当前位置:文档之家› 电动机正反转联锁控制电路设计报告电气工程课程设计

电动机正反转联锁控制电路设计报告电气工程课程设计

电动机正反转联锁控制电路设计报告电气工程课程设计
电动机正反转联锁控制电路设计报告电气工程课程设计

目录

1.概述 (2)

(1).三相异步电动机 (2)

(2).三相异步电动机的构造 (2)

(3).三相异步电动机的工作原理 (4)

(4).三相异步电机的启动方法 (9)

2.三相异步电动机正反转控制电路设计 (15)

(1).设计目的 (15)

(2).设计原理 (15)

(3).设计内容及要求 (15)

(4).设计步骤 (16)

1).器材选取 (16)

2).三相异步电动机正反转联锁控制电路的设计 (17)

3).带信号灯及过载保护的三相异步电动机联锁正反转控制电

路的设计 (18)

3.总结及心得体会 (19)

4.主要参考文献 (21)

1.概述

(1).三相异步电动机

实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和方法;(5)应用场合和如何正确使用。

(2).三相异步电动机的构造

三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图1-1所示。

图 1-1 三相电动机的结构示意图1).定子

三相异步电动机的定子由三部分组成:

定子定子铁心

由厚度为0.5mm的,相互绝缘的硅钢片叠

成,硅钢片内圆上有均匀分布的槽,其作

用是嵌放定子三相绕组AX、BY、CZ。

定子绕组

三组用漆包线绕制好的,对称地嵌入定子

铁心槽内的相同的线圈。这三相绕组可接

成星形或三角形。

机座

机座用铸铁或铸钢制成,其作用是固定铁

心和绕组

2).转子

三相异步电动机的转子由三部分组成:

转子转子铁心

由厚度为0.5mm的,相互绝缘的硅钢片叠

成,硅钢片外圆上有均匀分布的槽,其作

用是嵌放转子三相绕组。

转子绕组转子绕组有两种形式:

鼠笼式 -- 鼠笼式异步电动机。

绕线式 -- 绕线式异步电动机。

转轴转轴上加机械负载

鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

(3).三相异步电动机的工作原理

1).基本原理

为了说明三相异步电动机的工作原理,我们做如下演示实验,如图1-2所示。

图 1-2 三相异步电动机工作原理

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。转子转动的方向和磁极旋转的方向相同。

(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

2).旋转磁场

(1).产生

图1-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。并接成星形与三相电源U 、V 、W 相联。则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图1-4)。 00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=??=-??=+?

A i A i

B i C

X B Y

C

Z

图 1-3 三相异步电动机定子接线

当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流

从Y 流入B1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右

手螺旋定则可得合成磁场的方向如图1-4(a )所示。

当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的

电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由

右手螺旋定则可得合成磁场的方向如图1-4(b )所示。 当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的

电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由

右手螺旋定则可得合成磁场的方向如图1-4(c )所示。

可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地旋,因此称为旋转磁场。

ωt i i A i B i C O 120° 240° 360°××

×××···

···A A

A X X X

B B B

Y Y Y C C C Z Z Z ×

图 1-4 旋转磁场的形成

(2).旋转磁场的方向

旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。这时,转子的旋转方向也跟着改变。(3).三相异步电动机的极数与转速

1).极数(磁极对数p)

三相异步电动机的极数就是旋转磁场的极数。旋转磁场的极数和三相绕组的安排有关。

当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;

当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;

同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p)空间角。极数p与绕组的始端之间的空间角θ的关系为:0

120

θ=

p

2).转速n

三相异步电动机旋转磁场的转速n0与电动机磁极对数p 有关,它们的关系是:

1060f n p

(1-1) 由(1-1)可知,旋转磁场的转速n0决定于电流频率f1和磁场的极数p 。对某一异步电动机而言,f1和p 通常是一定的,所以磁场转速n0是个常数。

在我国,工频f1=50Hz ,因此对应于不同极对数p 的旋转磁场转速n0,见表1-1

表1-1 p

1 2 3 4 5 6 n0 3000 1500 1000 750 600 500

3).转差率s

电动机转子转动方向与磁场旋转的方向相同,但转子的转速n 不可能达到与旋转磁场的转速n0相等,否则转子与旋转磁场之间就没有相对运动,因而磁力线就不切割转子导体,转子电动势、转子电流以及转矩也就都不存在。也就是说旋转磁场与转子之间存在转速差,因此我们把这种电动机称为异步电动机,又因为这种电动机的转

动原理是建立在电磁感应基础上的,故又称为感应电动机。

旋转磁场的转速n0常称为同步转速。

转差率s ——用来表示转子转速n 与磁场转速n0相差的程度的物理量。即:

000

n n n s n n -?== (1-2) 转差率是异步电动机的一个重要的物理量。

当旋转磁场以同步转速n0开始旋转时,转子则因机械惯性尚未转动,转子的瞬间转速n=0,这时转差率S=1。转子转动起来之后,n>0,(n0-n )差值减小,电动机的转差率S<1。如果转轴上的阻转矩加大,则转子转速n 降低,即异步程度加大,才能产生足够大的感受电动势和电流,产生足够大的电磁转矩,这时的转差率S 增大。反之,S 减小。异步电动机运行时,转速与同步转速一般很接近,转差率很小。在额定工作状态下约为0.015~0.06之间。

根据式(1-2),可以得到电动机的转速常用公式

()01n s n =- (1-3)

4).三相异步电动机的定子电路与转子电路

三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。给定子绕组接上三相电源电压,则定子中就有三相电流通过,此三相电流产

生旋转磁场,其磁力线通过定子和转子铁心而闭合,这个磁场在转子和定子的每相绕组中都要感应出电动势。

(4).三相异步电机的启动方法

三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。下面就分别做详细介绍。

1).直接起动

直接起动,也叫全压起动。起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。一般情况下,直接起动时起动电流为额定电流的3~8倍,起动转矩为额定转矩的1~2倍。根据对国产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到8~12倍。

直接起动的起动线路是最简单的,如图1-5所示。然而这种起动方法有诸多不足。对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的起动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm 均下降到低于Tz。

一般情况下,异步电动机的功率小于7.5kW时允许直接起动。如果功率大于7.5kW,而电源总容量较大,能符合下式要求的话,

电动机也可允许直接起动。

()()111134st N kv A I K I kw ???=≤+????电源总容量起动电动总功率 如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist 限制到允许的数值。 M 3~FU 1FU 2FU3

KM

图1-5直接启动原理图

2).传统减压起动

减压起动是在起动时先降低定子绕组上的电压,待起动后,再把电压恢复到额定值。减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。因此,减压起动方法一般只适用于轻载或空载情况。传统减压起动的具体方法很多,这里介绍以下三种减压起动的方法:

(1).定子串接电阻或电抗起动定子绕组串电阻或电抗相当于降低定子绕组的外加电压。由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组串电阻或电抗可以达到减小起动电流的目的。但考虑到起动转矩与定子绕组电压的平方成正比,起动转矩会降低的更多。因此,这种起动方法仅仅适用于空载或轻载起动

场合。

对于容量较小的异步电动机,一般采用定子绕组串电阻降压;但对于容量较大的异步电动机,考虑到串接电阻会造成铜耗较大,故采用定子绕组串电抗降压起动。

如图1-6所示:当起动电机时,合上开关Q ,交流接触器KM 断开,使电源经电阻或电抗R 流进电机。当电机起动完成时KM 吸合,短接电阻或电抗R 。 KM M

3~FU 2FU3

FU 1R

FR

Q

U V W

图1-6定子串电阻或电抗起动原理图

(2).星-三角形(丫-△)起动

星-三角形起动法是电动机起动时,定子绕组为星形(丫)接法,当转速上升至接近额定转速时,将绕组切换为三角形(△)接法,使电动机转为正常运行的一种起动方式。星-三角形起动方法虽然简单,但电动机定子绕组的六个出线端都要引出来,略显麻烦。

图1-7为星-三角形起动法的原理图。接触器KM2和KM3互锁,即其中一个闭合时,必须保证另一个断开。KM2闭合时,定子绕组为星形(丫)接法,使电动机起动。切换至KM3闭合,定子绕组改为三角形(△)接法,电动机转为正常运行。由控制电路中的时间继电器KT 确定星-三角切换的时间。

定子绕组接成星形连接后,每相绕组的相电压为三角形连接(全压)时的l/3,故星-三角形起动时起动电流及起动转矩均下降为直接起动的1/3。由于起动转矩小,该方法只适合于轻载起动的场合。

KM 3KM 1M

3~

FU 2FU3

FU 1FR

Q

U V W

KM 2

图1-7 星-三角形起动法的原理图

(3).自耦变压器起动

自耦变压器起动法就是电动机起动时,电源通过自耦变压器降压后接到电动机上,待转速上升至接近额定转速时,将自耦变压器从电源切除,而使电动机直接接到电网上转化为正常运行的一种起动方

法。

图1-8所示为自耦变压器起动的自动控制主回路。控制过程如下:合上空气开关Q接通三相电源。按启动按钮后KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压抽头(例如65%)将三相电压的65%接入电动。当时间继电器KT延时完毕闭合后,KM1线圈断电,使自耦变压器线圈封星端打开;同时KM2线圈断电,切断自耦变压器电源,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。自耦变压器一般有65%和80%额定电压的两组抽头。

若自耦变压器的变比为k,与直接起动相比,采用自耦变压器起动时,其一次侧起动线电流和起动转矩都降低到直接起动的l/k2。

自耦变压器起动法不受电动机绕组接线方式(丫接法或△接法)的限制,允许的起动电流和所需起动转矩可通过改变抽头进行选择,但设备费用较高。

图1-8 异步电动机的自耦变压器起动法

自耦变压器起动适用于容量较大的低压电动机作减压起动用,应用非常广泛,有手动及自动控制线路。其优点是电压抽头可供不同负载起动时选择;缺点是质量大、体积大、价格高、维护检修费用高。

3). 软启动

软起动可分为有级和无级两类,前者的调节是分档的,后者的调节是连续的。在电动机定子回路中,通过串入限流作用的电力器件实现软起动,叫做降压或者限流软起动。它是软起动中的一个重要类别。按限流器件不同可分为:以电解液限流的液阻软起动;以磁饱和电抗器为限流器件的磁控软起动;以晶闸管为限流器件的晶闸管软起动。

2.三相异步电动机正反转控制电路设计

(1).设计目的

1).了解三相异步电动机接触器联锁正反转控制的接线和操作方法。 2).理解联锁和自锁的概念。

3).掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。

(2).设计原理

三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。任意改变电源的相序时,电动机的旋转方向也会随之改变。

(3).设计内容及要求

内容:

按钮联锁的电动机正反转控制电路设计

要求:

1).按钮控制电机正反转

2).电路中的联锁等设置合理

3).正,反转时分别用信号灯表示

4)电机过载时候具有自动报警装置

(4).设计步骤

1).器材选取

三相异步电动机型号:Y90S-4

参数:额定功率(KW) 1.1

额定电流(A) 2.7

转速(r/min) 1400

效率(%) 78.0

功率因数(cosφ) 0.78

堵转转矩/额定转矩(倍) 2.3

堵转电流/额定电流(倍) 6.5

最大转矩/额定转矩(倍) 2.3

重量(Kg) 25

热继电器型号: JRS1-09-307/Z

参数:JR 热过载继电器 S 三相双金属片式 1 设计序号

09 额定工作电流 307 整定电流代号 Z 组合安装

熔断器,按钮,继电器,常开常闭触点,导线若干。

2).三相异步电动机正反转联锁控制电路的设计

图1-9

图1-9控制线路的动作过程是:

(1).正转控制合上电源开关Q S,按正转起动按钮SB5,正转控制回路接通,KM1的线圈通电动作,其常开触头闭合自锁、常闭触头断开对KM2的联锁,同时主触头闭合,主电路按U1、V1、W1相序接通,电动机正转。

(2).反转控制要使电动机改变转向(即由正转变为反转)时应先按下停止按钮S B1,使正转控制电路断开电动机停转,然后才能使电动机反转,为什么要这样操作呢?因为反转控制回中串联了正转接触器KM1的常闭触头,当KM1通电工作时,它是断开的,若这时直接按反转按钮S B4,反转接触器KM2是无法通电的,电动机也就得不到电源,故电动机仍然正转状态,不会反

转。电机停转后按下S B4,反转接触器KM2通电动作,主触头闭合,主电路按W1, V1,U1相序接通,电动机的电源相序改变了,故电动机作反向旋转。

3).带信号灯及过载保护的三相异步电动机联锁正反转控制电路的设计

图1-10

图1-10工作过程如下:

合上电源开关Q S

(1).正转控制按正转起动按钮SB1,且SB1联锁开关断开,正转控制回路接通,KM1的线圈通电动作,其常开触头闭合自锁、常闭触头断开对KM2的联锁,信号灯L1亮,同时主触头闭合,主电路按Ua、

Ub、Uc相序接通,电动机正转。

(2).反转控制按反转起动按钮SB2,且SB2联锁开关断开,正转控制回路断开,反转控制回路接通,KM2的线圈通电动作,其常开触头闭合自锁、常闭触头断开对KM1的联锁,信号灯L2亮,同时主触头闭合,主电路按Uc、Ub、Ua相序接通,电动机反转。

(3).无论电动机正转还是反转,当其出现过载时,接在主电路上的热继电器迅速动作,在控制回路上的热继电器常闭触点断开,则继电器KM1或KM2失电,电动机停止工作;同时热继电器的常开触点闭合,报警器H发出报警声。

3.总结及心得体会

此次的课程设计是对前面所学知识的综合运用。设计的课题是《带信号灯及过载保护的三相异步电动机联锁正反转控制电路》,由课题中就能看出此次设计的主要目标就是正反转控制电路的设计,电路联锁,信号灯,过载保护及报警。到自己着手设计时,发现还有好多知识点都淡忘了,就把需要的课本和资料都整理出来以便随时查阅。通过这次课程设计,我基本掌握了三相异步电动机的相关知识,如三相异步电动机的结构及工作原理,三相异步电动机的启动方式及比较,还有三相异步电动机的正反转联锁控制及过载保护等。

事实说明,实践是对理论检验的最好方法,实践也是检验一个人的能力的最好办法。经过这次的课程设计,我不仅学到了很多理论知识,更重要的是学到了很多动手的能力。经过此次的实习,我希望老师在

电气控制课程设计题目模板

电气控制课程设计 题目

实验指导书 《电气控制与仪表课程设计》 课程设计 学院: 学号: 专业( 方向) 年级: 学生姓名: 福建农林大学机电工程学院电气工程系 9 月 1 日 第一节概述 要能够胜任电气控制系统的设计工作, 按要求完成好设计任务,

仅仅掌握电气设计的基础知识是不够的, 必须经过重复的实践, 深入生产现场, 不断积累经验。课程设计正是为这一目的而安排的一个实践性教学环节, 它是一项初步的工程训练。经过集中1~2周时间的设计工作, 了解一般电气控制系统的设计要求、设计内容和设计方法。课程设计题目不要太大, 尽可能取自生产中实用的电气控制装置。 本指导书主要讨论课程设计应达到的目的、要求、设计内容、深度及完成的工作量。并经过实例介绍, 进一步说明课程设计的设计步骤。 本指导书还收集了较多的设计参考题, 可作为课程设计练习题, 直接供设计者自由选取。命题结合生产需要, 具有真实感。设计中应严格要求, 力求做到图纸资料规范化。 电气设计包含原理设计与工艺设计两个方面, 不能忽视任何一面, 在高等工科应用型人才培养中特别要重视工艺设计。由于初次从事设计工作, 工艺要求不能过高, 不能面面俱到。设计工作量、说明书等要求与毕业设计应有较大的区别, 电气控制课程设计属于练习性质, 不强调设计结果直接用于生产, 个人的工艺设计, 只要求完成其中的一部份内容。 课程设计原则上应做到一人一题和自由选题。在几个人共选一个课题的情况下, 各人的设计要求及工艺设计内容, 绘图种类, 应有所区别。要强调独立完成, 以学生自身的独立工作为主, 教师指导帮助为辅。在设计工程中, 适当组织针对性参观, 并配以多种形式

电气控制与PLC课程设计总结报告

电气控制与PLC课程设计总结报告 题目:①设计具有指定功能的全自动洗衣机 ②设计传送带故障停止控制 学生姓名: 系别:电气信息工程系 专业年级: 2008级电气工程及其自动化专业1班 指导教师: 2011年7月 2 日

①设计具有指定功能的全自动洗衣机 一、设计任务与要求 1、设计一台具有指定功能的全自动洗衣机; 2、控制要求 全自动洗衣机有三档水位选择:上、中、下。按下启动按钮,选择水位,进水阀打开,开始进水。水位高度达到该档水位后,该档位传感器被触发使进水阀关闭,停止进水。开始自动进入洗衣程序。 洗衣程序为:(洗衣)电动机正转洗涤6s,暂停,暂停2s后,反转洗涤6s,暂停,暂停2s后,完成一次循环。按此规律循环5次。接着打开排水电磁阀,开始排水。排水一定时间后,开始进入脱水程序(脱水过程中排水电磁阀始终打开)。脱水完毕后,排水电磁阀关闭,接着进水电磁阀打开,档位自动记忆为第一次洗衣时所选择的档位。重复上述洗衣,排水,脱水流程,至结束。 二、方案设计与论证 按下启动按钮后,选择水位,洗衣机开始进水。当到达限定水位(如高水位或中水位),PLC关闭进水阀停止进水,并开始正转,正转洗涤6s后暂停,暂停2s后开始洗涤反转,反洗6s后再暂停2s;如此循环五次。循环满5次后,则开始排水。当水排空时(排水时间结束),开始脱水。脱水10秒后再循环一次。 脱水10s后即完成一次从进水到脱水的大循环过程。2次大循环后程序结束,停机。在PLC工作过程中的任何阶段,按下停止按钮,洗衣机将停止当前所执行的任何程序指令,并恢复至开始状态。此外,还可以加装手动排水按钮,实现功能扩展。 三、电路设计与参数计算 1、I/O分配表

直流电动机控制课程设计总结报告

微机原理及应用B 课程设计任务书 2010-2011学年第 2学期第 19 周- 19 周 题目直流电机控制 内容及要求 内容:设计一直流电机控制系统,实现对电机的正转,反转和速度控制 要求:1、用proteus画出原理图; 2、用c语言或汇编编写程序; 3、实现对电机的正转,反转和速度控制 进度安排 1、方案论证 0.5天 2、分析、设计、调试、运行 4天 3、检查、整理、写设计报告、小结 0.5天 学生姓名:5组(组长:25盛夏;组员:23彭亚彬,24阮水盛,26陶志鹏)指导时间2011年6月27日至2011年7月1日指导地点:F 楼 613室任务下达2011年6月 27日任务完成2011 年7 月 1日 考核方式 1.评阅 2.答辩 3. 实际操作□ 4.其它□ 指导教师郭亮系(部)主任 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 摘要 (3) Abstract (4) 一、概述 (5) 二、直流电机硬件电路设计及描述 (6) 2.1直流电机的结构 (6) 2.2直流电机的工作原理 (6) 2.3电磁关系 (7) 2.4直流电机主要技术参数 (7) 2.5直流电机的类型 (8) 2.6直流电机的特点 (8) 三、直流电机硬件电路设计及描述 (8) 3.1 总体方案设计 (8) 3.1.1 设计思路 (8) 3.1.2设计原理图 (10) 3.2设计原理及其实现方法 (10) 3.2.1速度调节的实现 (10) 3.2.2 转向的控制 (11) 四、流程图 (12) 五、.程序代码(C语言) (13) 六、程序代码(汇编语言) (18) 七、收获、体会和建议 (24) 附录 (25) 1. 本设计所需要芯片以及作用 (25) 2.主要参考文献 (26)

电气控制与PLC课程设计报告

× × × ×大学 《电气控制与PLC》课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 目录 第一部分: 电气线路安装调试技能训练....................... 技能训练题目一三相异步电机的可逆控制实验.......................... 技能训练题目二三相异步电机Y-△降压启动控制........................ 技能训练小结....................................................... 第二部分:加热反应炉PLC控制系统设计....................... 一、PLC控制系统设计的基本原则和步骤............................... 1、PLC控制系统设计的基本原则..................................... 2、PLC控制系统设计的一般步骤..................................... 3、PLC程序设计的一般步骤......................................... 二、加热反应炉电器控制系统设计任务................................. 1、加热反应炉原理图.............................................. 2、加热反应炉加热工艺过程........................................ 3、加热反应炉PLC电气控制系统设计任务和要求...................... 三、设计过程....................................................... 1、加热反应炉的输入输出设备表:(I/O地址).........................

步进电机滑台PLC控制课程设计报告

大连民族学院机电信息工程学院 自动化系 PLC课程设计报告 题目:步进电机滑台PLC控制 专业:自动化 班级:自动化122,123,124 谭今文、周鸿儒、唐海涛、 学生姓名: 卢真伊、谭潏、潘竹馨 指导教师:张涛 设计完成日期:2015年5月7日

课程设计任务书 题目:步进电机滑台PLC控制 课程设计时间:2015.4.25-2014.5.7 一、设计任务 采用西门子S7-300系列PLC,使用Step-7编写并调试PLC控制程序,控制步进电机直线滑台的运行,实现手动、单次循环、多次循环、定位控制等功能。 二、设计内容及要求 ⒈掌握步进电机的工作原理; ⒉掌握步进电机驱动器的工作原理; ⒊直线滑台控制装置的总体方案设计; ⒋PLC控制系统的硬件设计; ⒌PLC控制系统的软件设计和调试; ⒍撰写设计报告; ⒎资料归档。 三、设计重点 PLC控制系统的软件设计与现场调试 四、课程设计进度要求 ⒈学习步进电机和步进电机驱动器的工作原理; ⒉总体方案及PLC硬件设计; ⒊PLC控制系统的软件设计和仿真调试; ⒋PLC控制系统的现场调试; ⒌撰写设计报告; ⒍验收答辩。 五、参阅书目 [1]廖常初,跟我动手学S7-300/400PLC,北京:机械工业出版社,2010年 [2]常斗南,PLC运动控制实例及解析,北京:机械工业出版社,2010年

目录 1任务分析和性能指标 (1) 1.1任务分析 (1) 1.2性能指标 (1) 2总体方案设计 (2) 2.2软件方案 (3) 3硬件设计与实现 (4) 3.1检测电路 (4) 3.2控制电路 (4) 4软件设计与实现 (6) 4.1梯形图 (6) 4.2梯形图功能注释 (7) 5调试及性能分析 (8) 5.1调试分析 (8) 5.1.1软件调试 (8) 5.1.2硬件调试 (8) 5.2性能分析 (8) 总结 (9) 参考文献 (10) 附录1元器件清单 (11) 附录2调试系统照片 (12)

机器人课程设计报告范例

机器人课程设计报告范例

**学校 机器人课程设计名称 院系电子信息工程系 班级10电气3 姓名谢士强 学号107301336 指导教师宋佳

目录 第一章绪论 (2) 1.1课程设计任务背景 (2) 1.2课程设计的要求 (2) 第二章硬件设计 (3) 2.1 结构设计 (3) 2.2电机驱动 (4) 2.3 传感器 (5) 2.3.1光强传感器 (5) 2.3.2光强传感器原理 (6) 2.4硬件搭建 (7) 第三章软件设计 (8) 3.1 步态设计 (8) 3.1.1步态分析: (8) 3.1.2程序逻辑图: (9) 3.2 用NorthStar设计的程序 (10) 第四章总结 (12) 第五章参考文献 (13)

第一章绪论 1.1课程设计任务背景 机器人由机械部分、传感部分、控制部分三大部分组成.这三大部分可分成驱动系统、机械结构系统、感受系统、机器人一环境交互系统、人机交互系统、控制系统六个子系统现在机器人普遍用于工业自动化领域,如汽车制造,医疗领域,如远程协助机器人,微纳米机器人,军事领域,如单兵机器人,拆弹机器人,小型侦查机器人(也属于无人机吧),美国大狗这样的多用途负重机器人,科研勘探领域,如水下勘探机器人,地震废墟等的用于搜查的机器人,煤矿利用的机器人。如今机器人发展的特点可概括为:横向上,应用面越来越宽。由95%的工业应用扩展到更多领域的非工业应用。像做手术、采摘水果、剪枝、巷道掘进、侦查、排雷,还有空间机器人、潜海机器人。机器人应用无限制,只要能想到的,就可以去创造实现;纵向上,机器人的种类会越来越多,像进入人体的微型机器人,已成为一个新方向,可以小到像一个米粒般大小;机器人智能化得到加强,机器人会更加聪明 1.2课程设计的要求 设计一个机器人系统,该机器人可以是轮式、足式、车型、人型,也可 以是仿其他生物的,但该机器人应具备的基本功能为:能够灵活行进,能感知光源、转向光源并跟踪光源;另外还应具备一项其他功能,该功能可自选(如亮灯、按钮启动、红外接近停止等)。 具体要求如下: 1、根据功能要求进行机械构型设计,并用实训套件搭建实物。 2、基于实训套件选定满足功能要求的传感器; 3、设计追光策略及运动步态; 4、用NorthStar设计完整的机器人追光程序;

计算机控制技术课程设计报告

《计算机控制技术》课程设计单闭环直流电机调速系统

1 设计目的 计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,通过这次课程设计进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养独立自主、综合分析与创新性应用的能力。 2 设计任务 2.1 设计题目 单闭环直流电机调速系统 实现一个单闭环直流电机调压调速控制,用键盘实现对直流电机的起/停、正/反转控制,速度调节要求既可用键盘数字量设定也可用电位器连续调节,需要有速度显示电路。扩展要求能够利用串口通信方式在PC上设置和显示速度曲线并且进行数据保存和查看。 2.2 设计要求 2.2.1 基本设计要求 (1)根据系统控制要求设计控制整体方案;包括微处理芯片选用,系统构成框图,确定参数测围等; (2)选用参数检测元件及变送器;系统硬件电路设计,包括输入接口电路、逻辑电路、操作键盘、输出电路、显示电路; (3)建立数学模型,确定控制算法; (4)设计功率驱动电路; (5)制作电路板,搭建系统,调试。 2.2.2 扩展设计要求 (1)在已能正常运行的微计算机控制系统的基础上,通过串口与PC连接; (2)编写人机界面控制和显示程序;编写微机通信程序;实现人机实时交互。

3方案比较 方案一:采用继电器对电动机的开或关进行控制。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。 方案二:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案三:采用由电力电子器件组成的H 型PWM 电路。用单片机控制电力电子器件使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在电力电子器件的饱和截止模式下,效率非常高;H 型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM 调速技术。 兼于方案三调速特性优良、调整平滑、调整围广、过载能力大,因此本设计采用方案三。 4单闭环直流电机调速系统设计 4.1单闭环调速原理 4.1.1 闭环系统框图 4.1.2 调速原理 直流电机转速有: 常数Ke Ka 不变,Ra 比较小。 所以调节Ua 就能调节n 。 n n I K R K U K R I U n d d a e e d ?-=Φ -Φ=-=0φa a a U I U ≈-

三相异步电动机正反转控制实验

三相异步电动机正反转控制实验 一、实验目的: 1.学习与掌握PLC的实际操作与使用方法; 2.学习与掌握利用PLC控制三相异步电动机正反转的方法。 二、实验内容及步骤 : 本实验采用PLC对三相异步电动机进行正反转控制 ,其主电路与控制电路接线图分别为图2-1与图2-2 。图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2,KM5为正向接触器,KM6反向接触器。继电器KA5、KA6分别接于PLC的输出口Y33、Y34。 其基本工作原理为:合上QF1、QF5, PLC运行。当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。 实验步骤 : 1.在断电的情况下,学生按图2-1与图2-2接线(为安全起见,控制电路的PLC外围继电器 KA5、KA6以及接触器KM5、KM6输出线路已接好) ; 2.在老师检查合格后,接通断路器QF1、QF5 ; 3.运行PC机上的工具软件FX-WIN,输入PLC梯形图 ; 4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC; 5. 运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控制。在PC机上 对运行状况进行监控,同时观察继电器KA5、KA6与接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确 ; 6。记录运行结果。 图2-1 主控电路

图2-2 控制电路接线图 三.实验说明及注意事项 1.本实验中,继电器KA5、KA6的线圈控制电压为24V DC,其触点5A 220V AC(或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。 2.三相异步电动机的正、反转控制就是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。其中一个很重要的问题就就是必须保证任何时候、任何条件下正反向接触器KM5、KM6都不能同时接通,否则会造成电源相间瞬时短路。为此,在梯形图中应采用正反转互锁,以保证系统工作安全可靠。 3.本实验中,主控电路的电压为380V DC,请注意安全! 四.实验用仪器工具 PC 机 1台 PLC 1台 编程电缆线1根 三相异步电动机 1台 断路器(QF1、QF5) 2个 接触器(KM5、KM6) 2个 继电器(KA5、KA6) 2个 按钮 3个 实验导线若干 五.实验前的准备 1.预习实验报告,复习教材的相关章节; 2.根据图2-1、图2-2画出梯形图,并写出指令代码。

组合机床电气控制课程设计1

组合机床电气控制课程设计专业:机械设计制造及其自动化 班级: 学号: 姓名: 指导老师: 湖南工业大学 2011年6月11日

目录 1绪论 (3) 2设计方案 (4) 2.1 左、右两动力头进给电机 (4) 2.2电动机控制电路 (5) 2.3液压泵电动机 (5) 2.4液压动力滑台控制 (6) 2.5主电路及照明电路 (7) 2.6保护与调整环节 (8) 2.7继电器电气原理简图 (10) 4 I/O分配表 (12) 5组合机床电气控制电路图 (14) 6课程设计的具体内容 (15) 6.1单循环自动工作 (15) 6.1.1单循环自动工作循环图 (15) 6.1.3单循环自动工作梯形图 (16) 6.2左铣单循环工作 (18) 6.2.1左铣单循环功能表 (18) 6.2.2左铣单循环梯形图 (19) 6.3右铣单循环工作 (21) 6.3.1右铣单循环梯形图 (21) 6.4公用程序 (23) 6.5回原位程序 (23) 6.6手动程序 (24) 6.7 PLC梯形图总体结构图 (24) 6.8面板设计 (25) 7系统调试 (26) 8设计心得 (27) 9参考文献 (28)

1绪论 对于机械—电气结合控制的组合机床,电气控制系统起着重要的神经中枢作用。传统的组合机床采用的继电器—接触器控制系统,接线复杂、故障率高、调试和维护困难。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 组合机床结构示意图 组合机床工作循环图 组合机床采用两个动力头从两个侧面分别加工,左、右动力头的电动机均为2.2kw,

电气传动课程设计报告-

电气传动课程设计 班级:06111102 姓名:古海君 学号:1120111573 其它小组成员: 余德本 梁泽鹏 王鹏宇 2014.10.2

摘要 本次课程设计要求设计并调试出直流双闭环调速系统。通过搭建电流环(内环)和转速环(外环)使系统稳态无静差,动态时电流超调量小于5%,并且空载启动到额定转速时的转速超调量小于10%。系统的驱动装置选用晶闸管,执行机构为直流伺服电动机。 本文首先明确了课程设计任务书,对其中的相关概念进行分析。之后对课题的发展状况进行调研,了解双闭环调速系统在现代工业中的应用意义和价值。然后对实验条件作了详细介绍,包括实验台各个组成部分以及实验设备的选型和工作原理。以上内容均为课程设计准备工作,之后重点记录了实验的测试、仿真和调试过程。其中,测试部分详细介绍了各个电机参数和系统参数测试方法和数据结果,并利用这些数据计算调节器的参数;仿真部分利用matlab软件通过已经求得的参数得出计算机仿真结果,并观察是否满足任务书要求;调试部分是核心,给出了现场调试全部过程并配以图片加以说明。文章最后给出测试结果从而

得出结论,并论述了实验注意事项并加以总结。 转速电流双闭环直流调速系统是性能优良,应用广泛的直流调速系统,,它可以在保证系统稳定性的基础上实现转速无静差,并且具有调速范围广、精度高、动态性能好和易于控制等优点。转速电流双闭环直流调速系统的控制规律、性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础,值得更加深入的学习研究。

目录 一、课程设计任务书 (1) 二、课题的发展状况研究意义 (1) 三、设备选型 (2) 四、实验台简介 (4) 五、参数测试 (7) 六、参数设计 (15) 七、系统调试 (18) 八、系统测试结果 (26) 九、实验室安全及实验过程注意事项 (27) 十、总结和心得体会 (28) 参考文献 (28) 附1:实验过程中遇到问题及解决方法 (29) 附2:小组分工,个人主要工作及完成情况 (30)

电动机正反转实验报告

实验一三相异步电动机的正反转控制线路 一、实验目的 1、掌握三相异步电动机正反转的原理和方法。 2、掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。 二、实验设备 三相鼠笼异步电动机、继电接触控制挂箱等 三、实验方法 1、接触器联锁正反转控制线路 (1) 按下“关”按钮切断交流电源,按下图接线。经指导老师检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q1,接通220V三相交流电源。 (3) 按下SB1,观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。 (4) 按下SB3,观察并记录M运转状态、接触器各触点的吸断情况。 (5) 再按下SB2,观察并记录M的转向、接触器自锁和联锁触点的吸断情况。 Q1 23 220V

图1 接触器联锁正反转控制线路 3、按钮联锁正反转控制线路 (1)按下“关”按钮切断交流电源。按图2接线。经检查无误后,按下“开”按钮通电操作。 (2) 合上电源开关Q 1,接通220V 三相交流电源。 (3) 按下SB 1,观察并记录电动机M 的转向、各触点的吸断情况。 (4) 按下SB 3,观察并记录电动机M 的转向、各触点的吸断情况。 (5) 按下SB 2,观察并记录电动机M 的转向、各触点的吸断情况。 Q 1 220V

图2 按钮联锁正反转控制线路 四、分析题 1、接触器和按钮的联锁触点在继电接触控制中起到什么作用? 实验二交流电机变频调速控制系统 一﹑实验目的 1.掌握交流变频调速系统的组成及基本原理; 2.掌握变频器常用控制参数的设定方法; 3. 掌握由变频器控制交流电机多段速度及正反向运转的方法。 二﹑实验设备 1.变频器;2. 交流电机。 三、实验方法 (一)注意事项 参考变频器的端子接线图,完成变频器和交流电机的接线。主要使用端子为R﹑S ﹑T;U﹑V﹑W;PLC﹑FWD﹑REV﹑BX﹑RST﹑X1﹑X2﹑X3﹑X4﹑CM。 变频器电源输入端R﹑S﹑T和电源输出端U﹑V﹑W均AC380V高电压﹑大电流信号,任何操作都必须在关掉总电源以后才能进行。

电气控制课程设计PLC课程设计

电气控制课程设计PLC课程设计

电气控制课程设 计 说明书 学院机械工程学院 年级08级专业机械工程及自动化(机电工程)

目录 第一篇PLC模拟-----------------------------------------------------------------------------------------1任务一:PLC控制自动门仿真实验-----------------------------------------------------------------------------1 1.任务说明-------------------------------------------------------------------------------------------------------------------1 2.主电路图-------------------------------------------------------------------------------------------------------------------4 3.PLC接线图----------------------------------------------------------------------------------------------------------------4 4.输入输出列表----------------------------------------------------------------------------------------------------------5 5.流程图-----------------------------------------------------------------------------------------------------------------------5 6.梯形图

电气控制与PLC课程设计报告

电气控制与P L C课程 设计报告 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

× × × ×大学 《电气控制与PLC》课程设计说明书专业: 班级: 姓名: 学号: 指导教师: 目录

第一部分: 电气线路安装调试技能训练 技能训练题目一:三相异步电机的可逆控制实验 在笼型电动机正反转控制线路中,只要改变电动机的三相电源进线的任意两相的相序,电动机即可反转。本实验给出电动机的“正-反-停”控制线路如图1所示,具有如下特点: 1、电气互锁 实验电路中采用了两个接触器KM1和KM2,分别进行正转和反转的控制。为了避免接触器KM1、KM2同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM2(KM1)辅助常闭触头,保证了线路工作时KM1、KM2不会同时得电,电路能够可靠工作。 2、机械互锁 实验电路中采用了复合按钮SB1为正转按钮,复合按钮SB2为反转按钮,停止按钮SB3。采用按钮SB1与SB2组成机械互锁环节,以求线路能够方便操作。 电气原理图: 电气安装接线图: 本人完成的安装线路实物图片一:

技能训练题目二:三相异步电机Y-△降压启动控制 从主回路看,当接触器KM1、KM2主触头闭合,KM3主触头断开时,电动机三相定子绕组作Y连接;而当接触器KM1和KM3主触头闭合,KM2主触头断开时,电动机三相定子绕组作△连接。因此,所设计的控制线路若能先使KM1和KM2得电闭合,后经一定时间的延时,使KM2失电断开,而后使KM3得电闭合,则电动机就能实现降压起动后自动转换到正常工作运转。该线路具有以下特点: (1) 接触器KM2与KM3通过辅助常闭触点KM2与KM3实现电气互锁,保证接触器KM2与KM3不会同时得电,以防止三相电源的短路事故发生。 (2) 依靠时间继电器KT进行控制,保证在按下起动按钮SB2后,使接触器KM1、KM2和时间继电器KT线圈先得电。时间继电器KT的整定时间到后,依靠时间继电器KT的通电延时断开常闭触点先断,KT的通电延时闭合常开触点后闭合的动作次序,保证KM2先断,而后再自动接通KM3,也避免了换接时电源可能发生的短路事故。 (3) 本线路正常运行(△形连接)时,接触器KM2及时间继电器KT均处断电状态。电气原理图: 电气安装接线图: 本人完成的安装线路实物图片二: 技能训练小结: 1、电气原理图的绘制要求:

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

15_三相异步电机的正反转控制线路_实验报告

1.掌握单台电动机正反转控制方法; 2.进一步熟练掌握板前明配线的接线工艺; 3.加强训练学生排除电动机基本控制线路故障的能力。 实验工具:万用表、尖嘴钳、偏口钳、螺丝刀、剥线钳、试电笔等。 实验器材:试验安装板一块,低压电器元件若干,导线若干。 实验主要内容实验要求 1(1)老师简要讲解正反转控制线路的工作原 理。回顾读图识图中“屏蔽无用信息”的思维 习惯。 (2)老师强调控制线路的布线原则和低压电器 的安装工艺。 (1)学生在实验前预习教材171页“正反转 控制”的内容。 (2)学生认真听讲并做好笔记。 2三相交流电动机正反转控制线路接线接线时,应严格遵循板前明线布线的工艺要 求和原则。 3自检与通电试车(1)排除故障前先停电,并在电气原理图上用虚线标出故障电路中最短的故障线段。(2)故障分析、故障排除的思路及方法应正确无误。 4老师作实验总结 5学生填写实验报告回答思考题并写出实验报告 1.在实验教师的指导下,分析电气控制线路原理图。 2.用万用表检查各元器件的质量。 3.读懂电气元件布置图,并依此安装和固定电器元件。 4.读懂电气安装接线图,并依此布线。 (1)主电路接线要注意接触器主辅触点的分辨和选用以及热继电器的连接; (2)控制线路接线时要注意按钮常开和常闭触点的分辨、选择和接线。 5.通电检查并排除电路故障 三相交流电动机正反转控制线路接线 ① 在未通电情况下,用万用表电阻档初步检查控制线路是否正确。 ② 接通电源,操作相关按钮,验证电路的工作情况。 1.接线后要认真逐线核对线号,重点检查控制电路中按钮和接触器的触点选择。 2.通电试车必须经指导老师的同意,并在指导老师监护下进行。 3.通电调试时,不许用手触及电气元件的导电部分,以免触电及意外损伤。

电气控制与plc课程设计 自动洗车机控制设计

电气控制与PLC 课程设计 题目: 自动洗车机控制设计 院系名称:电气工程学院 专业班级:自动F0805 学生姓名:周起伟 学号: 200848280525 指导教师:王艳芳 设计地点:中2-211 设计时间: 2011.07.04~2011.07.10 成绩: 指导老师签名: 日期:

目录 1系统描述及其要求 (1) 1.1系统描述 (1) 1.2系统要求 (2) 2硬件设计 (2) 2.1硬件选择 (2) 3 软件设计 (5) 3.1系统的整体程序流程图 (5) 3.2梯形图 (6) 4 系统调试分析 (12) 4.1 硬件调试 (12) 4.2 软件调试 (13) 4.3 整机调试 (13) 设计心得 (14) 参考文献 (15)

1系统描述及其要求 1.1系统描述 此文的主要思路是是基于PLC技术的自助洗车机设计。其中把PLC作为主要控制器,将各种继电器采集的信息经过一定的控制算法后,通过PLC的I/O口来控制继电器的闭合达到自动控制的目的。洗车机的主运动是左右循环运动由左右行程开关控制,同时不同循环次序伴随不同的其它动作,如喷水、刷洗、喷洒清洁剂及风扇吹干动作等。因每次动作的开始都是碰到左行程开关才实现,所以运用计数器记录左极限信号脉冲的次数从而控制上述辅助运动按要求依次动作。系统还采用了复位设计,如在洗车过程中由其它原因使洗车停止在非原点的其它位置,则需要手动对其进行复位,到位时复位灯亮,此时才可以启动,否则启动无效,洗车机经启动后可自动完成洗车动作后自行停止,也可在需要时手动停止。 此设计系统由三菱公司生产的FX2N系列的PLC、人机交互和串口通信、数码管、指示灯和电源部分组成。系统的总设计原理图如图1.1所示。 图1.1 系统总设计原理图 PLC :该部分的功能不仅包括对各种开关信息的采集、处理,还包括对执行单元的控制。PLC是整个系统的核心及数据处理核心。 人机交互和串口通信:人机交互的目的是为了提高系统的可用性和实用性。主要是按键输入。 输出显示:通过按键输入进入相应进程,而输出显示则是显示金额。串口通信的主要功能是完成PLC与上位机(比如电脑)的通信,便于进行系统的维修、改进和升级,为将来系统功能的扩展做好基础工作。 电源部分:本部分的主要功能是为PLC提供适当的工作电压,同时也为其他模块提供电源。如显示屏、按键等。

机电控制技术课程设计报告书

机电控制技术课程设计报告书 1.1任务描述 本系统结构与工作原理如上图所示,纺织品由五个电动机带动辊子与橡胶辊的摩擦带动左向右传动。要求设计该系统的控制部分。本控制部分采用西门子S7-224PLC(继电器型)控制5个三相变频电机,实现纺织布料在该系统中自左向右的同步传动。 1.2 控制任务和要求 (1)确定本系统所需要的电气元件,并说明元件型号; (2)变频电机的转速范围0~1500r/min; (3)按下启动按钮,布料按一个初始速度自左向右运行; (4)一直按下升速按钮,布料运行速度持续上升(上升到上限不在上升);一直按降速按钮,布料运行速度持续下降(下降到下限不在下降); (5)按停止按钮,系统停止运行; 2 控制方案的选择 交流电机按品种分同步电机、异步电机两大类。 同步电机转子的转速n s与旋转磁场的转速相同,称为同步转速。n s与所接交流电的频率 (f)、电机的磁极对数(P)之间有严

格的关系 n s=f/P 在中国,电源频率为50HZ,所以三相交流电机中一对磁极电机的同步转速为3000转/分,三相交流电机中两对磁极电机的同步转速为1500转/分,以此类推。异步电机转子的转速总是低于或高于其旋转磁场的转速,异步之名由此而来。异步电机转子转速与旋转磁场转速之差(称为转差)通常在10%以内。 转差率 S=n0-n/n0(n0为同步转速,n为空载转速) 由此可知,交流电机(不管是同步电机还是异步电机)的转速都受电源频率的制约。因此,交流电机的调速比较困难,最好的办法是改变电源的频率。 本系统结构与工作原理如上系统联动控制图所示,纺织品由五个电动机带动辊子与橡胶辊的摩擦带动左向右传动。首先可以看出该系统属于同步开环控制,在布的同步传动中必须保证布在传动过程中始终被拉直,因此要求后一个电动机的转速比前一个电动机的转速高,但转速差不宜过大,否则会影响布的质量甚至会拉断布。由上述控制要求可知,本系统要求五个电机实现同步升速和同步降速,而且在升速和降速的过程中保持各个电机之间存在一个速度差,从而使绕过辊子的布保持一定的张力。如果在运行过程中出现紧急情况,可以实现紧急停车,从而把损害减小到最少。 为了实现上述功能,达到控制要求,经分析可知,选择变频调速的开环交流调速系统。理由如下: (1)提供的电源为工频50HZ的三相四线制的线电压为380V

《电机与电气控制》教案

《电机与电气控制》课程设计 教案 彬县职业教育中心

第一讲一、章节:《电气控制课程设计》 课程设计任务安排及设计方法 二、教学目标 应知:课程设计要求及任务 应会:电气控制系统的设计方法 难点:电气控制系统的设计方法 三、教学方法: 结合实例讲授 四、教学过程: 1、介绍任务安排,分组选题 2、讲授电气控制系统的设计方法、设计思路及设计步骤 五、问题与讨论: 1、对所选课题的设计思路 六、考工必备 电气安装及布线原则 七、课后小结: 本次课让学生对本周的课程设计建立一个具体的认识,并组织自选题目和分工,便于实训的正常进行。

《电机与电气控制》课程设计 第一讲 一、课程设计的目的 电气控制课程设计的主要目的是:通过电气控制系统的设计实践,掌握电气控制系统的设计方法、电器元件和电气控制线路的安装过程、设计资料整理和电气绘图软件的使用方法。在此过程中培养从事设计工作的整体观念,通过较为完整的工程实践基本训练,为综合素质全面提高及增强工作适应能力打下坚实的基础。 二、课程设计的要求 电气控制课程设计的要求是:根据设计任务书中设备的工艺要求设计电气控制线路,计算并选择电器元件。布置并安装电器元件与控制线路。进行电气控制线路的通电调试,排除故障。达到工艺要求,完成设计任务。同时要求尽可能有创新设计,选用较为先进的电气元件。严格按照国家电气制图标准绘制相关图纸。选用合适的电气CAD 制图软件,制作电气设备的成套图纸与文件,以满足现代化电气工程的需要。 三、课程设计的目标 1.基础知识目标 (1)理解电气线路的工作原理; (2)掌握常用电器元件的选用; (3)掌握根据工艺要求设计电气控制线路; (4)掌握电气控制线路的安装与调试; (5)掌握电气控制设备的图纸资料整理; (6)掌握计算机电气绘图软件使用。 2.能力目标 (1)掌握查阅图书资料、产品手册和工具书的能力; (2)掌握综合运用专业及基础知识,解决实际工程技术问题的能力; (3)具有自学能力、独立工作能力和团结协作能力。 四、课程设计任务 1.接受设计任务书,选定课程设计课题。 2.制订工作进度计划,进行人员分工,明确各阶段各人应完成的工作。 3.根据设计任务书分析电气设备的工艺要求,讨论最佳设计方案。 4.设计电气控制线路,选择电器元件。 5.绘制相关图纸(如:电气控制原理图、电器板元件布置图、电器板接线图,控

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

相关主题
文本预览
相关文档 最新文档