当前位置:文档之家› 膜污染与清洗

膜污染与清洗

膜污染与清洗
膜污染与清洗

第24卷第2期合肥工业大学学报(自然科学版)V o l.24N o.2 2001年4月JOU RNAL O F H EFE I UN I V ER S IT Y O F T ECHNOLO GY A p r.2001

膜污染与清洗

王 萍, 朱宛华

(合肥工业大学资源与环境科学系,安徽合肥 230009)

摘 要:各种膜分离已在分离过程中成为最新的技术之一。膜体系的发展有很大的前景,但膜的污染问题仍是一个难题,它限制了膜的广泛应用。文章概述了膜污染的机理、预防措施及其清洗方法。并根据这些原则对微滤啤酒废水引起的膜污染的清洗方法进行了研究,通过比较试验,选择了恰当的清洗剂和清洗工艺,快速恢复了膜通量。

关键词:膜;膜污染;膜清洗

中图分类号:X797 文献标识码:A 文章编号:100325060(2001)022*******

Foul i ng and clean i ng of m em brane

W AN G P ing, ZHU W an2hua

(D ep t.of N atural R esources and Environm ental Science,H efei U niversity of T echno logy,H efei230009,Ch ina)

Abstract:T he u se of m em b ranes has becom e one of the m o st sough t2after techn iques in separati on p rocesses,and there has been great advancem en t in developm en t of m em b rane system s,bu t the fou ling of m em b ranes becom es the bo ttleneck li m iting the w ider app licati on of m em b ranes.T h is paper in troduces the m echan is m of m em b rane fou ling as w ell as the p reven tative m easu res and the clean ing m ethods.A case study is carried ou t of the clean ing m ethod fo r M F m em b rane fou ling by beer w astew ater.T he m o st app rop riate cleaner and clean ing p rogram s are cho sen and the flux recovers rap idly.

Key words:m em b rane;fou ling of m em b rane;clean ing of m em b rane

0 引 言

膜科学技术随着对物质的高分离与纯化技术的要求应运而生,它是一门新生的高分离、浓缩、提纯及净化技术,因它具有不发生相变、能耗低、适用于多种特殊溶液体系的分离、分离装置简单、分离效率高和传质速度快等优点,应用范围越来越广,受到许多领域关注,在世界各国得到迅猛发展。

但是,随着膜运行时间的增长,总会发生膜污染,导致通量的递减,本文就此问题探讨膜的污染及其清洗。为了更好地考察清洗方法的效果,选择了微滤啤酒废水引起的膜污染为研究对象。

收稿日期:2000211217

作者简介:王 萍(1976-),女,陕西铜川人,合肥工业大学硕士生;

朱宛华(1935-),女,浙江嘉兴人,合肥工业大学教授,硕士生导师.

1 膜的污染机理

膜在使用时,不可避免地会受到膜污染,导致其通量逐渐降低。造成膜污染主要有2个原因:①浓差极化的影响;②膜表面吸附溶质(尤其是大分子)形成的膜污染

。图1 边界层中的传质及浓差极化

1.1 浓差极化

由于膜的选择透过性,被截留组分在膜料液侧表

面积累,其浓度往往比料液主体浓度高得多,组分在边

界层和膜内形成如图1所示的浓度分布。

组分在料液主体中的浓度c S1、膜表面浓度c S2和

透过侧浓度c S3之间的关系[1]可用下式表示

J =D l ln c s2-c s3c s1-c s3=k ln c s2-c s3

c s1-c s3(1)

式中,k =D l

定义为传质系数。在膜的使用中,膜表面浓度c S2常达到截留组分

的饱和浓度c G ,若组分在透过液中的浓度很低,即c S3

→0,则(1)式可表示为[1]

J =k ln c G

c s1(2) 此时膜渗透流率与操作压力无关,主要决定于边界层内的传质情况,即产生了浓差极化。但这种影响是可逆的,通过降低料液浓度或改变膜面附近料液侧的流体力学条件,如提高料液流速,采用湍流促进器和设计合理的流通结构等方法

[2,3],可减轻产生的浓差极化现象,使膜的分离特性得以部分恢复。

1.2 膜的污染膜污染是指料液中的某些组分在膜表面或膜孔中沉积导致膜渗透流率下降的现象。包括膜的孔道被大分子溶质堵塞引起膜过滤阻力增加;溶质在孔内壁吸附;膜面形成凝胶层增加传质阻力[4]。组分在膜孔中沉积,将造成膜孔减小甚至堵塞,实际上减小了膜的有效面积。组分在膜表面沉积形成的污染层所产生的额外阻力可能远大于膜本身的阻力,而使渗透流率与膜本身的渗透性无关。这种影响是不可逆的[5,6],污染程度同膜材料、保留液中溶剂以及大分子溶质的浓度、性质、溶液的pH 值、离子强度、电荷

组成、温度和操作压力等有关,污染严重时能使膜通量下降80%以上[7]。文献[7]列出了膜受到污染时

的标志及症状:①单位面积迁移水速率逐步下降(膜通量下降)。②通过膜的压力和膜两侧的压差逐渐增大(进料压力和△P 逐渐增大)。③膜对溶解于水中物质的透过性逐渐增大(矿物截留率下降)。2 膜污染的预防措施

文献[8]指出:“在大多数情况下膜污染是由于不适当的进料水预处理所致”。由于料液中常含有无机物、有机物、微生物、粒状物和胶体等杂质,对膜产生不利影响,因此必须对料液进行预处理,以使浓差极化的影响和膜污染减少到最低程度。预处理的措施有:

(1)预除料液中大颗粒[9],如:絮凝沉淀、粒状活性炭吸附、圆筒过滤器、微过滤器及添加防垢剂等。(2)增加流速,减薄边界层厚度,提高传质系数,或采用湍流促进器和设计合理的流道结构等方法,使被截流的溶质及时地被水流带走。

(3)选择适当的操作压力,避免增加沉淀层的厚度和密度。

132第2期 王 萍,等:膜污染与清洗

232 合肥工业大学学报(自然科学版) 第24卷

(4)制膜过程中对膜进行修饰,使其具有抗污染性。例如,以一种对膜的分离特性不会产生很大影响的小分子化合物覆盖在膜面,形成保护层,防止膜表面和料液中某些组分起作用。同时,它还可以防止酶在膜处理过程中的失活。

(5)为防止微生物、细菌及有机物的污染,常使用消毒试剂,如含氯试剂、过氧化物、碘化物等。

(6)适当提高料液水温,加速分子扩散,增大滤速;或降低膜两侧的压差或料液浓度,均可减轻已经产生的浓差极化现象。

3 膜的清洗

尽管料液经过各种预处理措施,但长期使用后膜表面还可能产生沉积和结垢,使膜孔堵塞,产水量下降,因此对污染膜进行定期的清洗是必要的。常用的方法有机械清洗、化学清洗以及机械、超声波和化学清洗的综合技术[10,11],这里主要介绍机械清洗与化学清洗。

3.1 机械清洗

(1)等压冲洗 适用于中空纤维组件。冲洗时首先降压运行,关闭滤液出口并增加原水进入速率,此时中空纤维内腔压力随之上升,直至达到与中空纤维外侧腔体操作压力相等,使膜两侧压差为零,滞留于膜表面的溶质分子,即会悬浮于溶液中并随浓缩液排出。

(2)反冲洗 指从膜的透过侧吹气体或液体,将膜面污染物除去的方法。注意应在较低的操作压力下进行(132kPa左右),以免引起膜破裂。反冲洗时间一般需要20~30m in。

(3)气2液脉冲 气液混合流体在低压下冲洗膜表面15m in。这种处理方法简单,对于清洗初期受有机物污染的膜是有效的。

(4)静置浸泡加水力反冲洗 对于长期连续运转透水量下降而再生又有困难的膜组件,在停止运转时用高纯水浸泡静置10h以上,然后再进行水力反冲洗是提高透水量的有效方法。

(5)机械刮除 对管式组件可采用软质泡沫塑料球、海绵球(直径略大于膜管内径),对内压管膜进行清洗,在管内通过水力让泡沫、海绵球反复经过膜表面,对污染物进行机械性的去除。这种方法对软质垢几乎能全部去除,但对于硬质垢则不但不易去除且容易损伤膜表面。因此,该法特别适用于以有机胶体为主要成分的污染膜表面的清洗。

(6)提高膜的移动速度 使膜面高速旋转产生高剪切力以抑制膜面的污染。其中有将平面膜固定在圆板上和利用T aylof漩涡的漩转二重圆筒方式,法国的GB T公司制造的直径80c m的大旋转式二重圆筒过滤装置已投入使用。

(7) 电泳法 利用液相中带电荷的物质(离子)的电泳的一种过滤,也称电膜过滤法(E lectro2 filtrati on)。其作用原理是使膜产生电位梯度,以减少带电荷物质在膜面上的堆积。

3.2 化学清洗

许多化学试剂对去除污垢和其它沉积物是有效的。化学清洗实质上涉及到所使用的化学药剂和沉积物、污垢、腐蚀产物及影响通量速率和产水水质的其它污染物的反应。这些化学试剂有:酸、碱和螯合剂等。在具体选择的时候,应根据膜的性质和处理料液的性质来定。下面是几种常用的清洗剂[12~16]。

(1)酸碱液 酸在去除诸如碳酸钙和磷酸钙等钙基垢、氧化铁和金属硫化物方面是有效的。碱清洗溶液包括磷酸盐、碳酸盐和氢氧化物。这些溶液可使沉淀物松动、乳化和分散。为了能去除湿润油、润滑脂、污秽物和生物物质,通常加入表面活性剂增加碱清洗剂的脱垢性。当去除诸如硅酸盐等特别难以去除的沉积物时,交替使用碱清洗剂和酸清洗剂。

(2)螯合剂 除了强酸和碱外,螯合剂也用于去除污染膜的沉积物。常用的螯合剂有乙二胺四醋酸(ED TA)、磷羧基羧酸、葡萄糖酸和柠檬酸等。其中,葡萄糖酸在强碱溶液中螯合铁离子(Fe3+)通常是有效的。ED TA常用于溶解碱土金属硫酸盐。

(3)氧化剂 当N aOH 或表面活性剂不起作用时,可以用氯进行清洗,最适pH 为10~11。(4)酶 由醋酸纤维等材料制成的膜,由于不耐高温,在膜通量难以恢复时,须采用能水解蛋白质的含酶清洗剂清洗。但使用酶清洗剂不当会造成新的污染,采用固定化酶形式,把酶固定在载体上,用含载体液进行清洗,效果很好。

(5)化学清洗液 常用的化学清洗液有:①1%加酶洗涤剂水溶液;②30%H 2O 20.5L +去离子水12L ;③柠檬酸2%+TR ITON X -1000.1%+RO 水97.9%,氨水调节pH 至3;④柠檬酸2%+39%ED TA 钠2%+RO 水96%,氨水调节pH 至4;⑤三聚磷酸钠2%+TR ITON X -1000.1%+39%ED TA 钠2%+RO 水95.9%,硫酸调节pH 至7.5;⑥盐酸或柠檬酸调节RO 水至pH =4;⑦高浓度盐水;⑧含酶清洗剂;⑨次氯酸钠溶液5~10m g L ,用硫酸调节pH 至5

~6(芳香聚酰胺膜则用1%甲醛液);βκ1%~2%H 2O 2溶液。

其中清洗液①、②用于去除有机物污染,③、④、⑤、⑥用于去除无机物污染,⑦、⑧用于去除浓厚胶体,⑨、βκ用于去除细菌、微生物。

4 实验结果

本文以污染物主要是菌体及多肽与多糖等大分子物质的啤酒废水为研究对象,对微滤该啤酒废水引起的膜污染的清洗方法进行了试验。试验首先选用0.2Λm 的聚丙烯微滤膜对啤酒废水(来自廉泉啤酒厂)进行处理,在微滤前进行预处理,以保证微滤膜的使用寿命。

当微滤膜通量显著下降时,膜被污染,需对其进行清洗。先用过氧化氢浸泡24h ,去除部分蛋白质及多糖等大分子物质,然后用水进行冲洗,再用0.2m o l L HC l 溶液冲洗,最后用0.5m o l L 的N aOH 溶液清洗。经测定,再生膜的膜通量已接近新膜,可见再生效果很理想。

[参 考 文 献]

[1] 刘茉娥.膜分离技术[M ].北京:化学工业出版社,1998.212.

[2] Belfo rt G .Synthetic m em brane p rocess fundam entals and w ater app licati on [M ].O rlem do :A cadem ic P ress ,1984.378.

[3] Roget E L ,L eobs J W .Industrial p rocesses w ith m em brane [M ].N ew Yo rk :W iley 2Interscirnce ,1972.123.

[4] M unircheryan .U ltrafiltrati on H andbook [M ].L ancaster :T echnom ic Publish ing Company ,1986.175.

[5] 刘茉娥.超滤膜污染机理的研究[J ].水处理技术,1989,15(13):163-168.

[6] Am jad Z .A dvances in m em berane cleaners fo r reverse o s mo sis system s [J ].U ltrapure W ater ,1989,6(6):38-42.

[7] R idgw ay H F .M icrobial adhesi on and bi ofouling of reverse o s mo sis m em branes [A ].Parekh B S .R everse O s mo sis T echno logy [C ].

N ew Yo rk :M arcel D ekker ,1988.429-481.

[8] H i m elstein W D ,Am jad Z .T he ro le of w ater analysis ,scale contro l and cleaning agents in reverse o s mo sis [J ].U ltrapure w ater ,

1985(M arch A p ril ):32-36.

[9] 朱长乐,刘茉娥,高从阶.膜科学与技术[M ].杭州:浙江大学出版社,1992.247-231.

[10] Belfo re G .C leaning of reverse o s mo sis m em branes in w astew ater renovati on [J ].A I ChE Sympo sium Series ,1975,151(71):76-

80.

[11] 闻瑞海.高纯水技术[M ].北京:科学出版社,1988.186-196.

[12] 薛怀德.超滤膜法简要介绍(三)[J ].膜科学与技术,1992,12(2):60-64.

[13] 高以亘.膜分离技术基础[M ].北京:科学出版社,1989.286-294.

[14] 任德谦.卷式超滤装置的水洗再生行为的实验研究[J ].水处理技术,1986,12(4):191-192.

[15] 刘双进.污水处理新技术[M ].北京:海洋出版社,1985.11-12.

[16] 陆 柱.水处理中的化学清洗技术[J ].净水技术,1988(3):1-4.

(责任编辑 朱华新)

3

32第2期 王 萍,等:膜污染与清洗

MBR膜污染形成机理及控制

2006年2月 Feb.2006 ?110? 文章编号:1673-1212(2006)01-0110-03 膜生物反应器( Membrane Bio-reactor―MBR)是将膜分离技术与生物反应原理相结合而开发的一种新型污水处理工艺。与传统工艺相比具有固液分离效果好、生物反应器内生物量高、污泥产量低、出水水质好、占地面积小等优点。但是在膜分离过程中出现的膜污染严重的影响了膜的通透性能,增加了工艺的运行成本,已成为影响该技术推广使用的一个关键问题。因此,有必要对MBR膜污染的形成机理及主要影响因素进行分析并研究相关控制方法,以期为推广该项新技术的工业化应用创造条件。 1 MBR膜污染的形成机理及主要影响因素 1.1 形成机理 所谓膜污染是指处理物料中的微粒、胶体颗粒以及溶质大分子由于与膜存在物理、化学作用或机械作用而引起的在膜表面或膜孔内吸附和沉积造成膜孔径变小或 堵塞,使膜通量及膜的分离特性产生变化的现象。[1] 造成 MBR膜污染的直接物质来源是生物反应器中的污泥混合液,成分包括微生物菌群及其代谢产物、废水中的大小有机分子、溶解性物质和固体颗粒等。通常,在MBR膜过滤过程中,膜污染的形成机理主要有以下几种:1.1.1 小于膜孔径的颗粒物质在膜孔中吸附,通过浓缩、结晶、沉淀及生长等作用使膜孔产生不同程度的堵塞,造 成膜污染。 [5]1.1.2 料液中的悬浮物、胶体物质及微生物被膜拦截,物质间通过吸附、架桥、网捕等作用结合在一起,在膜表面沉积形成沉积层,降低膜通量,造成膜污染。1.1.3 膜穿透压力及膜孔的堵塞造成膜表面出现浓差极 化现象,当达到极限浓度后,溶解性难降解小分子有机物析出并与污泥混合液悬浮固体(MLSS)结合在膜表面形 成凝胶层,造成膜污染。 [5] 第二种机理形成的沉积层与膜表面的结合力较弱,控制膜出水通量在合理的范围内可减少污泥絮体在膜表面的沉积。此外,在膜过滤过程中,曝气或膜面错流等操作形成的剪切力和扰动作用基本可以将沉积层去除,它对膜的通透性能影响不大。造成膜通透性能降低的主要污染因素是膜孔的堵塞和凝胶层的形成。在膜过滤过程中水力作用很难将这两种污染去除,必须通过专门的膜清洗才能恢复膜的通透性,这也是导致工艺运行费用增加的主要原因之一。控制膜污染的主要目的是确保膜的通透性,降低运行成本。因而,膜孔的堵塞和抑制凝胶层的形成是MBR膜污染控制的重点。1.2 影响因素 影响膜孔堵塞的主要因素是料液中的生物相尺寸和膜自身的特性。一般生物相尺寸越小越容易堵塞膜孔且孔内微生物在营养物充足时会出现滋生现象,加重膜孔 堵塞程度。[10]膜的特性主要有膜材质、膜孔径大小、空隙 率、亲疏性、电荷性质和粗糙度等。不同特性的膜吸附料液颗粒物的程度不同,所以污染的程度也不同。影响凝胶层析出的因素为料液生物相尺寸和反应器中的溶解性难降解有机物浓度。溶解性难降解有机物这里主要是指胞外聚合物(EPS)会导致溶液粘度的增加,堵塞污泥絮体颗粒之间的空隙,改变膜面形成的空隙率的结构,是凝胶 层形成的主要因素。[5]生物相尺寸越小在过滤过程中越容 易达到膜表面,形成比阻更高的致密层,加速凝胶层的形成。此外,膜的出水通量在膜过滤过程中控制着浓差极化 收稿日期: 2005-09-23 作者简介:蒋波(1979-),男,江苏徐州人,中国矿业大学环测学院工程系在读硕士研究生,主要研究方向为污水处理技术。 MBR膜污染形成机理及控制 蒋波1,王丽萍2,华素兰3,张传义4 (1.2.3.4中国矿业大学 环测学院, 江苏 徐州 221008) 摘 要: 膜污染问题是影响膜生物反应器(MBR)技术推广使用的一大障碍。本文通过对MBR膜污染的形成机理及主要影响因素的分析研究,认为造成膜通透性能降低及工艺运行成本增加的主要污染因素是膜孔的堵塞和凝胶层的形成,在膜过滤过程中,采用优化选择膜组件及运行操作条件、改善污泥混合液的生化特性、确定临界污泥浓度、膜清洗等方法可减少膜孔的堵塞,抑制凝胶层的形成,有效的控制膜污染。关键词: MBR 膜污染 凝胶层 胞外聚合物(EPS) 中图分类号:X703 文献标识码:B ENVIRONMENTAL SCIENCE AND MANAGEMENT

如何解决4040反渗透膜污染物

如何解决4040反渗透膜污染物 美国陶氏反渗透膜高消耗品,每一个变化都是非常高的消费记录。所以我们会认为反渗透膜可以使用的时间更长,从而减少改变频率?事实上,只要我们了解4040反渗透膜的污染和清洗方法我认为所有这些问题得到解决,然后由纯水机介绍反渗透膜的污染和清洗方法。 美国陶氏反渗透膜 1.反渗透设备中的主要部件美国陶氏反渗透膜的污染物 在正常运行一段时间后,美国陶氏反渗透膜元件会受到在给水中可能存在的悬浮物质或难溶物质的污染,这些污染物中最常见的为碳酸钙垢、硫酸钙垢、金属氧化物垢、硅沉积物及有机或生物沉积物。 污染物的性质及污染速度与给水条件有关,污染是慢慢发展的,如果不早期采取措施,污染将会在相对短的时间内损坏膜元件的性能。定期检测系统整体性能是确认膜元件发生污染的一个好方法,不同的污染物会对膜元件性能造成不同程度的损害。 2.污染物的去除

污染物的去除可通过化学清洗和物理冲洗来实现,有时亦可通过改变运行条件来实现,作为一般的原则,当下列情形之一发生时应进行清洗。 2.1在正常压力下如产品水流量降至正常值的10~15%。 2.2为了维持正常的产品水流量,经温度校正后的给水压力增加了10~15%。 2.3产品水质降低10~15%。盐透过率增加10~15%。 2.4使用压力增加10~15% 2.5RO各段间的压差增加明显(也许没有仪表来监测这一迹象)。 3.常见污染物及其去除方法: 3.1碳酸钙垢 在阻垢剂添加系统出现故障时或加酸系统出现而导致给水PH升高,那么碳酸钙就有可能沉积出来,应尽早发现碳酸钙垢沉淀的发生,以防止生长的晶体对膜表面产生损伤,如早期发现碳酸钙垢,可以用降低给水PH值至3.0~5.0之间运行1~2小时的方法去除。对沉淀时间更长的碳酸钙垢,则应采用RT-818A清洗液进行循环清洗或通宵浸泡。 应确保任何清洗液的PH值不要低于2.0,盃则可能会RO膜元件造成损害,特别是在温度较高时更应注意,最高的PH不应高于11.0。查使用氨水来提高PH,使用硫酸或盐酸来降低PH值。 3.2硫酸钙垢 RT-818B清洗剂是将硫酸钙垢从反渗透膜表面去除掉的最佳方法。 3.3金属氧化物垢 可以使用上面所述的去除碳酸钙垢的方法,很容易地去除沉积下来的氢氧化物(例如氢氧化铁)。 3.4硅垢 对于不是与金属化物或有机物共生的硅垢,一般只有通过专门的清洗方法才能将他们去除, 3.5有机沉积物 有机沉积物(例如微生物粘泥或霉斑)可以使用RT-818C清洗剂去除,为了防止再繁殖,认可的杀菌溶液在系统中循环、浸泡,一般需较长时间浸泡才能有效,如反渗透装置停用三天时,最好采用消毒处理,

农用残膜污染专项整治工作实施方案

农用残膜污染专项整治工作实施方案 为进一步加强我县农用残膜回收利用工作,全面推进农业面源污染治理,恢复良好的农业生态环境,按区、市有关农用残膜污染专项整治工作要求,结合我县实际,特制定本方案。 一、指导思想 以X指导,以建设资源节约型、环境友好型社会为目标,按照“政府扶持引导、广大群众参与、企业市场化运作”的原则,逐步建立起“健全网点保回收,激励企业保加工,行政监管保捡拾”的工作机制,形成农户积极捡拾、回收点应收尽收、企业收购加工的农用残膜回收利用体系,推动残膜变废为宝、变弃为用,有效治理农业面源污染,改善生态环境。 二、目标任务 按区、市有关农用残膜污染专项整治工作要求,完成不少于上年度覆膜面积90%以上的残膜回收任务,实现田间地头无裸露残膜,村庄、道路、林带无飘挂残膜,无随意焚烧、填埋等二次污染。扶持建立残膜加工企业1家,建立残膜回收网点6个,残膜回收利用长效机制基本建立。X年全县实际覆膜面积7万亩,X年计划完成农用残膜回收面积6.3万亩,回收残膜630吨。 三、实施步骤 (一)动员部署(3月25日前)。对X年农用残膜污染专项整治工作进行全面安排部署,分解工作任务。采取有效形式,大力宣传和

讲解农用残膜污染的危害和回收再利用的好处,在全社会营造农用残膜回收利用的浓厚氛围。 (二)集中整治(3月26日—5月30日)。各乡镇要结合旱作节水农业年度覆膜任务,制定具体的残膜回收工作方案,集中开展专项整治活动。一是各乡镇要以方便群众交售为前提,与残膜加工企业协作,动员有积极性的合作组织、经纪人在覆膜集中区域建立X定残膜回收网点;同时要培育和鼓励经纪人在各村流动回收残膜;二是乡、村两级政府要积极组织动员种植大户、农机合作组织和广大群众,重点对田间地头、村庄周围、交通沿线、沟渠河道的农用残膜进行集中清理,严禁随意填埋和焚烧处理;三是回收网点和加工企业要按照残膜加工要求,对农户交售的残膜应收尽收,并建立农用残膜回收花名册,交售人要签名盖章,坚决杜绝代签和造假等行为发生;四是强化源头治理,政府统一招标采购使用厚度为0.010—0.012毫米抗拉强度性能指标好的地膜,禁止使用厚度小于0.010毫米、耐候期小于6个月的农用地膜,降低残膜回收难度。 (三)检查验收(6月1日—6月10日)。一是乡镇对农用残膜污染专项整治工作情况进行自查总结,形成自查报告报送县农牧局(农机化推广服务中心)。二是回收网点和加工企业将核实汇总后的残膜回收花名册(含电子版)报送至农牧局(农机化推广服务中心)备案。三是在各乡镇自查自验的基础上,由农牧局牵头,相关成员单位组成检查验收组,对农用残膜污染专项整治工作进行检查验收。验收结果作为兑付残膜回收补助资金和年终农业农村工作考核依据。

MBR膜污染机理及其控制

M BR 膜污染机理及其控制 杨红群 周艳玲 (九江学院化学化工学院,江西九江 332005) 摘 要:本文论述了膜生物反应器中膜的污染机理及其控制。关键词:膜生物反应器 膜污染 机理 控制 1 用于水处理的膜生物反应器技术简介 活性污泥法将生物反应器与二沉池结合起来,是最常用的废水处理方法。常规活性污泥法(C ASP :con 2 ventional activated sludge process )的成功与否取决于依靠 重力进行分离的二沉池的运行效果,但在实际应用中,污泥的沉降性不易控制,处理效果不稳定。膜生物反应器技术(M BR :membrane bioreactor )将活性污泥法水处理技术和膜分离技术结合起来,可以避免C ASP 中污泥沉降性难以控制的问题并且可以替代二沉池。最初报 道的应用于活性污泥法水处理的膜为超滤膜[1]。由于膜能够将生物反应器中的泥水完全分离,可以根据废水特征和其它设计参数将污泥浓度增高至任何适当的浓度。高的活性污泥浓度可以保证在各种进水条件下均能取得较好的出水水质,并且可以减小水处理厂占地空间。M BR 使用的膜有着较小的孔径(对微滤膜来讲通常为0.1μm ),这意味着出水中的悬浮固体(SS:sus 2 pended s olids )很少,微生物量也比常规活性污泥法出水 中的含量低很多 。 图1 循环式(分置式)膜生物反应器示意图 第一代膜生物反应器使用管状膜,膜分离装置置于生物反应器之外并用泵进行水循环,称之为循环式 (分置式)M BR ,如图1所示。反应之后的泥水混合物经 泵送入膜组件,透过液作为处理出水,浓缩液再返回反应器进一步降解。循环流导致了较高的能耗,典型值为3kWhm -3出水[2]。膜组件能耗的高低还取决于膜组件的构造[1]。液体在膜组件中的高速剪切流和循环泵的剪切力可以破坏微生物并直接导致生物反应器中的 微生物失去活性。 浸没式(一体式)M BR 首先在日本被开发并大量安装使用。它可以克服循环式M BR 的缺点。在浸没式 M BR 中,膜组件直接浸没在泥水混合物中,透过液在抽 吸泵的作用下流出膜组件,如图2所示。膜组件的下方有曝气装置,将空气压缩机送来的空气形成上浮的微气泡;在曝气的同时,紊动的液流在膜表面产生剪切力,有利于去除膜表面的污染物。浸没式M BR 能耗的

处理垃圾渗滤液的反渗透膜污染研究

处理垃圾渗滤液的反渗透膜污染研究 摘要膜污染及其防治是影响膜系统运行效果的重要因素。本研究选取工程中运行一年多的处理垃圾渗滤液的碟管式反渗透膜, 经研究判断, 污染絮体的主要成分是有机物, 并含有Al、Si等的胶体物质以及Fe和Ca的化合物。通过化学清洗来验证对污染层结构的判断, 先碱洗后酸洗的清洗效果远远好于先酸洗后碱洗, 有机物在污染层形成过程中起主要作用, 减少渗滤液中的有机物质, 将会大大减轻膜污染的发生。 关键词反渗透膜垃圾渗滤液膜污染化学清洗 膜的污染是指与膜接触的料液中的微粒、胶体粒子或溶质大分子与膜存在物理、化学或机械作用,而发生膜面或膜孔内吸附、沉积,造成膜孔径变小或堵塞,使膜产生通量降低及分离特性变差的现象[1]。料液与膜一旦接触,膜污染即开始,即溶质与膜之间相互作用,开始改变膜的特性,使膜本身发生劣化[2,3]。 膜污染的形成过程非常复杂, 因进水组成成分、膜材质、运行方式等因素而具有不同的特点, 必须有针对性进行分析研究。膜污染主要包括无机污染(结垢)、有机污染、微生物污染及胶体污染[ 4 ~ 8] 。不同类型的污染常常同时发生, 并相互影响, 引起系统脱盐率下降、产水量降低、工作压力提高、压差上升等问题, 并且需要经常化学清洗, 从而引起膜性能下降, 缩短膜的使用寿命。在系统设计及运行过程中, 需采取相应的措施防止或减缓膜污染的发生。 1 试验材料与方法 1.1 试验准备 为了有效分析碟管式反渗透膜(disc-tubereverseosmosis,DTRO)系统处理国内垃圾渗滤液的运行过程中, 膜污染的结构特点及组成成分, 利用电镜扫描与X射线能谱分析(SEM-EDX)技术联合进行膜污染层形态及无机污染分析, 利用傅里叶红外光谱分析(FT-IR)技术进行膜污染层中有机物的分析。 研究采用的膜是在长生桥垃圾渗滤液DTRO处理工程运行一年后, 在化学清洗前, 利用系统维护时机, 从后段膜柱选取的膜片。

不同晶圆清洗技术的介绍与分析比较

不同晶圆清洗技术的介绍与分析比较 1. 晶圆表面湿式清洗技术 半导体晶圆对微污染物的存在非常敏感,为了达成晶圆表面无污染物的目标,必须移除表面的污染物并避免在制程前让污染物重新残余在晶圆表面。因此半导体晶圆在制造过程中,需要经过多次的表面清洗步骤,以去除表面附着的金属离子、原子、有机物及微粒。 目前晶圆清洗技术大致可分为湿式与干式两大类,仍以湿式清洗法为主流。所谓湿式化学清洗(wet chemical cleaning)技术,是以液状酸碱溶剂与去离子水之混合物清洗晶圆表面,随后加以润湿再干燥的程序。 (1) 湿式化学清洗 在清洗程序上,去除有机物为第一步骤,因为有机物会让表面形成疏水性,造成水溶液的清洗效果不佳,去除有机物可利用NH4OH-H2O2 溶液(RCA StandardCleaning-1,SC-1)或铬酸-硫酸混合液清洗,其中铬酸-硫酸混合液比较不受欢迎,是因为有关铬离子废弃物丢弃的问题。 当有机物被去除后,水溶液就可比较容易的去除无机残余物,无机残余物可能与晶圆表面的二氧化硅层复合,可使用稀薄的氢氟酸溶液进行第二步骤的清洗,以便去移除二氧化硅薄膜层。故清洗程序的第三个步骤为移除无机残余物,过氧化氢酸的溶液可用来达成这个目

的。特别是含氢氯酸的过氧化氢溶液(RCAStandard Cleaning-2, SC-2),氢氯酸对去除铁原子、钠原子及硫特别有效。假使SC-1伴随着SC-2 使用,则必须小心两者的蒸气混合物,以避免氯化铵微粒产生。最后必须再以去离子水润湿(rinse)以清洗残余的HF,最后干燥(dry)完成整个湿式清洗程序。 基本上在ULSI 制程中会有许多微粒产生,而湿式清洗法有时不但不能去除微粒,更会增加微粒在晶圆表面附着的可能,而在湿式清洗程序中,微粒污染主要是来自润湿槽及旋转干燥器(spin dryer),利用各种不同润湿方法以减低微粒污染,亦为清洗技术发展的重点,最新的干燥技术为利用IPA来干燥晶圆,可以减低微粒的污染,但IPA 燃点低,会有工业安全的问题产生。 (2) 湿式程序中清除微粒的技术 如果能结合微粒去除的技术,则湿式清洗即可成为具有吸引力的清洗程序,一般使用在湿式程序中的微粒清除技术如下: A. 擦洗(Scrubbing) 擦洗是利用刷子在晶圆表面滚动而去除微粒及有机薄膜的一种机械方法,当使用此种技术擦洗晶圆表面时,刷毛并不直接接触晶圆表面,因为刷毛与晶圆中间隔一层清洗溶液的薄膜,晶圆表面最好是疏水性的,如此在亲水性刷毛周围的溶液会被晶圆所排斥,而将悬浮在薄膜上的微粒扫除。而擦洗的溶液经常为去离子水加上一些清洁剂,以降低水的表面张力。将双边的擦洗系统运用于晶圆物理化学研磨制

反渗透膜损坏的原因及复合膜的常见污染物和其清洗方法

反渗透膜损坏的原因及复合膜的常见污染物和其清洗方法 反渗透膜损坏的原因即反渗透膜元件的污染物在正常运行一段时间后,反渗透膜元件会受到在给水中可能存在的悬浮物质或难溶物质的污染,这些污染物中最常见的为碳酸钙垢、硫酸钙垢、金属氧化物垢、硅沉积物及有机或生物沉积物。污染物的性质及污染速度与给水条件有关,污染是慢慢发展的,如果不在早期采取措施,污染将会在相对短的时间内损坏膜元件的性能。只要懂得反渗透膜损坏的原因就可定期检测系统整体性能,它是确认膜元件发生污染的一个好方法,不同的污染物会对膜元件性能造成不同程度的损害。 注1:在任何情况下不要让带有游离氯的水与复合膜元件接触,如果发生这种接触,将会造成膜元件性能下降,而且再也无法恢复其性能,在管路或设备杀菌之后,应确保送往反渗透膜元件的给水中无游离氯存在。在无法确定是否有游离氯时,应通过化验来确证。应使用活性炭过滤器来吸附水中游离氯。 注2:在反渗透膜元件担保期内,建议每次反渗透膜清洗应在与我厂协商后进行,至少在第一次清洗时,我公司的现场服务人员应在现场。 注3:在清洗溶液中应避免使用阳离子表面活性剂,因为如果使用可能会造成膜元件的不可逆转的污染。反渗透膜元件的污染物在正常运行一段时间后,反渗透膜元件会受到在给水中可能存在的悬浮物质或难溶物质的污染,这些污染物中最常见的为碳酸钙垢、硫酸钙垢、金属氧化物垢、硅沉积物及有机或生物沉积物。污染物的性质及污染速度与给水条件有关,污染是慢慢发展的,如果不在早期采取措施,污染将会在相对短的时间内损坏膜元件的性能。定期检测系统整体性能是确认膜元件发生污染的一个好方法,不同的污染物会对膜元件性能造成不同程度的损害。表1列出了常见污染物对膜性能的影响。 污染物的去除污染物的去除可通过化学清洗和物理冲洗来实现,有时亦可通过改变运行条件来实现,作为一般的原则,当下列情形之一发生时应进行清洗。 1.标准化之后的产品水流量降至正常值的10~15%。 2.为了维持正常的产品水流量,经温度校正后的给水压力增加了10~15%。 3.产品水水质降低10~15%;盐透过率增加10~15%。 4.总进水压力增加10~15%。 5.RO各段间的压差增加明显(也许没有仪表来监测这一迹象)。 反渗透膜损坏的原因及清洗方法常见污染物和其去除方法: 碳酸钙垢在阻垢剂添加系统出现故障时或加酸系统出现故障而导致给水PH值升高,那么碳酸钙就有可能沉积出来,应尽早发现碳酸钙垢沉淀的发生,以防止生长的晶体对膜表面产生损伤,如早期发现碳酸钙垢,可以用降低给水PH至3.0~5.0之间运行1~2小时的方法去除。对沉淀时间更长的碳酸钙垢,则应采用柠檬酸清洗液进行循环清洗或浸泡过夜。 注:应确保任何清洗液的PH不要低于2.0,否则可能会对RO膜元件造成损害,特别是在温度较高时更应注意。碱洗时最高的PH不应高于11.0(短时间可达到12)。可使用氨水来提高PH,使用硫酸或盐酸来降低PH值。 硫酸钙垢清洗液2(见表2)是将硫酸钙垢从RO膜表面去除的最佳方法。 金属氧化物垢可以使用上面所述的去除碳酸钙垢的方法,很容易地去除沉积下来的氢氧化物(例如氢氧化铁)。

造成RO膜污染的原因及解决方式

造成R O膜污染的原因 及解决方式 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1.造成RO膜污染的原因有哪些 反渗透运行时,进水中含有的悬浮物质、溶解物质以及微生物繁殖等原因都会造成膜元件污染。反渗透系统的预处理应尽可能的除去这些污染物质,尽量降低膜元件污染的可能性。造成膜污染的原因主要有以下几种: 新装置管道中含有油类物质和焊接管道时的残留物,以及灰尘且在装膜前未清洗干净; ●预处理装置设计不合理; ●添加化学药品的量发生错误或设备发生故障; ●人为操作失误; ●停止运行时未作低压冲洗或冲洗条件控制得不正确; ●给水水源或水质发生变化。 ●污染物的种类、发生原因及处理方法请参见下表。 反渗透膜污染的和种类、原因及处理方法 2.反渗透和纳滤系统的清洗方式有哪些 反渗透和纳滤系统的清洗可分物理清洗和化学清洗。 物理清洗也可叫物理冲洗,冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物或堆积物。 冲洗的要点: a.冲洗的流速 装置运行时,颗粒污染物逐渐堆积在膜的表面。如果冲洗时的流速和制水时的流速相等或略低,则很难把污染物从膜元件中冲出来。因此,冲洗时要使用比正常运行时更高的流速。通常,单支压力容器内的冲洗流速为: ●8英寸膜元件:h; ●4英寸膜元件:。 b.冲洗的压力 正常高压运行时,污染物被压向膜表面造成污染。所以在冲洗时,如果采用同样的高压,污染物仍会被压在膜表面上,清洗的效果不会理想。因此在冲洗时,应尽可能的通过低压、高流速的方式,增加水平方向的剪切力,把污染物冲出膜元件。压力通常控制在以下。如果在以下,很难达到一定的流量时,应尽可能控制进水压力,以不出产水或少出产水为标准。一般进水压力不能大于。

反渗透膜污染及解决办法

反渗透膜污染及解决办法 反渗透是最精密的膜法液体分离技术。反渗透装置,在脱盐工艺中已成功运行十二年。本人总结出以下反渗透膜污染的几点原因,并提出几点主要的解决办法。 反渗透膜污染 使用反渗透膜为卷式复合结构,它由三层组成,如下图所示: (一)、反渗透膜膜性能的损坏,而造成膜污染。 1、聚酯材料增强无纺布,约120μm厚; 2、聚砜材料多孔中间支撑层,约40μm厚; 3、聚酰胺材料超薄分离层,约0.2μm厚。 根据其性能结构,如渗透膜膜性能损坏有可能有以下几点原因:1、新反渗透膜的保养不规范;2、保养符合要求下,贮存时间超出1年;3、停运状态下,反渗透膜保养不规范;4、环境温度在5℃以下;5、系统在高压状态下运行;6、关机时的操作不当。 (二)、水质变化频繁而造成膜污染。

原水水质同设计时的水质有变化,使预处理负荷加大,由于进水中含无机物、有机物、微生物、粒状物和胶体等杂质增多,因此膜污染机率增大。 (三)、清洗不及时与清洗方法不正确而造成膜污染。 在使用过程中,膜除了性能的正常衰减外,清洗不及时与清洗方法不正确也是导致膜污染严重的一个重要因素。 (四)1、没有正确投加药剂。 复合聚酰胺膜在使用中,因为聚酰胺膜耐余氯性差,在使用中没有正确投加氯等消毒剂,加上用户对微生物的预防重视不够,容易导致微生物的污染。 (五)、膜表面磨损。 膜元件被异物堵塞或膜表面受到磨损(如沙粒等) ,此种情况要用探测法探测系统内元件,找到已经损坏元件,改造预处理,更换膜元件 反渗透膜污染的现象 在反渗透操作过程中,由于膜的选择透过性,使得某些溶质在膜面附近发生积聚,从而发生膜污堵现象。常见的污堵征兆有以下几种:一种是生物污堵(症状逐渐出现)有机沉积物主要是活

晶圆制备工艺用清洗洁净及环保新技术

晶圆制备工艺用清洗洁净及环保新技术 1 引言 随着特大规模集成电路(ULSI)的研发与生产,硅片(或称晶圆、圆片、晶片)的线宽不断减小,而晶圆直径却在不断增大。现阶段国内外ULSI制备中仍以200 mm晶圆为主,预计到2007年后,300 mm晶圆将占主导地位。原因是300 mm晶圆的有效利用率较高,单位圆片的生产成本较低。 在线宽不断减小的同时,对晶圆质量的要求也越来越高,特别是对硅抛光片表面质量要求越来越严格。这主要是由于抛光片表面的颗粒、金属污染、有机物污染、自然氧化膜和微粗糙度等严重地影响着ULSI的性能和成品率。因此,晶圆表面清洗就成为ULSI制备中至关重要的一项工艺[1-3] 。 目前半导体厂家广泛使用的仍是RCA(美国无线电公司)清洗法。RCA 清洗法是经过多年的发展才形成的,它对于线宽为0.25和0.3μm工艺尚能满足要求,但对线宽为0.09~0.13μm工艺就需要改进。另外,由于RCA清洗法大量使用化学试剂(如NH4OH,HCl,H2O2 ,H2O等),而大量使用高纯度化学试剂将增加工艺成本,同时会带来环境污染,所以研发新颖的、合适的300 mm晶圆清洗技术势在必行。 2 传统的湿法清洗和干法清洗技术 2.1 湿法清洗技术 2.1.1 改进的RCA清洗法 RCA清洗法已成为多种前后道清洗的基础工艺,目前大多数厂家使用了改进的RCA法。最初的RCA法依靠溶剂、酸、表面活性剂和水,在不破坏圆片表面特征的情况下喷射、净化、氧化、蚀刻和溶解圆片表面的污染物、有机物和金属离子污染。而改进的RCA法通过添加表面活性剂和HF,并采用稀释RCA工艺来改善清洗效果。 2.1.2 稀释化学法 在改进RCA清洗法的基础上,对于1号标准清洗液SC-1和2号标准清洗液SC-2的混合溶剂采用稀释化学法,不但可以大量节省化学试剂和去离子水,而且SC-2混合溶剂中的H2O2可以完全被清除掉。稀释APM SC-2混合溶剂(1:1:50)能够有效地从晶片表面去除颗粒和碳氢化合物,强烈稀释HPM混合溶液(1:1:60)和稀释氯化氢(1:100)在清除金属时能像SC-2溶剂一样有效。采用稀释氯化氢(HCl)溶液的另一优点是,在低HCl浓度下颗粒不会沉淀,因为pH值在2~2.5范围内硅与硅氧化物是等电位的,pH值高于该点,圆片表面带有网状负电荷;低于该点,圆

反渗透膜污染指数(SDI)测定方法

反渗透膜污染指数(SDI)测定方法: 10.1SDI测定概要: SDI测定是基于阻塞系数(PI,%)的测定。测定是在 47mm的0.45 m 的微孔滤膜上连续加入一定压力(30PSI,相当于2.1kg/cm2)的被测定水,记录下滤得500ml水所需的时间T i(秒)和15分钟后再次滤得500ml水所需的时间T f(秒),按下式求得阻塞系数PI(%)。 PI=(1-T i/T f)×100 SDI=PI/15 式中15是15分钟。当水中的污染物质较高时,滤水量可取100ml、200ml、300ml等,间隔时间可改为10分钟、5分钟等。 10.2测定SDI的步骤: a.将SDI测定仪连接到取样点上(此时在测定仪 内不装滤膜)。 b.打开测定仪上的阀门,对系统进行彻底冲洗数 分钟。 c.关闭测定仪上的阀门,然后用钝头的镊子把0.45 m的滤膜放入滤膜夹具内。 d.确认O形圈完好,将O形圈准确放在滤膜上, 随后将上半个滤膜夹具盖好,并用螺栓固定。 e.稍开阀门,在水流动的情况下,慢慢拧松1-2个 蝶形螺栓以排除滤膜处的空气。 f.确信空气已全部排尽且保持水流连续的基础上,重新拧紧蝶形螺栓。

g.完全打开阀门并调整压力调节器,直至压力保持在30psi为止。(如果整 定值达不到30psi时,则可在现有压力下试验,但不能低于15psi。) h.用合适的容器来收集水样,在水样刚进入容器时即用秒表开始记录,收取 500ml水样所需的时间为T O(秒)。 i.水样继续流动15分钟后,再次用容器收集水样500ml并记录收集水样所 花的时间,记作T15(秒)。 j.关闭取样进水球阀,松开微孔膜过滤容器的蝶形螺栓,将滤膜取出保存(作为进行物理化学试验的样品)。擦干微孔过滤器及微孔滤膜支撑孔板。 10.3测定结果计算 a.当试验过程中压力为30psi时,按照下式计算SDI值: SDI=(1-T i/T f)×100/15 b.当测量过程中压力打不到30psi时,可改用现有压力,但测得的SDI值必须换算到30psi时的SDI值,方法如下: %Pp=(1-T i/T15)×100(%Pp为非标准压力30psi时的阻塞指数) SDI=%P30/15 注意:A.每次试验过程中压力要稳定,压力波动不得超过±5%,否则试验作废。 B.选定收集水样量应为500ml(或其他确定的水量值);两次收集水样的 时间间隔为15分钟。 C.当T15是T i的4倍时,SDI值是5;如果水样完全将膜片堵住时,SDI15 值为6.7。

农用残膜污染现状及治理措施(一)

农用残膜污染现状及治理措施(一) 作者:李团结郑新伟陈晓军马天博张伟贾乃峰李萍 摘要:通过分析农用残膜对农田环境和农作物产生的危害,针对农用残膜污染现状提出治理措施。 关键词:农用残膜;危害;污染现状;治理措施 随着农业生产水平的提高,农用残膜在农业生产中的作用越来越大,促进了农民增产与增收。但随着用量不断增大,农民的认识不够,致使农用残膜清理回收不利,土壤残留量逐年增加,给农业生态环境带来了严重的负面效应1-4]。因此,整治农用残膜污染刻不容缓。 1农用残膜污染的危害 1.1影响土壤的物理性状,降低土壤肥力 大量残留的农用地膜在土壤中很难被自然分解,影响土壤中的水、肥、气、热活动,给土壤环境带来严重污染,不利于农业的生态平衡。其表现在:一是破坏土壤的通透性和团粒结构的形成,使土壤上下隔离,形成断层,造成土壤板结,降低了土壤的吸水、保水能力,导致有水下不去、有浆上不来,使土壤的物理性能得不到充分发挥。二是地膜的残留会使土壤胶体吸附能力降低,有些速效性养分易流失。三是残留农膜抑制土壤微生物的活动,使迟效性养分转化率降低,影响施入土壤有机肥养分的分解和释放,降低肥效。 1.2影响作物生长发育,造成减产 地膜残留在土壤中,使种子不能很好地发芽,即使发芽,根系也因无法穿

透地膜而扎不下去,达不到根深蒂固的程度,作物易遭受灾害。如果种子播到残膜下面,发芽后也长不出来,造成缺苗断条,使作物减产。据统计,各类作物减产幅度:玉米为11%~13%,小麦9%~10%,水稻8%~14%,大豆5.5%~9.0%,蔬菜15%~59%。连续覆膜的时间越长,残留量越大,对作物产量影响越大,连续使用15年以后,耕地将颗粒无收。 1.3危害人体健康 农膜生产过程中添加一些助剂,当农膜废弃在田间或土壤里时,其中的助剂会向土壤和水中渗透、迁移,会污染大气、土质和水域等。特别是某些含铅、镉等重金属有毒添加剂,会先通过土壤富集于蔬菜、粮食及动物体中,人食用后直接影响健康。 1.4破坏环境,有碍观瞻 残膜被丢弃于田头地角,积存于排泄渠道,散落于湖泊水体或乱挂在树枝杆头,成为白色污染的重要标志,既不雅观还可能缠绕犁头和播种机轮盘,影响田间作业。 2农用残膜污染现状 2.1农膜质量较差,回收难度大 农用塑料薄膜使用与回收问题主要集中在农用地膜上,目前农用地膜主要使用的是线性低密度聚乙烯,一般厚度为0.003mm或0.004mm。由于生产者与使用者过分追求经济效益,地膜的生产趋于薄型化,致使农用地膜强度低、易破碎,寿命只有4~5个月,给回收带来困难。 2.2农膜数量逐年递增,污染面扩大

反渗透膜清洗方案

反渗透膜清洗方案 1 反渗透膜元件的污染与清洗 在正常运行一段时间后,反渗透膜元件会受到给水中可能存在的悬浮物或难溶盐的污染,这些污染中最常见的是碳酸钙沉淀、硫酸钙沉淀、金属(铁、锰、铜、镍、铝等)氧化物沉淀、硅沉积物、无机或有机沉积混合物、NOM天然有机物质、合成有机物(如:阻垢剂/分散剂,阳离子聚合电解质)、微生物 (藻类、霉菌、真菌)等污染。 污染性质和污染速度取决于各种因素,如给水水质和系统回收率。通常污染是渐进发展的,如不尽早控制,污染将会在相对较短的时间内损坏膜元件。当膜元件确证已被污染,或是在长期停机之前,或是作为定期日常维护,建议对膜元件进行清洗。 当反渗透系统(或装置)出现以下症状时,需要进行化学清洗或物理冲洗: 在正常给水压力下,产水量较正常值下降10~15%; 为维持正常的产水量,经温度校正后的给水压力增加10~15%; 产水水质降低10~15%,透盐率增加10~15%; 给水压力增加10~15%; 系统各段之间压差明显增加。 保持稳定的运行参数主要是指产水流量、产水背压、回收率、温度及TDS。如果这些运行参数起伏不定,海德能公司建议检查是否有污染发生,或者在关键运行参数有变化的前提下,反渗透的实际运行是否正常。 定时监测系统整体性能是确认膜元件是否已发生污染的基本方法。污染对膜元件的影响是渐进的,并且影响的程度取决于污染的性质。表1“反渗透膜污染特征及处理方法”列出了常见的污染现象和相应处理方法。 已受污染的反渗透膜的清洗周期根据现场实际情况而定。海德能公司建议,正常的清洗周期是每3-12个月一次。 当膜元件仅仅是发生了轻度污染时,重要的是清洗膜元件。重度污染会因阻碍化学药剂深入渗透至污染层,影响清洗效果。 清洗何种污染物以及如何清洗要根据现场污染情况而进行。对于几种污染同时存在的复杂情况,清洗方法是采用低PH和高PH的清洗液交替清洗(应先低PH后高PH值清洗)。 表1 反渗透膜污染特征及处理方法

超滤膜污染的机理和控制_张原

研究与探索 超滤膜污染的机理和控制 张 原 (深圳市自来水集团有限公司,广东 深圳 518031) 摘要 文章介绍了超滤膜污染的机理和模型,然后试验证明引起膜污染的主要因素包括:膜材料的性能、膜材料与所处理液的相互配合、处理液的浓度与流速等。通过改善膜材料的性能、合理处理好膜与所处理液之间的各种参数匹配,可以有效地解决膜的污染问题。 关键词 超滤膜 范德华力 双电层 吉布氏吸附方程 弗雷德里希方程 Mechanism and Control of the Pollution of Ultrafiltration Membrane Zhang Yuan (Shenzheng Water S upply (Group )Co .Ltd .,Guangdong Shenzheng 518031) A bstract In this paper ,mechanism and model of the pollution of ultra -filtration membrane are in -trouduced and then the main facto rs including the characteristics of the materials membrane m ade of ,m atching of the membrane and the liquid to be treated ,make the mem brane polluted were approved .To improre the char -acteristics of the membrane and match well the parameters related to the membrane may be solved . Keywords ultra -fillration membrane van der weals force electric double layer Gibb 's adsorption e -quation freundlich isotherm 1 膜技术在给排水行业的应用 由于在给排水领域内,超滤膜应用较广,而系统在运行过程中,特别是废水处理领域内,因膜污染而引起的过滤阻力不断增加,膜过滤通量严重衰减,是阻碍该项技术应用推广的关键所在。本文拟通过对超滤膜污染的实验,总结污染的控制因素,提高膜技术在给排水领域内有效应用的认识。2 超滤膜污染机理与模型2.1 污染的机理与模型 从宏观理论上讲,溶液在膜表面的吸附过程比 较复杂,因为在吸附过程中,溶质和溶剂之间,或者吸附剂混合物(膜)各组分之间始终存在着竞争吸附,所以溶液的吸附等温线必须在测量表观等温吸附线后,加上适当的蒸气吸附数据进行计算才能得到。但在实际上,从定性的角度可以认为,膜对溶质的吸附与两者之间的极性密切相关,极性材料的膜倾向于强烈的吸附极性物质,对非极性物质的吸附就弱得多。相反,非极性材料的膜则更容易吸附非 另据试验表明,2%浓度的稳定性ClO 2,由于浓度低,活化后转化率不高,ClO 2含量低,如能采用高纯ClO 2发生器(如上海技源科技有限公司的产品),ClO 2转化率在95%以上,效果更佳。 参考文献 1 王升坤:《Cl O 2用于油田采出水处理的研究》,工业水处理,1999,3. 2 陈雷等:《石油开采废水处理技术的现状与展望》,中国给水排水, 1999,11. 3 唐晓东等:《含硫气油水的综合治理技术》,工业水处理,1999,4.4 李佐东等:《稳定性ClO 2在油田解堵中的应用》,资料,1999,4.5 李超等:《关于大庆地区净化水处理中应用稳定性ClO 2的可行性 研究》,资料,1997,5. 6 陆柱、郑士忠等:《油田水处理技术》,石油工业出版社,1990,2. 第一作者简介:项成林 上海吴泾化工有限公司副总工程师,教授级高级工程师,上海市净水技术学会副理事长,中国工业水处理学会理事 收稿日期:2001年7月 11  净水技术Vol .20NO .42001

造成RO膜污染的原因及解决方式

1.造成RO膜污染的原因有哪些? 反渗透运行时,进水中含有的悬浮物质、溶解物质以及微生物繁殖等原因都会造成膜元件污染。反渗透系统的预处理应尽可能的除去这些污染物质,尽量降低膜元件污染的可能性。造成膜污染的原因主要有以下几种: 新装置管道中含有油类物质和焊接管道时的残留物,以及灰尘且在装膜前未清洗干净; ●预处理装置设计不合理; ●添加化学药品的量发生错误或设备发生故障; ●人为操作失误; ●停止运行时未作低压冲洗或冲洗条件控制得不正确; ●给水水源或水质发生变化。 ●污染物的种类、发生原因及处理方法请参见下表。 反渗透膜污染的和种类、原因及处理方法 污染物种类原因对应方法 堆积物胶体和悬浮粒子等膜面上的堆积提高预处理的精度或采用 UF/MF 结垢由于回收率过高导致无机盐析出调整回收率,加阻垢剂生物污染微生物吸附以及繁殖定期杀菌处理 有机物的吸附荷电性/疏水性有机物和膜之间的 相互作用 膜种类的选择需正确 2.反渗透和纳滤系统的清洗方式有哪些? 反渗透和纳滤系统的清洗可分物理清洗和化学清洗。 物理清洗也可叫物理冲洗,冲洗是采用低压大流量的进水冲洗膜元件,冲洗掉附着在膜表面的污染物或堆积物。 冲洗的要点: a.冲洗的流速 装置运行时,颗粒污染物逐渐堆积在膜的表面。如果冲洗时的流速和制水时的流速相等或略低,则很难把污染物从膜元件中冲出来。因此,冲洗时要使用比正常运行时更高的流速。通常,单支压力容器内的冲洗流速为: ●8英寸膜元件:7.2-12m3/h; ●4英寸膜元件:1.8-2.5m3/h。 b.冲洗的压力 正常高压运行时,污染物被压向膜表面造成污染。所以在冲洗时,如果采用同样的高压,污染物仍会被压在膜表面上,清洗的效果不会理想。因此在冲洗时,应尽可能的通过低压、高流速的方式,增加水平方向的剪切力,把污染物冲出膜元件。压力通常控制在0.3MPa以下。如果在0.3MPa以下,很难达到一定的流量时,应尽可能控制进水压力,以不出产水或少出产水为标准。一般进水压力不能大于0.4MPa。

海德能反渗透膜清洗方法

海德能反渗透膜污染与清洗 8.1 清洗特别提示 本节内容适用于4、6、8和8.5英寸直径的复合聚酰胺反渗透和纳滤膜元件。 ●聚酰胺反渗透膜元件在任何情况下均不得与游离氯等氧化剂接触,游离氯的氧化将使膜造成永久性的损伤。因此,在管路与设备灭菌操作或使用清洗剂与储存保护剂之后均应特别注意膜系统给水中是否含有游离氯残留。对此如有怀疑,应进行相应检测。如存在游离氯残留,可使用亚硫酸氢钠将其还原,并满足反应时间以保证充分的脱氯。每1.0ppm的游离氯需亚硫酸氢钠的用量为1.8-3.0ppm。 ●在反渗透膜元件的担保期内,建议每次膜元件的清洗应与海德能公司协商后进行。 ●在清洗溶液中,应避免使用阳离子表面活性剂。使用阳离子表面活性剂可导致膜元件无法恢复的污染。 8.2 膜污染 在正常运行一段时间后,反渗透膜元件会受到给水中可能存在的悬浮物或难溶盐的污染,这些污染中最常见的是碳酸钙、硫酸钙、硫酸钡、硫酸锶沉淀、金属(铁、锰、铜、镍、铝等)氧化物沉淀、硅沉积物、无机或有机沉积混合物、NOM天然有机物质、合成有机物(如:阻垢剂/分散剂,阳离子聚合电解质)、微生物(藻类、霉菌、真菌)等污染。 污染性质和污染速度取决于各种因素,如给水水质和系统回收率。通常污染是渐进发展的,如不尽早控制,污染将会在相对较短的时间内损坏膜元件。当膜元件确证已被污染,或是在长期停机之前,或是作为定期日常维护,建议对膜元件进行清洗。 当反渗透系统(或装置)出现以下症状时,需要进行化学清洗或物理冲洗: ●在正常给水压力下,产水量较正常值下降10~15%; ●为维持正常的产水量,经温度校正后的给水压力增加10~15%; ●产水水质降低10~15%,透盐率增加10~15%; ●给水压力增加10~15%; ●系统各段之间压差明显增加(可能没有仪表监测该参数)。 在运行数据未标准化的情况下,如果关键参数没有改变,上述清洗原则依然可以适用。保持稳定的运行参数主要是指产水流量、产水背压、回收率、温度及TDS。

膜的污染及其控制方法

膜的污染及其控制方法 控制方法, 污染 简介:反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。 关键字:反渗透结垢胶体污染SDI 化学污染 相关站中站:膜技术产品及应用 反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。下面主要阐述膜系统在日常中出现的问题及控制方法。 一、无机物的结垢 在水中存在Ca2+、Mg2+、Ba2+、Sr2+、CO32-、SO42-、PO43-、SiO2等离子。在一般的情况下是不会造成无机物结垢,但是在反渗透系统中,由于源水一般浓缩4倍,并且pH也有较大的提高,因此比较难溶解的物质就会沉积,在膜表面形成硬垢,导致系统压力升高、产水量下降,严重的还会造成膜表面的损伤,使系统脱盐率降低。 衡量水质是否结垢有两种计算方法: 控制苦咸水结垢指标 对于浓水含盐量TDS≤10,000mg/L的苦咸水,朗格利尔指数(LSIC)作为表示CaCO3结垢可能性的指标: LSIC=pHC-pHS 式中:LSIC:反渗透浓水的朗格利尔指数 pHC:反渗透浓水pH值 pHS:CaCO3溶液饱和时的pH值 当LSIC≥0,就会出现CaCO3结垢。 控制海水及亚海水结垢指标及处理方法: 当浓水含盐量TDS>10,000mg/L的高盐度苦咸水或海水水源,斯蒂夫和大卫饱和指数(S&DSIC)作为表示CaCO3结垢可能性的指标。 S&DSIC=pHC-pHS 式中:S&DSIC:反渗透浓水的斯蒂夫和大卫饱和指数 pHC:反渗透浓水pH值 pHS:CaCO3溶液饱和时的pH值 当S&DSIC≥0,就会出现CaCO3结垢。 其它无机盐结垢预处理的控制方案 碳酸钙结垢预处理的控制方案 在反渗透系统的结垢中,以碳酸盐垢为主,大多数地表水和地下水中的CaCO3几乎呈饱和状态,由下式表示CaCO3化学平衡: Ca2+ + HCO3– <---> H+ + CaCO3 从化学平衡式可以看出,要抑制CaCO3的结垢,有几种途径: 降低Ca2+的含量 降低了Ca2+含量,可以使化学平衡向左侧移动,不利于形成CaCO3垢。 达到这种目的的方法有:离子交换软化法、石灰软化法、电渗析、纳滤等方法,他们都能有效地降低的Ca2+含量,从而达到抑制钙垢的生成。 Ca2+的增溶 主要是以增加Ca2+的溶解度,从而降低结垢的风险。

相关主题
文本预览
相关文档 最新文档