都需要蛋白质来完成。蛋白质一般含有碳、氢、氧、氮、硫等元素,有些蛋白质还含有微量的磷、铁、铜、碘、锌和钼等元素。氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点。(P1) 3.组成蛋白质的氨基酸有多少种?如何分类? 答:组成蛋白质的氨基酸有20种。根据R的结构不同,氨基酸可分为四类,即脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸、杂环亚氨基酸。根据侧链R的极性不同分为非极性和极性氨基酸,极性氨基酸又可分为极性不带电荷氨基酸、极性带负电荷氨基酸、极性带正电荷氨基酸。(P5) 4.举例说明蛋白质的四级结构。 答:蛋白质的四级结构含有两条或更多的肽链,这些肽链都成折叠的α-螺旋。它们相互挤在一起,并以弱键互相连接,形成一定的构象。四级结构的蛋白质中每个球状蛋白质称为亚基。亚基通常由一条多肽链组成,有时含有两条以上的多肽链,单独存在时一般没有生物活性。以血红蛋白为例:P11-12。 5、举例说明蛋白质的变构效应。 蛋白质的变构效应:当某种小分子物质特异地与某种蛋白质结合后,能够引起该蛋白质的构象发生微妙而有规律的变化,从而使其活性发生变化,P13。 血红蛋白(Hb)就是一种最早发现的具有别构效应的蛋白质,它的功能是运输氧和二氧化碳,运输氧的作用是通过它对O2的结合与脱结合来实现。Hb有两种能够互变的天然构象,一种为紧密型T,一种为松弛型R。T型对氧气亲和力低,不易于O2结合;R型则相反,它与O2的亲和力高,易于结合O2。 T型Hb分子的第一个亚基与O2结合后,即引起其构象开始变化,将构象变化的“信息”传递至第二个亚基,使第二、第三和第四个亚基与O2的亲和力依次增高,Hb分子的构象由T型转变成R型…这就微妙的完成了运送O2的功能。书P13最后两段,P14第一段 6.常用的蛋白质分离纯化方法有哪几种?各自的原理是什么? 1、沉淀:向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出。 2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。 3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。 4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定pH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。 b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能进入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质,也可以用作测定蛋白质的分子量。不同蛋白质因其密度与形态各不相同而分开。 7.什么是核酸?怎样分类?各类中包括哪些类型? 核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。(P15第一段) 核酸分为脱氧核糖核酸DNA和核糖核酸RNA。(P15第一段)

高端低温电镜(Titan Krios Talos) - 中国科学院生物物理研究所蛋白质

Titan Krios用户申请须知 每份用户实验申请提交后将在一星期内转发给两位专家进行评审,评审时间约为一个月。此后将评审意见及机时安排的起始及终止日期通知用户。 符合以下情况的用户实验申请将为所申请的实验在一年中分批安排所申请的机时: 1 两位评审专家均同意该实验申请 2 一位专家同意实验申请,另一位不同意实验申请,而用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 符合以下情况的用户实验申请将根据机时需求的紧张程度,在一年中为所申请的实验安排部分申请机时: 1一位专家同意实验申请,另一位不同意实验申请 2 两位专家均不同意实验申请,但用户提交申请的同时附上曾依托本所实验平台的Titan Krios发表的论文(论文中清楚地注明依托本所实验平台的设备) 以下情况的用户实验申请将不安排机时: 1两位专家均不同意实验申请 ――――――――――――――――――――――――――――――――――――――― 专家评审要点有以下四点: 第一,对用户实验的生物学或医学或方法学上的重要性做出评定。 第二,用户使用Titan Krios 的必要性。使用其它电镜或实验方法能否达到实验目的,使用本中心其他设备能否同样达到实验目的。 本中心尚有: 透射电镜Tecnai Spirit (120kV,钨灯丝,2K×2K 底插式eagle CCD,1K*1K 侧插式OSIS 冷CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数3.7mm,色差系数3.7mm,点分辨率0.34nm) 透射电镜FEI Tecnai20 (200kV,LaB6灯丝,2K×2K Gatan Ultrascan 894 CCD,电子断层扫描自动化数据收集软件,配有室温单倾样品杆、Gatan 927 室温双轴高倾样品杆、Gatan 626 低温样品杆,Gatan CT3500低温样品杆,样品台最大倾转角70度,物镜球差系数2.5mm,色差系数2.5mm,点分辨率0.25nm)。 第三,使用Titan Krios能否达到用户的实验目的。 本中心的Titan Krios配置为1. 配有场发射电子枪,最高加速电压300kV,三级聚光镜系统,实现一定范围内的平行光照明;2. 自动进样系统可同时存储12个冷冻样品,样品台可倾转最大角度70度,水平旋转90度;3. 恒功率模式的电磁透镜系统保证成像的高稳定性;4. 物镜球差系数2.7mm,色差系数2.7mm; 5. 点分辨率0.25nm,信息分辨极限 0.14nm; 6. 底插式Gatan Ultrascan 985 4K×4K CCD相机;7. Gatan GIF Tridium 能量过滤器; 8. STEM 暗场模式成像; 9. 用户界面友好,远程操作;10. 配有DM和TIA图像采集和分析软件;11. 配有Xplore3D电子断层扫描自动化数据收集软件。 第四,用户的实验设计是否合理,前期实验工作是否充分,所申请的机时是否合理。 本中心的机时以11小时为单位,每天分为两个时间段,中间间隔1小时。早九点至晚八点为一个时间段,晚九点到次日早八点为另一个时间段。

大学物理课程总结

大学物理课程总结 大学物理课程总结 大学物理课程总结 在大二上学期,我们学习了大学物理这门课程,物理学是一切自然科学的基础,处于诸多自然科学学科的核心地位,物理学研究的粒子和原子构成了蛋白质、基因、器官、生物体,构成了一切天然的和人造的物质以及广袤的陆地、海洋、大气,甚至整个宇宙,因此,物理学是化学、生物、材料科学、地球物理和天体物理等学科的基础。今天,物理学和这些学科之间的边缘领域中又形成了一系列分支学科和交叉学科,如粒子物理、核物理、凝聚态物理、原子分子物理、电子物理、生物物理等等。这些学科都取得了引人瞩目的成就。 在该学期的学习中,我们主要学习了以下几个章节的内容: 第4章机械振动第5章机械波第6章气体动理论基础第7章热力学基础第12章光的干涉第13章光的衍射第14章光的偏振 在对以上几个章节进行学习了之后,我们大致了解了有关振动、热力学、光学几个方面的知识。下面,我对以上几个章节的内容进行详细的介绍。 第四章主要介绍了机械振动,例如:任何一个具有质量和弹性的系统在其运动状态发生突变时都会发生振动。任何一个物理量在某一量值附近随时间做周期性变化都可以叫做振动。本章主要讨论简谐振动和振动的合成,并简要介绍阻尼振动、受迫振动和共振现象以及非线性振动。 在第五章机械波的学习中,我们知道了什么是“波”。如果在空间某处发生的振动,以有限的速度向四周传播,则这种传播着的振动称为波。机械振动在连续

介质内的传播叫做机械波;电磁振动在真空或介质中的传播叫做电磁波;近代物理指出,微观粒子以至任何物体都具有波动性,这种波叫做物质波。不同性质的波动虽然机制各不相同,但它们在空间的传播规律却具有共性。本章一机械波为例,讨论了波动运动规律。 从第六章开始,我们开始学习气体动理论和热力学篇,其中,气体动理论是统计物理最简单、最基本的内容。本章介绍热学中的系统、平衡态、温度等概念,从物质的微观结构出发,阐明平衡状态下的宏观参量压强和温度的微观本质,并导出理想气体的内能公式,最后讨论理想气体分子在平衡状态下的几个统计规律。 第七章中讲的是热力学基础,本章用热力学方法,研究系统在状态变化过程中热与功的转换关系和条件。热力学第一定律给出了转换关系,热力学第二定律给出了转换条件。 接下来,我们学习物理学下册书中的波动光学篇有关内容。光学是研究光的本性、光的传播和光与物质相互作用等规律的学科。其内容通常分为几何光学、波动光学和量子光学三部分。以光的直线传播为基础,研究光在透明介质中传播规律的光学称为几何光学;以光的波动性质为基础,研究光的传播及规律的光学称为波动光学;以光的粒子性为基础,研究与物质相互作用规律的光学称为量子光学。 光的干涉、衍射和偏振现象在现代科学技术中的应用已十分广泛,如长度的精密测量、光谱学的测量与分析、光测弹性研究、晶体结构分析等已很普遍。20世纪60年代以来,由于激光的问世和激光技术的迅速发展,开拓了光学研究和

32通道视频脑电 - 中国科学院生物物理研究所

脑电图仪一套 技术规格 1. 工作条件 1.1 工作温度:适于摄氏0℃~+40℃的环境条件下运行。 1.2 工作湿度:适于相对湿度为90%的环境条件下运行。 1.3 工作电源:三相或单相,220V( 10%)/50Hz。配置符合中国有关标准 要求的插头(如果没有这样的插头,则需提供适当的转换插座)。 1.4 仪器运行的持久性:可连续运行 1.5 仪器的工作状态:较强的防震抗射频干扰能力,工作稳定 1.6 仪器设备的安全性:符合国家放射线防护安全标准和电器安全标准。 2. 设备用途 *2.1通过SFDA 认证,可用于临床患者自发或事件相关脑电信号检测 3. 硬件技术规格要求 *3.1 ≥ 30 数据采集通道,≥ 1 标记信号通道 *3.2 便携,≤ 3 KG (设备主机和必要线缆),长宽高分别≤ 30/30/10 cm 3.3 数据传输通过USB接口; 3.4 输入阻抗≥ 500MΩ(欧姆) 3.5 每通道最大采样频率: 16000Hz/Ch 3.6 模数转换(ADC):≥24Bit 3.7 频带宽度:DC -- 0.27 Hz 3.8 共模抑制比:≥120dB 3.9 信号输入范围:≥ ±93.5 mV; ≤± 4.5 V; 3.10 通道增益设置:1μV/cm —1000 mV /cm 3.11 高通:0.008Hz—53Hz 3.12 低通:1Hz—1000Hz 3.13 噪声水平≤0.2 μV r.m.s 3.14 共模抑制比CMRR:≥ 100dB 3.15 专用笔记本电脑

4 软件功能 4.1 屏幕选择,全导联设置; 4.2 自动不间断导联切换; 4.3 脑电记录显示曲线灵敏度设置; 4.4 实时记录脑电状态下阅读和分析先前脑电; *4.5 原始数据可输出; 4.6 同步采集回放功能; 注:*表示必须满足且重要的指标 5.技术服务 5.1 安装、调试与培训 仪器到货后,厂家需在接到用户通知后3个工作日内进行安装调试,对主机、附件,软件的性能和功能进行测试;提供现场免费培训,培训内容包括仪器的技术原理、仪器操作、仪器基本维护等。 5.2 验收:实现系统成套联调并达到招标文件的技术要求。 5.3 保修: 保修期为安装验收合格之日起三年,在保修期内软硬件出现的问题,接到用户通知后二十四小时内给予答复,三个工作日内给与解决方案并到达用户现场免费解决问题。重大问题或其它无法立刻解决的问题应在两周内解决或提出明确的解决方案,如不能按期解决的,保修期自动按照用户报修日至修复日顺延。 设备保修期满前1个月,卖方免费负责一次全面的检查、维护,并写出正式报告,如发现潜在问题,应负责排除。 设备供应商提供终身维修,并保证保修期满后不低于十年的零配件及消耗品的供应。 提供全套的备品备件清单。 5.4 软件升级:在硬件支持的前提下,免费提供软件升级。 5.5提供维护手册和操作手册。

学术周个人感悟

学术周个人感悟 炎炎夏日,伴随着最后一科高数考试的结束,大一一年的生活也随之划上了句号。时间流逝的是如此的快,还未来得及回味做新生的日子便已经结束了,转眼再度开学,面临的即将是崭新的大二生活。相比之大一,大二的学业是更加繁重,难度也有为提高,就此,为了让我们更好地适应将至的专业学习,学院安排的为期五天的学术周,从化学专业的各个领域为我们做了基本的介绍,引导我们更快更好的掌握相关的专业知识。 几位教授中,纪效波老师的讲解给我留下了深刻印象。简洁的话语,不时带点幽默的调侃,完全吸引了我。他为我们介绍了碳基复合材料锂离子电池的研究,也详细讲述了他在实验研究中遇到的问题以及他的解决方法。此外,最让我们感兴趣的是石墨烯和富勒烯了。 富勒烯发现的较早,富勒烯的形状最早是由建筑学家富勒提出的。富勒烯是一种新的单质形式的碳,因形似足球,又名,足球烯。处于顶点的碳原子与相邻顶点的碳原子各用近似于sp2杂化轨道重叠形成σ键,每个碳原子的三个σ键分别为一个五边形的边和两个六边形的边。碳原子杂化轨道理论计算值为sp2.28,每个碳原子的三个σ键不是共平面的,键角约为108°或120°,因此整个分子为球状。每个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内和笼外都围绕着π电子云。分子轨道计算表明,足球烯具有较大的离域能。C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀、在光、电、磁等领域有潜在的应用前景。 碳纳米管是典型的富勒烯,又称巴基管,是一种管状结构的碳原子簇,直径约几纳米,长约几微米。据理论计算,碳纳米管纤维的强度是钢的100倍,而质量仅为钢的1/7,如果能做成碳纤维,将是理想的轻质高强度材料。碳纳米管还具有极强的储气能力,可以在燃料电池储氢装置上。 石墨烯是一种更为新型的材料。石墨烯是一种由碳原子构成的单层片状结构的新材料。石墨烯目前是世上最薄的材料,只有一个碳原子厚,却也是最坚硬的纳米材料,它几乎是完全透明的,拥有良好地导电导热性,未来可能被用来发展处更薄,导电速度更快的新一代电子元件或晶体管。石墨烯由于其良好的性能而

生物物理学

生物技术学院 课程论文 课程名称:大学物理 学号:222012********* 姓名:马平凡 专业班级:明珠班 成绩: 教师签名:

物理学在生物上的应用——生物物理学 摘要:生物物理学( Biological Physics)是物理学与生物学相结合的一门交叉学科,是生命科学的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。 关键词:物理学生物学交叉学科分支规律 物理学和生物学互相促进,共同发展。物理学和生物学在两方面有联系:一方面,生物为物理提供了具有物理性质的生物系统,另一方面,物理为生物提供了解决问题的工具。生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理定律同样也适用于生命世界,无须赋予生活物质一种神秘的活力。 发展简史: 17世纪A.考伯提到发光生物萤火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。 H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。

《生物物理学》考试大纲.doc

《生物物理学》考试大纲 一、考试目的 本考试是全日制生命信息物理学研究生的入学资格考试之专业基础课,各考生统一用汉语答题。根据考生参加本门考试的成绩和其他三门考试的成绩总分来选择参加第二轮,即复试的考生。 二、考试的性质与范围 本考试是测试考生的生物物理学基础理论知识的水平考试。考试范围包括本大纲规定的生物物理学基础知识以及生物物理实验方法。 三、考试基本要求 1. 具备一定的生物物理方面基础知识。 2. 对研究生物系统的物理方法有较强的基本功。 3. 具备综合能力。 四、考试形式 本考试采取主观试题的形式,对于各部分内容分别出题考试,强调考生的生物物理基础知识以及运用物理方法与生物问题结合的能力。 五、考试内容 本考试包括两个部分:生物物理学基础知识以及生物物理实验方法。总分150分。 I. 生物物理学基础知识 1. 考试要求 要求考生能够陈述与各种典型细胞活动(例如兴奋、吞噬、分泌、变形、粘附、迁移等)有关的生命过程,过程的特征,相关机制和分子基础。包括:蛋

白、核酸、脂等生物大分子及其组装的细胞膜、典型的离子通道、蛋白质机器等的模型、结构特征、能量特征和相互作用特征;物质的输运、信号的传导等细胞生理活动,以及过程中相关物理指标发生的变化,细胞局部微环境物理因素的影响等。 2. 题型 5~6道主观题,对生物物理学基础重点内容进行描述,耗时约120分钟。 II. 生物物理实验方法 1. 考试要求 重点考察考生对目前比较重要的几种生物物理实验方法的物理原理、方法、特点、实验技术、应用的掌握程度。 2. 题型 3道主观题,对生物物理学实验方法的重点内容进行说明,耗时约60分钟。 参考书目 《生物物理学》,赵南明编,高等教育出版社,2000年07月。 答题和计分 要求考生用钢笔或圆珠笔做在答题卷上。 《生物物理学》考试内容一览表

生物膜总结

生物膜 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。 3、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合? 4、比较主动输运与被动输运的特点及其生物学意义。 5、说明Na+-K+泵的工作原理及其生物学意义。 生物膜(bioligical membrane):细胞和细胞器所有膜结构的总称,是镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用,并有大量的酶结合位点,也是与许多能量转化和细胞内通讯有关的重要部位。 流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶”在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 生物膜的功能: 跨膜运输 能量转换 信息识别与传递 运动和免疫 1答:生物的基本结构特征是膜的流动性和不对称性。生物膜的流动镶嵌模型:膜的共同结构特点是以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构,而具有不同生理功能的蛋白质。流动镶嵌模型主要强调(1)膜的流动性,膜蛋白和膜脂均可侧向运动;(2)膜蛋白镶嵌在脂类中表现出分布的不对称性,有的镶嵌在膜的内外表面,有的嵌入或横跨脂双分子层。膜的流动性是表现生物膜正常功能的必要条件,如通过膜的物资运输、细胞识别、细胞免疫、细胞分化及激素的作用等都与膜的流动性密切相关。膜的不对称性决定了生物膜内外表面功能的特异性。 从生物膜结构模型演化说明人们对生物膜结构的认识过程。 2答:对生物膜的分子结构的认识经历了四个发展阶段: (1)脂质双分子层模型:研究人员通过实验发现易溶于脂类的物质易通过膜,所以推测膜由脂质构成,有通过计算总面积,得出膜的模型是脂质双分子层,极性的亲水基团朝向外侧的水性环境。 (2)Davson-Danielli模型:即“蛋白质-脂质-蛋白质”三明治式的细胞膜分子结构模型,这个模型的提出是建立在人们对于蛋白质在细胞膜中作用有了初步认识的基础上。 (3)单位膜模型:即生物膜由蛋白质-脂质-蛋白质的单位膜构成,该模型继用了前两种模型的合理成分,但未正确解释蛋白质的位置 (4)流动镶嵌模型:该模型强调膜的流动性,膜蛋白和膜脂均可侧向运动,膜蛋白镶嵌在脂类中并表现出分布不对称性,而且是通过疏水和亲水相互作用维持膜的结构。该模型强调膜的流动性。生物膜的模型还在不断的完善中,从这一演化过程中可以看出,人们是通过不断的研究,不断地从实验中发现新现象,在前人的研究基础上不断地完善对于生物膜结构的认识。 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 生物膜的组成和特点: 膜主要是由脂类(lipid) 和蛋白质以非共价键相互作用结合而成的二维流动体系。 脂类分子呈连续的双分子层(bilayer)排列。 膜具有双亲性。 蛋白质相对于脂双层具有不同镶嵌方式。

生物物理学发展史与分支

生物物理学的发展史17世纪A.考伯提到发光生物荧火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。 H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。 1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起的。 19世纪显微镜的应用导致细胞学说的创立。以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。电子显微镜的发展则提供了生物超微结构的更多信息。 早在1920年 X射线衍射技术就已列入蛋白质结构研究。W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学的概念和方法进行微观和宏观的系统分析。 生物物理学的分支生物物理学研究的内容十分广泛,涉及的问题则几乎包括生物学的所有基本问题。由于生物物理学是一门正在成长着的边缘学科,其具体内容和发展方向也在不断变化和完善,它和一些关系特别密切的学科(生化、生理等)的界限也不是很明确。现阶段,生物物理的研究领域主要有以下几个方面: 1、分子生物物理。分子生物物理是本学科中最基本、最重要的一个分支。它运用物理学的基本理论与技术研究生物大分子、小分子及分子聚集体的结构、动力学,相互作用和其生物学性质在功能过程中的变化,目的在于从分子水平阐述生命的基本过程,进而通过修饰、重建和改造生物分子,为实践服务。 生物大分子及其复合物的空间结构与功能的关系是分子生物物理的核心问题。自从50

相关主题
文本预览
相关文档 最新文档