当前位置:文档之家› 仪表放大器AD623的性能与应用

仪表放大器AD623的性能与应用

仪表放大器AD623的性能与应用
仪表放大器AD623的性能与应用

仪表放大器特点及作用

仪表放大器特点及作用 仪表放大器是一个特殊的差动放大器,具有超高输入阻抗,极其良好的CMRR,低输入偏移,低输出阻抗,能放大那些在共模电压下的信号。仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输入和相对参考端的单端输出。与运算放大器不同之处是运算放大器的闭环增益是由反相输入端与输出端之间连接的外部电阻决定,而仪表放大器则使用与输入端隔离的内部反馈电阻网络。仪表放大器的2个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻预置。 一、仪表放大器特点 1、高共模抑制比 共模抑制比(CMRR)则是差模增益(Ad)与共模增益(Ac)之比,即:CMRR=20lg|Ad/Ac|dB;仪表放大器具有很高的共模抑制比,CMRR典型值为70~100dB 以上。 2、高输入阻抗 要求仪表放大器必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为109~1012Ω。 3、低噪声 由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在1kHz条件下,折合到输入端的输入噪声要求小于10nV/Hz. 4、低线性误差 输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为0.01%,有的甚至低于0.0001%. 5、低失调电压和失调电压漂移 仪表放大器的失调漂移也由输入和输出两部分组成,输入和输出失调电压典型值分别为100μV和2mV。 二、仪表放大器的作用 目前仪表放大器在多方面已经得到运用,典型应用如下:

实验五集成运算放大器的基本应用共7页文档

实验五集成运算放大器的基本应用(I) ─模拟运算电路─ 一、实验目的 1、了解和掌握集成运算放大器的功能、引脚 2、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算 电路的功能。 3、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益A =∞ ud =∞ 输入阻抗r i =0 输出阻抗r o 带宽 f =∞ BW 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性:

(1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图8-1所示。对于理想运放, 该电路的输出电压与输入电压 之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图8-1 反相比例运算电路 图8-2 反相加法运算电路 2) 反相加法电路 电路如图8-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路 图8-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O U R R U - =

光放大器发展历史

历史: 1954年第一台NH3分子微波盆子放大器研制成功,人们发现,可通过原子或分子中的受激放大来获得单色的相干电磁波,称为脉塞(Maser——Microwave Amplification by Stimulated Emission of radiation)。1958年肖洛(Schawlow ) 和汤斯(Townes) 将Maser原理推广到光频波段,1960年梅曼(Mamain)利用红宝石介质的受激放大原理研制成第一台红宝石激光器,称为莱塞(Laser—Light Amplification by Stimulated Emission of Radiation) 或称激光。不管是Maser还是Laser,其产生相干电磁波辐射的机理都是基于电滋波的受激放大。自1960年以来激光器已得到了飞跃的发展和广泛的应用,然而作为激光器先导的光放大的发展却比较缓慢,直到80年代,在光纤通信发展的推动下,才开始引起足够的重视。进人90年代后光纤放大器的问世已引起了光纤通信技术的重大变革,在60年代半导体激光二极管尚未成熟,但已在77K下,首先进行了GaAs同质结行波半导体放大器的研究,开创了半导体光放大器研究的先河,确立了半导体光放大器的基本理论。至1970年,双异质结结构(DH)激光器问世后,又实现了TW半导体光放大器的室温连续工作。在1973年至1975年间,开始从光纤通信应用要求出发,研究双异质结结构TW和F-P光放大器的特性并取得重要进展。80年代初,采用消除反射光的光隔离器和精确的光频率调谐技术,深人研究了AlGaAs F-P 光放大器的增益、带宽、饱和增益与噪声特性及其对光纤通信系统性能的影响。同时开始研究半导体放大器的注人锁定现象、机理、设计和放大特性。随着光纤通信技术的发展,80年代中期开始研究适用于1. 3μm和1. 5μm波长的InGaAsP半导体光放大器 60年代初,与半导体光放大现象研究的同时,也对掺稀土元素的光纤的光谱特性进行了研究,Koesker发现了掺钕(Nd)光纤的激光辐射现象,Snitzerr发现了掺铒光纤在1.5μm处的激光辐射特性,当时这些研究都是期望研制稀土光纤激光光源而不是光纤放大器,由于稀土光纤的热悴灭效应难以解决,而半导体激光器发展迅速并日趋成熟,因此稀土光纤放大器的研究处于停步不前状态。直至80年代初,在光纤中发现了受激喇受效应,人们又开始恢复了对光纤放大器研究的兴趣,期望能用于光纤通信系统中但这种放大方案效率低,需要高功率的泵浦光源,无法在通信系统中应用。当时光纤通信的研究重点集中在高性能再生中继器和高灵敏度相干检测技术。但是在1985~ 1986年间,英国南安普顿大学的Payne等人有效地解决了掺铒光纤(EDF)的热淬灭问题,首次用MCVD方法研制成纤芯掺杂的铒光纤,并实现了1. 55μm低损耗窗口的激光辐射,1987年他们采用650nm染料激光器作为泵浦光源,获得了28dB小信号增益。同年AT&TBell实验室的Desurvire等人,采用514nm氢离子激光器作为泵浦光源,也获得了22. 4dB的小信号增益。接着在1989年,利用1. 49μm半导体激光器作为泵浦源获得了37dBE小信号增益,Laming等利用980nm, 11mW泵浦功率也得到24dB小信号增益,同年日本NTT实验室首次利用1. 48μm半导体激光泵浦的掺饵光纤放大器作为全光中继器放大5Gb/s孤子脉冲,实现了100km的无误码传输。980nm和1 480nm 半导体激光泵浦的掺铒光纤放大器具有增益高、频带宽、噪声低、效率高,连接损耗低,偏振不灵敏等特点,在90年代初得到了飞速发展,成为当时光放大器研究发展的主要方向,极大地推动了光纤通信技术的发展。自此以后,掺饵光纤放大器的研究在多方面开展,建立了多种理论分析模型,提出了增益均衡和扩大增益带宽的方案和方法,进行了多种系统应用研究,同时进行了氟化玻璃饵光纤放大、分布式光纤放大器和双向放大器的研究,使掺饵光纤放大器及其应用得到了飞速发展。此外又开展了掺镨(Pr),掺镱(Yb) ,掺钬(Ho},掺铥(Tm)等光纤放大器的研究。使光纤放大器的研究全面发展。 60年代初,在激光技术发展起来后,以高强度单色光照射光学介质,开辟了非线性光学的研究领域,揭示了受激喇曼散射、受激布里渊散射、四波混频和参量过程的物理机制。1972年Stolen等首先在光纤喇曼激光器的实验中发现了喇曼增益,初期的研究主要侧重于制成光

仪表放大器的设计与制作

电子线路CAD与电子工艺实训报告 第七组 仪表放大器的设计与制作 班级:电本0501 学号:0532110661 姓名:王德权 序号:16 指导教师:姜李张娟 2008年 1 月 16日

一.实训目的: 1掌握仪表放大器的结构原理: 2 熟练应用Protel99se设计电路原理图;并生成电路板图; 3 熟练掌握印制电路板的生成,了解如何刻板; 4 掌握基本焊接技术。 二.实训工具: Protel99se CircuitCAM 电烙铁 万用表 模拟电子试验箱(含有+12V电源,+0V---+0.5V电源) 其他必要检测设备 三.仪表放大器原理: 本仪器放大器是由三个OP27集成运算放大器组成,OP27的特点是低噪声,高速,低输入失调电压和卓越的共模抑制比。仪表放大器电路连接成比例运算的电路形式,因此具有很高的输入电阻。由于电路的结构对称,他们的漂移和失调都具有互相抵消的作用。后一个运算放大器组成差分放大器,将差分输入转换为单端输出。电容C用于除抖动和抗干扰。 工作原理: 由于v—→v+,因而加在R7两端的电压为(vI1—vI2),相应通过R7的电流i7=(vI1-vI2)/R7,由于i→0,因而vo1=i7R1+vI1,vo2=i7R2+vI2,当,R1=R2=R时,vo1-vo2=(1+2R/R7)(vI1-vI2)对U2而言,vo1加在反相输入端,vo2加在同相输入端,利用叠加原理的输出电压。vo=—(R5/R3)vo1+R6/(R4+R6)vo2(1+R5/R3)由于R3=R4,R5=R6因而 vo=—(R5/R3)(vo1-vo2)=—(R5/R3)(1+2R/R7)(vI1-vI2) 仪器放大器的差值电压增益:Avf=vo/(vI1-vI2)=—(R5/R3)(1+2R/R7)上式表明,改变R7可设定不同的Avf值。 仪器放大器的共模抑制比主要取决于第—级集成运放U1和U3的对称性和各电阻值的匹配精度。如果U1和U3对称,且各电阻值的匹配误差为→±0.001%,则仪器放大器的共模抑制比可达到100dB以上。 由于采用了对称的同相放大器,因而仪器放大器两输入端具有相同的输入电阻,且其值可达到几百MΩ以上。利用仪表放大对他的特性进行了实际的测量和具体数据进行了记录最大放大倍数为Av=100。经计算,本设计中仪表放大器的电压放大倍数A U=R5/R3(1+2R1/R2)=100,结果将在仿真中验证。 仪表放大器的结构特点:使仪表放大器成为一种高输入电阻,高共模抑制比,具有较低的失调电压,失调电流,噪声及飘移的放大器。在使用时R4,R5,R6,R7四个电阻要精密且匹配,否则将给放大器带来误差,而其将降低电路的共模抑制比。 四.实训步骤: (一)在Protel99se环境中绘制原理图、印制板图,生成CAM文件 1 、绘制电路原理图: 进入Protel99se SCH界面,绘制电路原理图,绘制原理图过程中注意元件的封装和名称,还有元件的布局,力求美观,完成之后,经电气检查无误后即可生成网络表。

集成运算放大器的基本应用

实验十一 集成运算放大器的基本应用 —— 模拟运算电路 一、实验目的 1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验仪器 1、双踪示波器 2、万用表 3、交流毫伏表 4、信号发生器 三、实验原理 在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。 1、 反相比例运算电路 电路如图11-1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1 - = (11-1) U i O 图11-1 反相比例运算电路 为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1∥R F ,此处为了简化电路,我们选取R2=10K 。

2、反相加法电路 U O U 图11-2 反相加法运算电路 电路如图11-2所示,输出电压与输入电压之间的关系为 )( 22 11i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3、同相比例运算电路 图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为 i F O U R R U )1(1 + = R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。图中R2=R F ,用以减小漂移和起保护作用。一般RF 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a)同相比例运算 (b)电压跟随器 图11-3 同相比例运算电路 4、差动放大电路(减法器) 对于图11-4所示的减法运算电路,当R1=R2,R3=R F 时,有如下关系式: )(1 120i i U U R RF U -= (11-4)

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

光纤通信课后习题解答第7章光放大器参考题答案 (1)

第七章光放大器 复习思考题答案 1.光放大器在光纤通信中有哪些重要用途? 答:(1)利用光放大器代替原有的光电光再生中继器,能够大幅度延长系统传输距离。 (2)在波分复用系统中,它一方面可以同时实现多波长的低成本放大,另一方面,可以补偿波分复用器,波分解复用器、光纤光缆等无源器件带来的损耗。 (3)光放大器在接入网中使用,可以补偿由于光分支增加带来的损耗,使得接入网服务用户增加,服务半径扩大。 (4)光孤子通信必须依靠光放大器放大光信号,使光脉冲能量大到可以在光纤中满足孤子传输条件,从而实现接近无穷大距离的电再生段传输。 (5)光放大器在未来的光网络中必将发现越来越多的新用途。 2.光放大器按原理可分为几种不同的类型? 答:光放大器按原理不同大体上有三种类型。 (1)掺杂光纤放大器,就是将稀土金属离子掺于光纤纤芯,稀土金属离子在泵浦源的激励下,能够对光信号进行放大的一种放大器。 (2)传输光纤放大器,就是利用光纤中的各种非线性效应制成的光放大器。 (3)半导体激光放大器,其结构大体上与激光二极管(Laser Diode,LD)相同。如果在法布里-派罗腔(Fabry-Perot cavity,F-P)两端面根本不镀反射膜或者镀增透膜则形成行波型光放大器。半导体光放大器就是行波光放大器。 3.光放大器有哪些重要参数? 答:光放大器参数主要有(1)增益;(2)增益带宽;(3)饱和输出光功率;(4)噪声指数。 4.简述掺杂光纤放大器的放大原理。 答:在泵浦源的作用下,掺杂光纤中的工作物质粒子由低能级跃迁到高能级,得到了粒子数反转分布,从而具有光放大作用。当工作频带范围内的信号光输入时,信号光就会得到放大,这就是掺杂光纤放大器的基本工作原理。只是掺杂光纤放大器细长的纤形结构使得有源区能量密度很高,光与物质的作用区很长,有利于降低对泵浦源功率的要求。 5.EDFA有哪些优缺点? 答:EDFA之所以得到迅速的发展,源于它的一系列优点: (1)工作波长与光纤最小损耗窗口一致,可在光纤通信中获得广泛应用。 (2)耦合效率高。因为是光纤型放大器,易于与光纤耦合连接,也可用熔接技术与传输光纤熔接在一起,损耗可降至0.1dB,这样的熔接反射损耗也很小,不易自激。 (3)能量转换效率高。激光工作物质集中在光纤芯子,且集中在光纤芯子中的近轴部分,而信号光和泵浦光也是在近轴部分最强,这使得光与物质作用很充分。 (4)增益高,噪声低。输出功率大,增益可达40dB,输出功率在单向泵浦时可达14dBm,双向泵浦时可达17dBm,甚至可达20dBm,充分泵浦时,噪声系数可低至3~4dB,串话也很小。 (5)增益特性不敏感。首先是EDFA增益对温度不敏感,在100 C内增益特性保持稳定,另外,增益也与偏振无关。

仪表放大器的应用技巧 摘-17页精选文档

仪表放大器的应用技巧摘 仪表放大器的应用技巧(摘)2019-05-06 00:39仪表放大器的应用技巧(摘) 长期以来,为仪表放大器供电的传统方法是采用双电源或双极性电源,这具有允许正负输入摆幅和输出摆幅的明显优势。随著元器件技术的发展,单电源工作已经成为现代仪表放大器一个越来越有用的特性。现在许多数据采集系统都是采用低电压单电源供电。对于单电源系统,有两个至关重要的特性。首先,仪表放大器的输入范围应当在正电源和负电源之间(或接地电压)扩展。其次,放大器的输出摆幅也应当接近电源电压的两端(R-R),提供一个与电源电压的任一端或地电位相差 100mV(或小于100mV)以内的输出摆幅(V-+0.1V~V+-0.1V)。比较起来,一个标准的双电源仪表放大器的输出摆幅只能与电源电压的任一端或地电位相差1V或2V以内。当采用5V单电源工作时,这些仪表放大器仅具有1V或2V输出电压摆幅,而真正的R-R输出仪表放大器能提供几乎与电源电压一样高的峰峰输出摆幅。另一个重要点是单电源或R-R仪表放大器采用双电源仍能工作(甚至更好)并且通常其工作电源电压比传统的双电源器件低。 电源解耦是一个经常被工程师忽视的重要细节。通常,旁路电容器(典型值为0.1μF)连接在每个IC的电源引脚和地之间。尽管通常情况适合,但是这在实际应用中可能无效或甚至产生比根本没有旁路电容器更坏的瞬态电压。因此考虑电路中的电流在何处产生,从何处返回和通过什么路径返回是很重要的问题。一旦确定,应当在地周围和其他信号路径周围旁路这些电流。 图1、电源旁路的推荐方法 图2、一个没有输入接地返回的AC耦合仪表放大器电路 通常,像运算放大器一样,大多数单片仪表放大器都有其以电源的一端或两端为参考端的积分器并且应当相对输出参考端解耦。这意味著对于每颗晶片在每个电源引脚与仪表放大器的参考端在PCB上的连接点之间应连接一个旁路电容器,如图1所示。 1.输入接地返回的重要性 当使用仪表放大器电路时出现的一个最常见的应用问题是缺乏为仪表放大器的输入偏置电流提供一个DC返回路径。这通常发生在当仪表放

仪表放大器的设计

目录 一、绪言 (7) 二、电路设计 (8) 设计要求 (8) 设计方案 (8) 1、电路原理 (8) 2、主要器件选择 (9) 3、电路仿真 (10) 三、电路焊接 (13) 四、电路调试 (14) 1、仪表放大电路的调试 (14) 2、误差分析 (15) 五、心得体会 (18) 六、参考文献 (19)

绪言 智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。本文从仪表放大器电路的结构、原理出发,设计出仪表放大器电路实现方案,通过分析,为以后进行电子电路实验提供一定的参考。 在同组成员张帅威、张智越的共同努力下,大家集思广益,深入探讨了实验过程中可能出现的各种问题,然后分工负责个部分的工作,我和张帅威负责前期的电路设计和器件的采购,后期的焊接由张智越完成,最后的调试由我们三个人共同完成。本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写,报告中难免会有不足或疏漏之处,还望大家指正为谢!

第一章电路设计 一、设计要求 1、电路放大倍数>3000倍 2、输入电阻>3000kΩ 3、输出电阻<300Ω 二、设计方案 1、电路原理 仪表放大器电路的典型结构如图1所示。它主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

集成运算放大器的基本应用

第7章集成运算放大器的基本应用 7.1 集成运算放大器的线性应用 7.1.1 比例运算电路 7.1.2 加法运算电路 7.1.3 减法运算电路 7.1.4 积分运算电路 7.1.5 微分运算电路 7.1.6 电压—电流转换电路 7.1.7 电流—电压转换电路 7.1.8 有源滤波器 *7.1.9 精密整流电路 7.2 集成运放的非线性应用 7.2.1 单门限电压比较器 7.2.2 滞回电压比较器 7.3 集成运放的使用常识 7.3.1 合理选用集成运放型号 7.3.2 集成运放的引脚功能 7.3.3 消振和调零 7.3.4 保护 本章重点: 1. 集成运算放大器的线性应用:比例运算电路、加减法运算电路、积分微分运算电路、一阶有源滤波器、二阶有源滤波器 2. 集成运算放大器的非线性应用:单门限电压比较器、滞回比较器 本章难点: 1. 虚断和虚短概念的灵活应用 2. 集成运算放大器的非线性应用 3. 集成运算放大器的组成与调试 集成运算放大器(简称集成运放)在科技领域得到广泛的应用,形成了各种各样的应用电路。从其功能上来分,可分为信号运算电路、信号处理电路和信号产生电路。从本章开始和以后的相关章节分别介绍它们的应用。 7.1 集成运算放大器的线性应用

集成运算放大器的线性应用 7.1.1 比例运算电路 1. 同相比例运算电路 (点击查看大图)反馈方式:电压串联负反馈 因为有负反馈,利用虚短和虚断 虚短: u-= u+= u i

虚断: i +=i i- =0 , i 1 =i f 电压放大倍数: 平衡电阻R=R f//R1 2. 反相比例运算 (点击查看大图)反馈方式:电压并联负反馈 因为有负反馈,利用虚短和虚断 i - =i+= 0(虚断) u + =0,u-=u+=0(虚地) i 1 =i f 电压放大倍数:

仪表放大器:三运放INA的基础操作简介

仪表放大器:三运放INA的基础操作简介许多工业和医疗应用在存在大共模电压和DC电位的情况下,都使用仪表放大器(INA)来调理小信号。三运算放大器(三运放)INA架构可执行该功能,其中输入级提供高输入阻抗,输出级过滤共模电压并提供差分电压。高阻抗与高共模抑制比的结合是流量传感器、温度传感器、称重装置、心电图(ECG)和血糖仪等众多传感器和生物计量应用的关键。 本文介绍了三运放INA的基础操作,分析了零漂移放大器的优点、RFI 输入滤波器、监测传感器健康和可编程增益放大器,并列举了传感器健康监测器和有源屏蔽驱动(acTIve shield guard drive)电路的应用范例。 三运放INA基础操作 INA本身的性质使其适用于调理小信号。其高阻抗与高共模抑制比的结合非常适合传感器应用。通过使用输入级的同相输入可实现高输入阻抗,无需靠任何反馈技巧(见图1)。三运放电路可消除共模电压,并以非常小的误差放大传感器信号,但必须考虑输入共模电压(VCM)和差分电压(VD),以免使INA的输入级达到饱和。

饱和的输入级可能看似对处理电路是正常的,但实际上却具有灾难性后果。通过使用具有轨到轨输入和输出(RRIO)配置的放大器来提供最大设计余量,有助于避免出现输入级饱和。以下讨论介绍了三运放INA的基本操作,并举例说明了放大器如何处理共模和差分信号。 图1是三运放INA的框图。按照设计,输入被分为共模电压VCM和差分电压VD。其中,VCM定义为两个输入的共用电压,是INA+与INA-之和的平均值,VD定义为INA+与INA-的净差。 式1: 式2给出了由于施加共模电压和差分电压而在INA输入引脚上产生的节点电压(INA+、INA-)。 式2: 在非饱和模式下,A1和A2的运放在增益设置电阻RG上施加差分电压,产生电流ID: 式3: 因此A1和A2的输出电压为:

仪表放大器的应用技巧(摘)

仪表放大器电路设计技巧 Charles Kitchin,Lew Counts 美国模拟器件公司 长期以来,为仪表放大器供电的传统方法是采用双电源或双极性电源,这具有允许正负输入摆幅和输出摆幅的明显优势。随著元器件技术的发展,单电源工作已经成为现代仪表放大器一个越来越有用的特性。现在许多数据采集系统都是采用低电压单电源供电。对于单电源系统,有两个至关重要的特性。首先,仪表放大器的输入范围应当在正电源和负电源之间(或接地电压)扩展。其次,放大器的输出摆幅也应当接近电源电压的两端(R-R),提供一个与电源电压的任一端或地电位相差100mV(或小于100mV)以内的输出摆幅(V-+0.1V~V+-0.1V)。比较起来,一个标准的双电源仪表放大器的输出摆幅只能与电源电压的任一端或地电位相差1V或2V以内。当采用5V 单电源工作时,这些仪表放大器仅具有1V或2V输出电压摆幅,而真正的R-R输出仪表放大器能提供几乎与电源电压一样高的峰峰输出摆幅。另一个重要点是单电源或R-R仪表放大器采用双电源仍能工作(甚至更好)并且通常其工作电源电压比传统的双电源器件低。 电源解耦是一个经常被工程师忽视的重要细节。通常,旁路电容器(典型值为0.1μF)连接在每个IC的电源引脚和地之间。尽管通常情况适合,但是这在实际应用中可能无效或甚至产生比根本没有旁路电容器更坏的瞬态电压。因此考虑电路中的电流在何处产生,从何处返回和通过什麽路径返回是很重要的问题。一旦确定,应当在地周围和其他信号路径周围旁路这些电流。 通常,像运算放大器一样,大多数单片仪表放大器都有其以电源的一端或两端为参考端的积分器并且应当相对输出参考端解耦。这意味著对于每颗晶片在每个电源引脚与仪表放大器的参考端在PCB上的连接点之间应连接一个旁路电容器,如图1所示。 图1、电源旁路的推荐方法 1.输入接地返回的重要性 当使用仪表放大器电路时出现的一个最常见的应用问题是缺乏为仪表放大器的输入偏置电流提供一个DC返回路径。这通常发生在当仪表放大器的输入是容性耦合时。图2示出这样一个电路。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

仪表放大器应用工程师指南(第三版)

仪表放大器应用工程师指南(第三版)仪表放大器应用工程师指南 第一章仪表放大器的基本原理 前言 仪表放大器有时被错误地理解。并非所有用于仪器仪表的放大器都是仪表放大器,而且仪表放大器决不只用于仪器仪表。仪表放大器用于从电机控制到数据采集以及汽车系统等诸多领域。本书的目的是阐述什么是仪表放大器,它的工作原理怎样,如何使用它以及在何处使用它等基本问题。另外,本书还介绍了几种不同类型的仪表放大器。 仪表放大器与运算放大器的区别是什么, 仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。大9多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值为 Ω10或更大。其输入偏置电流也很低,典型值为1nA至50 nA。与运算放大器一样,仪表放大器输出阻抗也很低,在低频段通常仅有几毫欧。 运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。与运算放大器不同的是,仪表放大器使用一个与信号输入端隔离的内部反馈电阻网络。对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。 图1-1所示的是一个电桥前置放大电路,即为一种典型的仪表放大器应用。当检测信号时,电桥电阻阻值改变,使电桥失去平衡并且在电桥两端产生一个差分的电压变化。该电桥的信号输出就是这种差分电压,且其直接连接到仪表放大器的输入端。此外,恒定的直流电压也施加到电桥的两输入端。这种直流电压通常在两输

入端是相等的或是共模的。仪表放大器的主要作用通常是抑制共模直流电压或对两输入端共模的任何其它电压,同时放大差分信号电压,即两输入端之间的电压差。 相反,如果若在该类应用中采用标准的运算放大器,那么它只会对信号电压和任何直流信号、噪声或其它共模电压进行简单放大。因此,信号会淹没在直流失调电压与噪声之中。正因为如此,即使最好的运算放大器也不能有效地提取微弱的信号。图1-2对比了运算放大器和仪表放大器输入特征之间的差别。信号放大与共模抑制(CMR) 仪表放大器是一种放大两输入信号电压之差而抑制对两输入端共模的任何信号的器件。因此,仪表放大器在从传感器和其它信号源提取微弱信号时提供非常重要的功能。 共模抑制(CMR) 是指抵消任何共模信号(两输入端电位相同)同时放大差模信号(两输入端的电位差)的特性,这是仪表放大器所提供的最重要的功能。直流和交流的共模抑制比都是仪表放大器的重要技术指标。使用现代任何质量合格的仪表放大

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

精密低功耗仪表放大器INA118及其应用

-14- 《国外电子元器件》2000年第6期2000年6月 图1INA118的内部电路 图2 INA118的引脚排列 精密低功耗仪表放大器INA118及其应用 信息产业部电子六所 杨昌金北京联合大学机电工程学院 王涛 Precision And Lo w Po wer Instrument Am p l if ier INA118 Yan g Chan gj in Wan g Tao 摘要:INA118是美国B -B 公司生产的精密仪表放大器,它在内部集成了输入保护电路,其增益可由外部可调增益电阻R g 进行调节。本文介绍了INA118的原理、特性及应用电路。关键词:共模抑制;频带宽度;增益;轨至轨;INA118分类号:TN 722文献标识码:B 文章编号:1006-6977(2000)06- 0014- 02 ●新特器件应用 1.概述 INA118是美国B -B 公司生产的精密仪表放 大器系列中的一种,它具有精度高、功耗低、共模抑制比高和工作频带宽等优点,适合对各种微小信号进行放大。INA118独特的电流反馈结构使得它在较高的增益下也能保持很高的频带宽度(G =100时带宽为70k Hz )。 INA118由三个运算放大器组成差分放大结构,其内部电路如图1所示。内置输入过压保护,且可通过外置不同大小的电阻实现不同的增益(从1 到1000),因而应用范围很广。 2.引脚图及引脚功能 INA118的引脚排列如图2所示。各引脚的功 能说明如表1所列。 3.电气参数 INA118的主要参数如下: ●最大偏移电压:50μV ;●最大温漂:0.5μV /℃;●最大输入基极电流:5nA ; ●最小共模抑制比:110dB ; ●输入过压保护电压:±40V ;●电源电压:±1.35V ~±18V ;●溃散电流:350μA ;●带宽:单位增益时为800k Hz ;●稳定时间:单位增益时为25μs ;●过载恢复时间:20μs ;●工作温度范围:-40℃~85℃;●封装形式:8脚D IP 或SO 。 4.工作原理 INA118由于内含输入保护电路,因此,如果输 入过载,保护电路将把 输入电流限制在1.5到5mA 的安全范围内,以保证后续电路的安全。 此外,输入保护电路还 能在无电源供电的情况

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

ADI《仪表放大器应用工程师指南》中文版

下面是我上月25号整理的,当时偶然发现我就趋值班的时间整理了一下,现在整理一下供大家点评。下面有下划线的地方是我修改过的(方括号[]内是原译和本人观点),我觉得这样比较通顺一点,正文中的黑体处属于准确性明显不足的地方。今天还发现了一个明显是错误的地方,呆会帖出来,大家看看是不是? 信号放大与 CMR [原译:仪表放大器是一种放大两输入信号电压之差而抑制对两输入端共模的任何信号的器件。----观点:原文说得好好的,但译出了一种洋味,特别是那个“对”字,纯属多余又影响理解。|| 原文:An instrumentation amplifier is a device that amplifies the dif ference between two input signal voltages while rejecting any signals that are common to both inputs. 抑制这两个输入端共模信号的器件,因此,仪表放大器在从传感器和其它信号源提取微弱信号时提供非常重要的功能。 共模抑制(CMR)是指抵消任何共模信号([原译:两输入端电位相同----观点:两个输入端的电位|| 原文:the same potential on both inputs])同时放大差模信号(两输入端的电位差)的特性,这是仪表放大器所提供的最重要的功能(阅读附注:也可以说是表现最突出、最有吸引力的功能/性能)。[原译:DC 和交流(AC)CMR 两者都是仪表放大器的重要技术指标----观点:意思没错,就是有点“涩”,翻译时加上CMR的中文意思更多方便更语言化一点,但那个“两者”是没有必要加进去了。|| 原文:Both dc and ac common-mode rejection are important in-amp specifications.]直流和交流的共模抑制CMR都是它的重要技术指标。[原译:使用现代任何质量合格的仪表放大器都能将由于DC 共模电压(即,出现在两输入端的DC 电压)产生的任何误差减小到80 dB 至120 dB。----观点:理由同上句,但读者要注意原文并没有说交流共模抑制也能达到8 0~120dB。|| 原文:Any errors due to dc common-mode voltage (i.e., dc v oltage present at both inputs) will be reduced 80 dB to 120 dB by any mo dern in-amp of decent quality 共模电压(即出现在两输入端的直流电压)产生的任何误差减小到80~120dB。 然而,[原译:如果AC CMR 不够大会产生一种很大的时变误差。因为它通常随着频率产生很大变化,所以要在仪表放大器的输出端消除它是困难的。幸好大多数现代单片集成电

相关主题
文本预览
相关文档 最新文档