当前位置:文档之家› 多级离心泵间隙测量

多级离心泵间隙测量

多级离心泵间隙测量
多级离心泵间隙测量

多级离心泵间隙测量

1、问题提出

合理确定泵的窜量,是维修多级离心泵的关键内容之一,也是使其在高效率运行区间的措施之一,密封压缩量的测量、轴承的安装都会受到转子窜量的影响。因此,多级泵转子窜量的确定在其维修中是至关重要的。

2、多级泵总窜量分析及测量

2.1单叶轮轴向窜量的测量

我们只有对泵进行解体拆卸大修时才会做这一方面的测量与调整。由于叶轮长时间运转磨损,每级叶轮的轴向窜量会发生改变。在对多级泵进行组装前,必须对单个叶轮进行轴向窜量的测量。具体方法是将首叶轮在进水段和首级中段的窜量测量出,并以次为标准,逐个测量出各个叶轮的最大窜量,其值略大于进水段的,视为合格,小于进水段的则必须进行调整,各段叶轮窜量必须大致相同。

2.2转子总窜量的测量

当泵装配完毕后,就要对转子的整体窜量进行测量。不安装平衡盘,在安装平衡盘处装一轴套并用锁紧螺母将其和各级转子一起锁紧为一个刚体,先将转子推向吸入方向,使得叶轮与泵体两者的密封环靠近,用深度尺测出轴肩到泵体某一平面的距离为a1,然后将转子再拉向排出侧,使得叶轮后盖靠近导叶,再测量此时的距离为a2,a2-a1即为泵的总窜量。

测量出总窜量数值后,与泵说明书给出的窜量值进行比较,如果测量

值大于给出值1mm,则应更换磨损叶轮。

3、 平衡盘间隙的调整3.1

平衡盘最佳窜量的确定与调整

多级泵运行中,当导叶中心线与叶轮中心线正好对准时,泵的水力损失最小,效率最高。多级泵平衡盘合理窜量的确定应根据其内部结构关系,使泵在设计的特性状态下正常运转。我们知道,当泵运转时,平衡盘会在一个平衡位置左右移动。

叶轮距前后盖板的间隙

考虑到泵正常运行的最小间隙,我们将平衡盘的轴向窜量确定 mm,即 。其中:b1为叶轮前盖板距泵体的轴向距离,b2为叶轮后盖板距导叶的轴向距离,见图1。这样,既保证了泵运转过程中叶轮与导叶的对中,又减少了开停泵时平衡盘的磨损。

3.2平衡盘轴向窜量的测量及调整

多级泵平衡盘间隙的调整是泵整个维修过程中最重要的一步。

将平衡盘安装并用锁紧螺母锁紧后,按测量2.2中测量总窜量的方法测量出平衡盘的轴向窜量。

当测量平衡盘轴向窜量过小时,具体调整方法为在平衡盘轴套内端加合适的调整垫片。当平衡盘因磨损使的其轴向窜量过大时,可以在泵体平衡环的背部加合适的垫片或对平衡盘轴套进行适当的车削。 4、 合理窜量确定后的其他维修

合理窜量确定后,多级泵诸如轴承、密封等其他方面的维修必须以叶轮对中为依据进行测量装配。

4.1多级泵机械密封的安装

多级泵密封压缩量测量时必须考虑到转子窜量的影响,否则将导密封压缩量数据测量的不准确。具体方法是将安装好平衡盘的转子推向入口侧,使平衡盘间隙保持为0.1mm。此时,测量出密封及密封腔的长度,用密封长度减去密封腔长度即为密封的压缩量。

4.2多级泵轴承的安装

多级泵维修尤其是大修时,泵转子与整体泵体之间的相对尺寸会发生改变,从而使得轴承内、外圈的相对位置也发生了变化。因此我们应重新测量核对两者的相对尺寸,以保证轴承的安全运行。

轴承安装完毕后,应保证平衡盘正常运行时的轴向间隙,否则,平衡盘将失去平衡轴向力的功能。

首先将平衡盘推向吸入口端,使得平衡盘贴死。然后测量平衡盘侧定位轴承位置。具体测量方法为:测量与轴承箱相联接的泵体接触面位置到轴(轴套)上安装轴承的轴肩处的垂直距离l1。将轴承安装到轴承箱内,然后再测量出与泵体相联接轴承箱的接触面到轴承外圈的垂直距离l2,使得l2= l1+0.1。若l2< l1+0.1,可以在泵体与轴承箱的接触面加垫子或切削轴套,若l2> l1+0.1,则可以在轴套内端加垫片,以保证轴承内外圈不能发生相对位移。同时,考虑到多级泵运转时转子的轴向窜动,推力轴承应与轴承端盖保留0.1-0.2mm的间隙。

5、 联轴器间隙的调整

泵运转过程中,随着平衡盘的磨损,转子会不断想吸入口侧移动,因此

检修时,联轴器的间隙做适当的调整,考虑到泵轴受热膨胀的影响因素,根据检修标准规定值为b1+(2-3)mm。

小尺寸物体光学测量方法

小尺寸物体光学测量方法 李闯闯 (华东师范大学,物理与材料学院,上海市,邮编:200000) 摘要:测量微小长度的方法很多,除了游标卡尺,螺旋测微器,读书显微镜等简单的长度测量方法外,利用激光强度高,干涉性好,方向性好的特点,设计出的光学测量方法也有很多,本文将先对实验中的线阵CCD测量物体尺寸进行简单介绍,然后再介绍两种其他的小尺寸物体光学测量方法:利用光学多道仪测量,照相法测量。 1.线阵CCD测量物体尺寸 随着科学技术的发展和工业自动化检测程度的提高,传统的人工接触式的测量由于测量精度和效率的限制已经无法满足大规模生产的需求。高精度,高速度的在线非接触测量已经成为检测行业的发展趋势。产于上世纪70年代的电荷耦合器件(CCD)是现代最重要的图像传感器的一种。 CCD是由一种高感光度的半导体材料制成的模拟集成电路芯片,借助光学系统和驱动电路,图像经光敏区后可以实现光电信号的转换、存储和传输,从而将空间域的光学图像转换为时间域的离散电压信号。 线阵CCD具有灵敏度高、光谱响应宽、集成度高、结构简单、成本低廉等诸多优点,因此在检测方面应用越来越广。 (1)线阵CCD测量原理 装置由远心照明光源系统,待测物体,线阵成像系统,线阵CCD图像采集系统和计算机数据处理系统构成。 远心照明光源发出平行光术均匀投射到待测物体,经成像物体成像在线阵CCD的光敏阵列上。由于待测物体的成像面上光照度不同,线阵CCD光敏阵列上的照度分布也就不同,因此,输出信号中将包含待测物体的尺寸信息,如下图所示。再通过线阵CCD及其驱动器将其转换为图二右侧所示的时序电压信号(N1,N2是待测物体的边缘信号) 为了提取图二所示的边缘信息,通常要对线阵CCD输出的信号进行二值化处理。其方法有固定阈值法,浮动阈值法和微分阈值法。实验中我们采用的是浮动阈值法。软件采集到一行周期U0输出的数据之后,根据背景光信号的强度信号

滑动轴承间隙

2.压铅法。在轴上、轴承座的相应结合面分别放置相应粗细的铅丝,把紧轴承及其轴承座,然后拆开轴承及其轴承座,测量相应结合面的铅丝厚度,两者相减即为轴承间隙。 序号字幕解说词 2测定滑动轴承间隙 轴承是在支撑轴以及轴上的其他回转的零件,引导轴的旋转运动,承受轴传递给机架的载荷。根据轴承的摩擦性质分为滑动轴承、滚动轴承。机泵轴承工作时应该有一定间隙,间隙不符合要求在运转过程中就会出现一些故障,因此岗位操作人员应该掌握测量轴承间隙的操作规程,并协助泵修人员进行测定。操作时间:要求至少2人在40min内完成。 现场测量滑动轴承顶隙的方法是压铅法,而测量轴瓦侧隙采用塞尺法。 一、准备工作 1、操作人员穿戴好 劳保用品 操作人员穿戴好劳保用品 32、准备工具、用具 1、设备:注水泵机组1套; 2、工用具:活动扳手1套,梅花扳手1套,开口扳手1套,管钳1把(600mm),250mm起子2把,撬杠2把,“F”型扳手1把,千分尺、游标卡尺、剪刀、塞尺各1把,紫铜皮适量(δ=0.05mm,δ=0.10mm,δ=0.20mm),细铅丝φ0.50mm(长300mm)Φ40*250mm紫铜棒1个,棉纱或擦布适量,清洗液适量,石棉板(δ=1.0mm)1张记录纸、记录笔等。 操作步骤 4塞尺法测量轴瓦的 侧间隙 选择停用的注水泵机组,由2人配合操作。 卸下瓦盖紧固螺丝,取下瓦盖及上瓦:用开口或梅花扳手卸下瓦盖和端盖紧固螺丝,并用铜棒轻轻磕动取下瓦盖及上瓦。 选择合适的塞尺片,插入下瓦的四角,即可测量出轴瓦的侧间隙,并记录所测得的数据。 压铅法测量轴瓦的 顶间隙 选择停用的注水泵机组,由2人配合操作。 卸下瓦盖紧固螺丝,取下瓦盖及上瓦:用开口或梅花扳手卸下瓦盖和端盖紧固螺丝,并用铜棒轻轻磕动取下瓦盖及上瓦。 字幕解说词 压铅法测量轴瓦的 顶间隙 选择1mm粗、50mm~70mm长的铅丝,横放在轴径上瓦口2处(A1、A2); 用同样规格的铅丝分别放在下瓦两侧4处(B1、B2和B3、B4);在瓦口接 合面的四个角上,分别放上厚0.4mm ~ 0.5mm、长12mm、宽8mm的四块铜 片。 放好铅丝和铜片后,在扣上上瓦,并均匀拧紧瓦盖紧固螺丝,使四角受力均匀。 松开瓦盖紧固螺丝,拆下上瓦,取出铅丝和铜片。 用千分表或游标卡尺测量取出铅丝厚度,根据铅丝厚度和两边铜片厚度平均值之差,即可计算出轴瓦前后两端顶部间隙大小。 根据测量的数据,判断滑动轴承的间隙是否符合规定技术要求,是否应该进行调整。 压铅法测量轴瓦瓦 背(球形瓦球面)的 间隙 操作方法同测量轴瓦顶部间隙相同,但是铅丝放在瓦背上及轴承座的结合面上,两侧各放上铅丝,其间隙大小应是结合面上的铅丝平均厚度与瓦背 上铅丝平均厚度之差。 3、清理现场,回收工具用具,擦洗干净,放回原位。 4、填写记录清理现场,填写岗位工作记录,维修记录。

反向间隙测量

数控机床反向间隙的测定方法 反向间隙的测定方法:在所测量坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值,以所得平均值中的最大值为反向偏差测量值。在测量时一定要先移动一段距离,否则不能得到正确的反向偏差值。 测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。若采用编程法实现测量,则能使测量过程变得更便捷更精确。 例如,在三坐标立式机床上测量X轴的反向偏差,可先将表压住主轴的圆柱表面,然后运行如下程序进行测量: N10 G91 G01 X50 F1000;工作台右移 N20 X-50;工作台左移,消除传动间隙 N30 G04 X5;暂停以便观察

N40 Z50;Z轴抬高让开 N50 X-50:工作台左移 N60 X50:工作台右移复位 N70 Z-50:Z轴复位 N80 G04 X5:暂停以便观察 N90 M99; 需要注意的是,在工作台不同的运行速度下所测出的结果会有所不同。一般情况下,低速的测出值要比高速的大,特别是在机床轴负荷和运动阻力较大时。低速运动时工作台运动速度较低,不易发生过冲超程(相对“反向间隙”),因此测出值较大;在高速时,由于工作台速度较高,容易发生过冲超程,测得值偏小。 回转运动轴反向偏差量的测量方法与直线轴相同,只是用于检测的仪器不同而已。

光学测量复习题

1.光学测量:对光学材料、零件及系统的参数和性能的测量。 2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。 3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。 4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。 5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。 6.精度:反应测量结果与真实值接近程度的量。 7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的...... 8.偶然误差的评价:(标准偏差)(极限误差)。 9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。 10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。 11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。 12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。 13..对准误差:对准残留的误差。 14.调焦误差:调焦残留的误差。 15.常用调焦方式:(清晰度法)、(消视差法)。 16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。 17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。 18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。 19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。 20.自准直仪:(自准直望远镜)(自准直显微镜)。 21.自准直目镜是一种带分划板和分划板照明装置的目镜。一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。它们统称自准直仪。 22.常用自准直目镜:(高斯目镜)、(阿贝目镜)、(双分划板式自准直目镜)。 23.剪切干涉法常见的平板式横向剪切干涉仪,它是以干涉条纹成无限宽,即干涉场中呈均匀一片作为判别光束准直性基准的。 24.双楔板剪切干涉法的原理? 解:假设楔板的棱边平行于x轴(棱边呈水平状态),并倾斜至于光路中。一离焦板的光波Kd(x2+y2)经楔板前,后面反射,则反射波沿x方向被横波向剪切。干涉条纹是一组与x轴倾斜的直线簇,在重叠区域形成的条纹可表示为(nkβ)y+(KDs)x=mπ 25.V棱镜法的检测原理:当单色平行光垂直的入射到V棱镜的ED面时,若被检玻璃折射率n与V棱镜折射率n0完全相同,则出射光不发生任何偏折的射出;若n与n0不等,则出射光相对入射光有一偏折角θ,若测出θ,就可计算出折射率。 26.V棱镜折光仪:主要用于平行光管、对准望远系统、读数显微镜系统和标准V块组成。 27.V棱镜折光仪的使用方法:平行光管分划板的刻线是在水平透光宽缝中间刻一细长线。由平行光管射出的单色平行光束经V棱镜和待检试样后,产生偏折角θ,转动望远镜对准平行光管的刻线象。当望远镜对准时,带动度盘转动。有读数显微镜读得角θ,其整数部分由度盘读出,小数部分由测微目镜读出。 28.最小偏向角法的测量原理:单色平行光沿MP方向射出,入射光与出射光的夹角δ为偏

测量轴瓦预紧力的两种方法比较修订稿

测量轴瓦预紧力的两种 方法比较 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

测量轴瓦预紧力的两种方法比较 作者:苏钢集团有限公司炼钢厂钱立新 【摘要】文章比较了测量压缩机轴瓦预紧力的两种方法,详细分析了导致测量错误的原因,并提出了正确的测量方法。 关键词:轴瓦预紧力;测量方法1前言 压缩机的轴瓦在安装时要求有一定的预紧力(瓦背过盈),其主要作用是为了确保瓦背与瓦座有足够的贴紧力,以防止在机组运行时主轴转动和不断振动过程中两者产生相对位移而影响油路畅通,从而损坏轴承、造成机器运行不稳、振动增大甚至造成毁坏转子等重大设备事故。有些机器的轴瓦制作成可拆卸轴瓦(在维修更换时只需换瓦芯,可降低成本),对这类轴瓦则还有一次过盈、二次过盈之分,其作用是相同的。但是不管是一次过盈还是二次过盈都要求在合适的范围内,如果过盈量太小会造成松动,太大则会使轴瓦变形。 江苏苏钢集团有限公司4500m3/h空分设备,由开封空分集团有限公司设计制造,中国第×冶金建设安装公司承建(以下分别简称开空厂和×冶),于2002年4月5日调试出氧。×冶在安装该空分设备配套的H500—6.2/1.0双轴型空气压缩机过程中测量轴瓦的预紧力时,发现二级轴瓦与开空厂在出厂前安装试车时的值有较大的差异。现介绍如下,供大家参考,以防类似错误。 2开空厂原设计安装值

开空厂H500—6.2/1.0型空压机原设计安装值见表1。 表1H500型空气压缩机原设计安装值 项目轴径瓦背过盈顶间隙单侧间隙一、二级轴瓦φ1150.03~0.050.186~0.2480.093~0.124 三、四级轴瓦φ1050.03~0.050.168~0.2180.084~0.109 的数值(用压铅方法测)进行了安装装配,试车情况良好。然后解体包装发用户。3双方测量瓦背过盈的方法与数值3.1测量瓦背过盈的方法 如图1示,假如在自由状态下轴瓦顶部A点与瓦盖紧紧贴上后,在瓦盖的上下对口结合面B、C 处有O.05mm的间隙;那么,当B、C处被压紧后瓦盖与轴瓦紧抱,瓦盖与轴瓦就有0.05mm的过盈。测量瓦背过盈一般可采用压铅法,测得三处的值a、b、c,即可得到瓦背过盈: δ=(b+c)/2- a 3.2×冶的测量方法与数值

曲柄连杆机构的故障诊断与排除

曲柄连杆机构的故障诊断与排除 曲辆连杆机构的故障主要表现为异响。何谓异响?就汽车而言,异响是指汽车总成或机构在工作中产生的超过技术文件规定的不正常的响声。 曲柄连杆机构的异响一般是由于某些运动件自然磨损使其间隙过大,润滑不良,紧固不良或修理调整不当等原因引起。曲柄连杆机构异响常与发动机的转速、负荷、温度和缸位有关。 (一)曲轴主轴承晌 1.现象 (1)发动机一般稳定运转不响,转速突然变化时,发出低沉钝重连续“当当”的金属敲击声。 (2)发动机转速越高,响声越大。 (3)发动机有负荷时响声明显。. (4)单缸断火时响声无变化。 2.原因 (1)主轴承盖螺栓松动。 (2)主轴承与主轴颈配合间隙过大。 (3)发动机机油不良。 (4)主轴承合金层烧毁或脱落。 3.诊断与排除 用旋具抵触曲轴箱接近曲轴主轴承处听察,反复变更发动机转速,在突然加速或减速时,如有明显的沉重响声,则为主轴承响。第一道主轴承响,声音较清脆;第五道主轴承响,声音偏沉闷。 (1)发动机温度越高响声越明显,说明发动机机油粘度过低或老化,应更换发动机机油。 (2)发动机高速运转,汽车重载爬坡,机件有较大的振动;机油压力明显下降,说明主轴承与主轴颈配合间隙过大,或合金层脱落,应及时更换主轴承或修磨主轴颈。 (3)若怀疑是曲轴轴向窜动响,可踏下离合器踏板,如果响声减弱或消失,则为曲轴轴向窜动发响。此时应更换曲轴止推垫片或更换曲轴。 (4)若怀疑是飞轮固定不良发响,可在发现异响时,关闭点火开关,而当发动机即

将熄火时,再立即接通点火开关,若此时能听到一声撞击声,且每次重复上述操作均如此。即证明是飞轮固定不良发响,应紧固或更换飞轮固定螺栓予以排除。 (二)连杆轴承响 1.现象 (1)突然加速时,发动机有明显连续“堂堂堂”的类似木棒敲击铁桶的声音,该声响较主轴承响清脆。 (2)怠速时响声较小,中速时明显。 (3)单缸断火后,响声明显减弱或消失。 (4)汽车高速或爬坡时,响声加剧。 2.原因 (1)连杆轴承盖螺栓松动。 (2)连杆轴承径向间隙过大。 (3)连杆轴承合金层烧毁。 (4)发动机机油不良。 3.诊断与排除 (1)发动机初发动时,响声严重,待机油压力上升后,响声减弱或消失,表明个别连杆轴承间隙稍大或合金层剥落,应视情修磨连杆轴颈或更换连杆轴承。 (2)若发动机温度正常,由低速突然加至中高速时,发动机发出有节奏的“当当当”响声;转速再升高时,其响声减弱直至消失;单缸断火时响声消失,复火时响声恢复;稍关节气门,响声更明显,说明连杆轴承间隙过大。应修磨连杆轴颈或更换连杆轴承。 (3)发动机温度升高,响声增加,说明发动机机油不符合要求,应予更换。若同时在提高发动机转速时,其响声却减弱但显得杂乱,则说明连杆轴承合金层过热融化,应立即修复。 (三)活塞敲缸响 活塞敲缸响的原因是多方面的,因具体原因不同,敲缸响所表现的现象也不同。主要有以下几种: 1.发动机冷态时敲缸响

盘式制动器制动间隙调整测量方法

盘式制动器制动间隙调整测量方法 为确保前轴盘式制动器正确使用,现对前轴盘式制动器制动间隙的 制动间隙的测测量方法进一步明确规范,请认真参阅执行。测量制动间隙前,应首 应首先先 活塞总成)可以正常工作。本确认间隙自动调整机构((AZ9100443500 AZ9100443500 AZ9100443500活塞总成) 文首先表述如何判断活塞总成是否可靠工作,再进一步说明制动间 再进一步说明制动间隙隙的测量方法。

(盘式制动器外形)外形)/ /(各部件名称)判断活塞总成是否有效: 1、用SW10SW10扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转两两周),而后反向微调少许(以防螺纹发卡),而后反向微调少许(以防螺纹发卡); ;2、在气压足够大的情况下,原地连续踩刹车、在气压足够大的情况下,原地连续踩刹车101010次左右。注意:踩刹 次左右。注意:踩刹车时将扳手扣在手调轴上,以观察刹车时手调轴是否转动,正常现正常现象象应该是开始几次制动时扳手转动(顺时针)角度较大,越来越小,最后稳定到某个角度,此时即表明间隙已经调整到设计值。如果踩刹如果踩刹车车时手调轴不转动或者有逆时针转动状况,则该自动调整机构(活塞(活塞总总成)已不能正常工作,必须更换。 图一图一//图二图二/ /图三

制动间隙的测量: 盘式制动器从设计结构上已设定了制动间隙,并且制动间隙是自动并且制动间隙是自动调 调整的,不允许人为调整,制动间隙在0.80.8~ ~1.0mm 范围内是正常的。如果整车使用过程中出现左右制动力差值偏大、制动力不足或制动制动力不足或制动过过热等故障现象时,可按如下步骤检查制动间隙: 1、拆下压板(如塞尺插入方便可不拆压板),向箭头所指方向推动向箭头所指方向推动钳 钳体,使外侧制动块与制动盘紧密结合。(图一) 2、拨动内侧制动块使其靠近制动盘,测量间隙活塞总成整体推盘与制动块背板之间的间隙。(图二) 3、整体推盘与制动块背板之间的间隙应在、整体推盘与制动块背板之间的间隙应在0.80.80.8~ ~1.mm 之间,如小于0.8mm 0.8mm,应更换间隙自动调整机构(,应更换间隙自动调整机构(,应更换间隙自动调整机构(AZ9100443500AZ9100443500AZ9100443500活塞总成)(图三)活塞总成)注意事项: 盘式制动器从设计结构上已设定了制动间隙,并同时保证了制动间并同时保证了制动间隙 隙的自动调整。制动块和制动盘的间隙在制动块寿命期内是永远保持制动块和制动盘的间隙在制动块寿命期内是永远保持不不变的,只需按整车维修保养手册,定期检查制动块的磨损情况。因因此 此1.必须按上述正确方法测量制动间隙; 2.当制动块的摩擦材料的最小厚度小于2mm 时,必须更换制动块(此情况属于正常磨损,不属于三包范围)

水泵间隙测量与调整

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 1.水泵轴的弯曲: 高压水泵的结构精密,动、静部分之间间隙小,转子转速高、轴的负 荷重。因此对轴的要求比较严格。轴的弯曲度一般不允许超过0.02mm,超过0.04mm 时就应该进行直轴处理,轴的弯曲过大势必将增加水泵转子的晃度,晃度大势必要增加密封环及导叶衬套间隙,如果间隙过大,还会形成涡流,引起水泵振动。降低水泵效率。 2.叶轮与泵轴的装配间隙: 多级给水泵的叶轮与泵轴装配一般是间隙配合,其间隙在0.00mm-0.04 mm,这是由水泵轴及叶轮加工公差决定的,间隙过或过盈一方面增加组装难度,另外影响转子部件热膨胀,增加水泵转子后天性晃度的产生引起转子质量不平衡,间隙过大增加水泵转子晃度,造成水泵转子动平衡不稳定,叶轮内孔与轴的配合部位,由于长期使用和多次拆装,其配合间隙增大,此时可将配合的轴段或叶轮内孔用喷涂法修复。 3.泵轴键及键槽间隙的调整: 水泵叶轮与泵轴靠键传递转动。键和泵轴键槽应该是过盈配合,紧力在0.00 mm-0.03 mm,键和叶轮键槽应是间隙配合,其值也在0.00 mm-0.03 mm。 4. 转子小装: a)小装的目的.转子小装也称预装或试装,是决定组装质量的关键,其目的为:测量并消除转子紧态晃动,以避免内部摩擦,减少振动和改善轴封工况;调整叶轮之间的轴向距离,以保证各级叶轮的出口对准;确定调节套的尺寸。 b)转子套装件轴向膨胀间隙的确定,因为转子套装件与泵轴材质不一样。另外,泵轴两端均在泵体以外,所以在热态下,泵轴与转子套装膨胀量大于泵轴,所以在转子的膨胀间隙的数值是根据转子的长短及水温确定的,一般在10个叶轮左右的转子其膨胀间隙在1 mm左右,膨胀间隙过大,则不能很好紧固转子套装件,膨胀间隙过小,则可能造成转子热态下的弯曲。造成动静摩擦,损坏设备。 c)小装前的检查,检查转子上各部件尺寸,消除明显超差。轴上套装件晃度一般不应超过0.02 mm,对轴上所有的套装件,如叶轮、平衡盘、轴套等,应在专用工具上进行端面对面对轴中心线垂直度的检查。假轴与套装件保持0.00 mm-0.04 mm间隙配合,用手转动套装件,转动一周后百分表的跳动值应在0.015 mm以下,用同样方法检查另一端面的垂直度,也可不用假轴,将装件放在平板上测量,这样的测量法不能得出端面与轴中心线的垂直误差,得出的是上下端面的平行误差。 d)水泵转子晃动度的测量,做好上述准备工作后,将套装件清扫干净,并按从低压侧到高压侧的顺序依次装在轴上,拧紧轴套锁母,留好膨胀间隙(对于热套转子,只装首、末两极叶轮,中间各级不装)然或分别测出各部位的晃动,所示各处的晃动允许值见表1

连杆疲劳试验

连杆疲劳试验 连杆疲劳试验 上汽集团奇瑞汽车有限公司奇瑞汽车工程研究院

连杆疲劳试验 1.0目的 这个试验的目的主要是分析连杆疲劳载荷。试验是在专门的连杆疲劳试验机上进行,试验机通常是液压设备来模拟运转情况下发动机连杆受到的相关载荷。 这个疲劳试验可以作为部件生产过程的一个主要验证方法。因此样件应该达到生产的标准。在发动机开发的早期阶段就应该做原型件的初步试验。 疲劳试验将用来分析: ·通过4百万个试验循环后,在连杆和盖之间及在轴瓦\轴套和承载孔间的分界面处磨损状况。 ·产生弯曲或屈服疲劳极限载荷。 2.0试验准备 试验在一台疲劳试验机上进行。 被试验的连杆完全是在拉压力载荷作用下进行。 试验载荷可以通过一个另设的销来施加,此销代替了原来的曲柄销和轴颈销。需要5bar的机油来防止轴瓦有擦伤或过多的磨损。 为了防止部件产生过热,需要一个机油冷却喷嘴来保证试验样件的温度维持在45度以下。,疲劳试验中用的组件或者反应了整个生产范围部件情况或样件代表了最差的零部件。 假如在批量生产后不进行同样的检查,那么一般不推荐在试验前进行质量检查(例如,开裂检查方法)。 2.1样件准备 被试验的连杆包括连杆轴承盖、合适的小端轴套、大端轴瓦、固定装置。 装夹销和轴瓦间存在的间隙如下: 大头末端轴瓦直径间隙:10~20微米 小头末端轴瓦直径间隙:20~30微米 小头末端直径间隙(大头试验):-20~-40微米(没有小头末端轴瓦) 连杆大头的试验负荷为一个比较高的张紧力,此张紧力高于正常安装间隙的连杆小头的张紧力,这就减少了在张紧力作用下连杆小头椭圆形破坏的弯曲力,提高了硬度和强度。这样夹紧销在小头的承载孔里应该是干涉配合(无小头的轴套)。 考虑到轴瓦/轴套和小头的承载孔的干涉公差应该影响疲劳强度,好的方法是根据连杆小头的图纸公差要求,对于选择的部件应该有最大的干涉。 轴瓦盖的螺栓扭矩参数在图00001146AA中。 3.0使用仪器和设备

常见轴瓦故障分析

一常见轴瓦故障分析 (2) 二:常见故障 (2) 1.烧瓦 (2) 2.轴瓦擦伤 (4) 3.轴瓦合金裂纹和脱落 (4) 4.轴瓦剧烈磨损 (5) 三、轴瓦故障的诊断和排除 (5) 1.连杆轴瓦烧蚀 (5) (1)症状 (5) 2.曲轴轴瓦烧蚀 (6) (1)故障症状 (6) 说明 (6) (2)故障排除方法 (6) 四、轴瓦使用注意事项 (7) 五结论 (8)

一常见轴瓦故障分析 发动机主轴瓦与连杆瓦产生的故障多为"烧瓦"."拉瓦".与"砸瓦"三种. "拉瓦"往往是由于油脏,混在机油当中的微小机械杂质随着机油流向了轴与瓦之间,坚硬的杂质往往将瓦的合金拉伤. "砸瓦"的故障往往是由于轴颈与轴瓦之间的间隙过大,机油变质或强度不够,在轴与瓦之间的冲击力的作用下油膜不复存在,使瓦片上的合金产生龟裂,严重时会产生合金脱落! "烧瓦"轴瓦的一个综合性故障.主要由于润滑不善造成轴瓦烧损,严重时轴瓦与轴颈烧结而产生滚瓦事故.主轴承,连杆轴承间隙过大,由于泄漏机油压力偏低供油不足使局部缺油,机械杂质或油污将油道堵死,机油泵的集滤器脱落,油底缺油等都会造成烧瓦的故障."拉瓦","砸瓦"也都会造成烧瓦事故. 往往是先拉,先砸而后由于机油压力偏低缺油而烧瓦. 二:常见故障 1.烧瓦 一般在轴瓦和曲轴轴颈间因没有机油、机油不足或其他原因而没有形成润滑油膜或润滑油膜被破坏的情况下发生烧瓦。导致烧瓦的具体原因有以下几种: (1)发动机长时间在高负荷条件下运转。这时发动机机油温度高,

机油粘度下降,机油压力偏低,在曲轴轴颈和轴瓦之间不易形成正常的润滑油膜,以致轴颈和轴瓦摩擦表面产生高温,轴瓦烧熔。 (2)冬季启动发动机的操作不当。冬季环境温度低于0℃时,如果强行快速启动发动机,由于此时机油粘度大,发动机转速低,在轴颈和轴瓦之间难以形成润滑油膜,以致发生烧瓦故障。 (3)机油变质。如果机油不纯或机油因使用时间太长等原因而变质,则润滑油膜不易形成,以致发生烧瓦。机油变质是导致汽车发动机产生烧瓦故障的主要原因。 (4)润滑系统中机油严重不足。若机油严重不足,则轴颈和轴瓦摩擦表面的温度迅速升高,发生烧瓦。导致机油严重不足的主要原因是:机油滤清器严重堵塞、机油泵损坏、机油管路堵塞或严重漏油,油管接头破裂或未及时添加机油等。 (5)轴颈和轴瓦的间隙不符合标准。该间隙影响润滑油膜的形成。若间隙过小则机油不易进入轴颈和轴瓦的摩擦表面间,无法形成润滑油膜。若间隙过大,则润滑油膜的厚度减小,不能把摩擦表面完全隔开,发生烧瓦故障的可能性也就增加。并且,过大的间隙还会增大轴颈与轴瓦间的振动和撞击,导致润滑油膜破裂。 (6)曲轴的磨修破坏了轴颈表面耐磨层和耐疲劳层。汽车发动机的曲轴轴颈经过良好的热处理,具有高耐磨层(一般厚度为0.1~0.2mm)和耐疲劳层(在高耐磨层下,厚度为0.8mm)。如果在发生烧瓦故障后将发动机曲轴任意磨削修理,将会失去原有的高耐磨层和耐疲劳层,以致很快地发生烧瓦故障。另外,如果在曲轴和轴瓦的装配过程中,

各种间隙测量方法论述

间隙测量方法概述 1、探针法 探针法是目前发动机叶尖间隙测量的常用方法,采用叶尖放电方式,即依靠电机使外加直流电压的探针沿径向移动,当探针移向叶尖至发生放电为止,探针的行程与初始安装间隙(静态时探针到机匣内表面的距离)之差即叶尖间隙。它主要由探针、执行机构及控制器组成。其间隙测量系统在探针上施加高压,在执行机构的驱动下,以连续的步进逐渐伸向被测物体,当探针距离被测物体只有微米量级时,发生电弧放电,控制器感受到放电后,在探针与叶尖物理接触之前,停止探针步进,将其缩回到安全位置,同时显示叶尖间隙测量结果。它只适用于温度6000C以下、转速在6000r/min以上,而且探针容易受到异物及油渍的污染造成阻塞。由于它是接触式测量,一旦发动机紧急停车,探针缩回不到安全位置,就容易发生故障探针法的特点:原理比较简单,只要叶片是导电材料,无论叶尖端面形状如何都可以用探针法测量叶尖间隙,且在高温高压环境下测量稳定、可靠,但是该方法只能测量转子的最小叶尖间隙,此外,外加电压的波动,壳体内气体的温度和压力变化,探针和叶尖端面的污损,都会改变放电的起始距离,因而产生测量误差。探针法不适于作为固定设备装载定型的发动机上,适用于试验研究,可以测量各稳态状态下最长叶片与机匣的间隙值,也可用作校准其他测量方法的基准。由于一些微型发动机的叶片不是导电材料,所以无法使用探针法进行测量。 2、电容法 电容法是利用绝缘电极(电容极板)与待测金属端而形成的电容进行测量的,间隙的变化导致测量电容的变化,再将电容变化量通过检测电路和调理电路转换成易于检测和分析的电压或电流信号。电容法广泛应用于位移、振动、角度、加速度等机械量的精密测量,具有结构简

水泵的检修间隙的测量与调整

水泵的检修间隙的测量与调整 发布者:永嘉县永球泵阀机械制造公司 水泵的检修间隙调整 发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。 目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。 1、给水泵的解体 a)与上次检修时的数据进行对比,从数据的变化分析原因制定检修方案; 与回装时的数据进行对比,避免回装错误。 1.1轴瓦的间隙紧力及瓦口间隙 轴瓦顶部间隙一般取轴径的0.15%~0.2%,瓦口间隙为顶部间隙的一半。瓦盖紧力一般取0.00mm~0.03mm。间隙旨在保证轴瓦的润滑与冷却以及避免轴振动对轴瓦的影响。如果在解体过程中发现与标准有出入,

应进行分析,制定针对性处理方案并处理。 1.2水泵工作窜量 水泵工作窜量取0.8mm~1.2mm。工作窜量的数值主要是保证机械密封在水泵启停工况及事故工况下不发生机械碰撞和挤压。也是水泵运行中防止动静摩擦的一个重要措施。 1.3水泵高低压侧大小端盖与进出口端的间隙 测量水泵高低压侧大小端盖与进出口端的间隙目的在于检查紧固螺栓是否有松动现象,同时为水泵组装时留下螺栓紧固的施力依据。 1.4水泵半窜量的测量 在未拆除平衡盘的状态下测量水泵的半窜量,水泵的半窜量应该是水泵总窜量的一半,一般情况下其数值为4mm左右。检查水泵半窜量与原始数据进行比较,可找出平衡盘磨损量及水泵效率降低的原因。 1.5水泵总窜量的复查 拆除平衡盘后即可测量水泵总窜量,水泵总窜量是水泵的制造及安装后固有的数值,一般水泵总窜量在8mm~l0mm。水泵总窜量如果发生变化,则说明水泵各中段紧固螺栓有松动或水泵动静部分轴向发生磨损。 1.6水泵各级窜量 水泵在抽出芯包后就要对各级中段及叶轮进行解体,在解体过程中应对水泵逐级进行窜量测量,在测量各级窜量的过程中还应对各级中段

给水泵检修的间隙测量与调整

给水泵检修的间隙测量与调整 发电厂所有水泵的检修中,给水泵因其级数多、压力高、转速高,所以给水泵检修的技术含量较高。而在给水泵的检修中,在保证水泵动静部分无缺陷的情况下,水泵检修的质量完全靠间隙的正确测量与调整来保证。在水泵众多的间隙及检修数据中,每种间隙及检修数据并不是独立的,而是互相联系、互相制约的。每种间隙的数值都是由水泵的制造与运行要求确定的。 目前,高压力、大扬程的给水泵使用中,双壳体泵以其运行稳定、检修方便,应用比较广泛。下面结合双壳体给水泵检修过程对水泵各部间隙的作用、测量及调整进行简单阐述。 1、给水泵的解体; 水泵检修解体阶段的测量目的在于: a)与上次检修时的数据进行对比,从数据的变化分析原因制定检修方案; b)与回装时的数据进行对比,避免回装错误。 1.1轴瓦的间隙紧力及瓦口间隙 轴瓦顶部间隙一般取轴径的0.15%~0.2%,瓦口间隙为顶部间隙的一半。瓦盖紧力一般取0.00mm~0.03mm。间隙旨在保证轴瓦的润滑与冷却以及避免轴振动对轴瓦的影响。如果在解体过程中发现与标准有出入,应进行分析,制定针对性处理方案并处理。 E1.2水泵工作窜量 ^水泵工作窜量取0.8mm~1.2mm。工作窜量的数值主要是保证机械密封在水泵启停工况及事故工况下不发生机械碰撞和挤压。也是水泵运行中防止动静摩擦的一个重要措施。 1.3水泵高低压侧大小端盖与进出口端的间隙 ,Y S测量水泵高低压侧大小端盖与进出口端的间隙目的在于检查紧固螺栓是否有松动现象,同时为水泵组装时留下螺栓紧固的施力依据。 1.4水泵半窜量的测量 在未拆除平衡盘的状态下测量水泵的半窜量,水泵的半窜量应该是水泵总窜量的一半,一般情况下其数值为4mm左右。检查水泵半窜量与原始数据进行比较,可找出平衡盘磨损量及水泵效率降低的原因。 1.5水泵总窜量的复查-\y(z!k/D'} 拆除平衡盘后即可测量水泵总窜量,水泵总窜量是水泵的制造及安装后固有的数值,一般水泵总窜量在8mm~l0mm。水泵总窜量如果发生变化,则说明水泵各中段紧固螺栓有松动或水泵动静部分轴向发生磨损。 1.6水泵各级窜量 水泵在抽出芯包后就要对各级中段及叶轮进行解体,在解体过程中应对水泵逐级进行窜量测量,在测量各级窜量的过程中还应对各级中段止口轴向间隙进行测量。各级中段的窜量应在总窜量数值的附近,一般不超过0.50mm,如数值偏差较大或与原始数据出入较大,应认真分析原因,并进行消除。各级中段止口间隙的测量是为了检验水泵总装的误差。 解体过程各数据的测量,目的是根据数据进行分析,找出水泵故障的原因,制定本次检修的方案及针对性处理措施。同时,在回装过程中进行参考,检验回装过程的误差。

滑动轴承间隙测量尺

塑料线塞尺---精确的测量间隙 塑料线塞尺用来测量互相配合表面间的间隙,简单易行,高效。它主要用在测量分体轴承,或者不能使用不锈钢塞尺的场合。测量曲柄轴的大型端轴承时,不需要将曲柄轴解体。 去掉发动机箱的盖板,露出大型端轴承盖和其固定螺栓。放去多余的油,松开大型端轴承的固定螺栓。擦净轴和盖子的接触面。在轴面上放点油脂,在盖上挤上点硅树脂。 取合适长度的塑料线塞尺,用点油脂将它粘在轴面上,放 上盖子,根据厂家推荐的力矩拧紧螺栓,注意此过程中不 要转动轴。见图1。 然后取掉盖子,露出塑料线塞尺,这时的塑料线塞尺已经 变成扁片了。用随供的标尺比对此扁片,就知道间隙了。 见图2。图 1 建议测量后用干净的布擦掉塑料线塞尺片,但是请用者放心,落下的塑料线塞尺会被油溶解,根本不会损坏发动机。 ※ 如果绕轴放一圈塑料线塞尺,可以测量轴的椭圆度。 一般来说,大型端轴承或主轴承的间隙约为轴径的 1/2000。例如,2”(50.8mm)的直径轴的间隙最好间隙保持图 2 在0.001”(0.025mm)。 压力供油的轴承的漏油率大约和其间隙成平方的关系。例如,0.002”(0.050mm)间隙漏由率是0.0015”(0.038mm)间隙时的2倍。如果油泵大小满足不了这个要求,油压将降低,轴承会损坏。这说明轴承配合精度的重要性。 塑料线塞尺可以用来检测液压缸、管道法兰等的高点。它非常有利于在产品制造,检修、维护和服务时使用。 塑料线塞尺应用于汽车上: 连杆轴颈与连杆轴承的配合间隙 检查连杆轴颈与连杆轴承的配合间隙。用长度大约等于连杆轴颈宽的塑料线塞尺(PLASTIGAUGE),如图2-82(a)所示,避开油孔轴向地放在连杆轴颈上;按规定方向和要求装上连杆轴承和连杆盖,并以28-32N·m(2.8-3.2kgf·m)的拧紧力矩拧紧连杆盖螺栓,如图2-82(b)所示。此时,注意不可转动曲轴或连杆,以免损伤轴承和轴颈。

水泵间隙测量与调整

1 / 7 1.水泵轴的弯曲: 高压水泵的结构精密,动、静部分之间间隙小,转子转速高、轴的负 荷重。因此对轴的要求比较严格。轴的弯曲度一般不允许超过0.02mm,超过 0.04mm时就应该进行直轴处理,轴的弯曲过大势必将增加水泵转子的晃度,晃度大势必要增加密封环及导叶衬套间隙,如果间隙过大,还会形成涡流,引起水泵振动。降低水泵效率。 2.叶轮与泵轴的装配间隙: 多级给水泵的叶轮与泵轴装配一般是间隙配合,其间隙在 0.00mm- 0.04 mm,这是由水泵轴及叶轮加工公差决定的,间隙过或过盈一 方面增加组装难度,另外影响转子部件热膨胀,增加水泵转子后天 性晃度的产生引起转子质量不平衡,间隙过大增加水泵转子晃度,造成水泵转子动平衡不稳定,叶轮内孔与轴的配合部位,由于长期使用和多次拆装,其配合间隙增大,此时可将配合的轴段或叶轮内孔用喷涂法修复。 3.泵轴键及键槽间隙的调整: 水泵叶轮与泵轴靠键传递转动。键和泵轴键槽应该是过盈配合,紧力在 0.00 mm-

0.03 mm,键和叶轮键槽应是间隙配合,其值也在 0.00 mm- 0.03 mm。 4.转子小装: 2 / 7 a)小装的目的.转子小装也称预装或试装,是决定组装质量的关键,其目的为: 测量并消除转子紧态晃动,以避免内部摩擦,减少振动和改善轴封工况;调整叶轮之间的轴向距离,以保证各级叶轮的出口对准;确定调节套的尺寸。 b)转子套装件轴向膨胀间隙的确定,因为转子套装件与泵轴材质不一样。另外,泵轴两端均在泵体以外,所以在热态下,泵轴与转子套装膨胀量大于泵轴,所以在转子的膨胀间隙的数值是根据转子的长短及水温确定的,一般在10个叶轮左右的转子其膨胀间隙在1mm左右,膨胀间隙过大,则不能很好紧固转子套装件,膨胀间隙过小,则可能造成转子热态下的弯曲。造成动静摩擦,损坏设备。 c)小装前的检查,检查转子上各部件尺寸,消除明显超差。轴上套装件晃度一般不应超过 0.02 mm,对轴上所有的套装件,如叶轮、平衡盘、轴套等,应在专用工具上进行端面对轴中心线垂直度的检查。假轴与套装件保持

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

各种间隙测量方法论述

间隙测量方法概述 1、探针法探针法是目前发动机叶尖间隙测量的常用方法,采用叶尖放电方式,即依靠电机使外加直流电压的探针沿径向移动,当探针移向叶尖至发生放电为止,探针的行程与初始安装间隙(静态时探针到机匣内表面的距离)之差即叶尖间隙。它主要由探针、执行机构及控制器组成。其间隙测量系统在探针上施加高压,在执行机构的驱动下,以连续的步进逐渐伸向被测物体,当探针距离被测物体只有微米量级时,发生电弧放电,控制器感受到放电后,在探针与叶尖物理接触之前,停止探针步进,将其缩回到安全位臵,同时显示叶尖间隙测量结果。它只适用于温度6000C以下、转速在6000r/min以上,而且探针容易受到异物及油渍的污染造成阻塞。由于它是接触式测量,一旦发动机紧急停车,探针缩回不到安全位臵,就容易发生故障探针法的特点:原理比较简单,只要叶片是导电材料,无论叶尖端面形状如何都可以用探针法测量叶尖间隙,且在高温高压环境下测量稳定、可靠,但是该方法只能测量转子的最小叶尖间隙,此外,外加电压的波动,壳体内气体的温度和压力变化,探针和叶尖端面的污损,都会改变放电的起始距离,因而产生测量误差。探针法不适于作为固定设备装载定型的发动机上,适用于试验研究,可以测量各稳态状态下最长叶片与机匣的间隙值,也可用作校准其他测量方法的基准。由于一些微型发动机的叶片不是导电材料,所以无法使用探针法进行测量。 2、电容法 电容法是利用绝缘电极(电容极板)与待测金属端而形成的电容进行测量的,间隙的变化导致测量电容的变化,再将电容变化量通过检测电路和调理电路转换成易于检测和分析的电压或电流信号。电容法广泛应用于位移、振动、角度、加速度等机械量的精密测量,具有结构简单、体积小、分辨率高、动态响应好等特点。电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量,广泛应用于位移、振动、角度、加速度等机械量的精密测量,步扩大到压力、差压、液而、成分含量等方而的测

光学测量与光学工艺知识点答案

目录 第一章基本光学测试技术 (2) 第二章光学准直与自准直 (5) 第三章光学测角技术 (9) 第四章:光学干涉测试技术 (12) 第六章:光学系统成像性能评测 (15)

第一章 基本光学测试技术 ? 对准、调焦的定义、目的; 对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。例:打靶、长度度量 人眼的对准与未对准: 对准的目的:1.瞄准目标(打靶); 2.精确定位、测量某些物理量(长度、角度度量)。 调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。 人眼调焦: 调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位 于同一空间深度; 2.使物体(目标)成像清晰; 3.确定物面或其共轭像面的位置——定焦。 12 1'2' 1'P 2' 2' '

?人眼调焦的方法及其误差构成; 常见的调焦方法有清晰度法和消视差法。 清晰度法是以目标与比较标志同样清晰为准。调焦误差是由于存在几何焦深和物理焦深所造成的。 消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。误差来源于人眼的对准误差。 (消视差法特点: 可将纵向调焦转变为横向对准; 可通过选择误差小的对准方式来提高调焦精确度; 不受焦深影响) ?对准误差、调焦误差的表示方法; 对准误差的表示法:人眼、望远系统用张角表示; 显微系统用物方垂轴偏离量表示; 调焦误差的表示法:人眼、望远系统用视度表示; 显微系统用目标与标志轴向间距表示; ?常用的对准方式; 常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。 ?光学系统在对准、调焦中的作用; 提高对准、调焦精度,减小对准、调焦误差。 ?提高对准精度、调焦精度的途径; 使用光学系统进行对准,调焦;光电自动对准、光电自动调焦; ?光具座的主要构造; 平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座 ?平行光管的用途、简图; 作用是提供无限远的目标或给出一束平行光。 简图如下:

第五节 轴瓦紧力丧失

第五节轴瓦紧力丧失 轴瓦紧力丧失,在运行的机组上时有发生。这种故障一般认为是由于检修工艺不当引起的,不会给机组的安全带来直接的危害。但有些机组的轴瓦紧力不但频繁地丧失,而且还会引轴瓦振动增大,产生很大的噪声。本节将具体讨论产生这种故障的原因及机理。 轴瓦紧力在机组检修、安装和消振中一直是人们关注的一个问题,为此,下面还将对轴瓦紧力的功能及与振动的关系,作简要的讨论。 5.5.1 轴瓦紧力功能及其与振动的关系 机组发生振动时目前不少地方往往首先怀疑和检查轴瓦紧力。这一现象一方面受传统做法的影响;另一方面直至目前还有不少资料指出,轴瓦紧力不足或称轴瓦松动是机组振动故障之一。 所谓轴瓦紧力是指瓦枕或瓦盖施加在轴瓦上的预紧力,一般以瓦枕或瓦盖变形量表示。 轴瓦座落在洼窝内所以需要紧力有其历史原因,因为早期转子平衡技术极为落后,机组振动普遍较大,许多机组作用在轴瓦上的激振力已超过该瓦的静载荷,为了保证运行状态下轴瓦在洼窝内具有良好的稳固性和不发生松动、撞击,在安装和栓修时不但要求轴瓦与洼窝之间接触良好,而且要求洼窝对上瓦施加一定的预紧力,使轴瓦与瓦枕或瓦盖形成整体。 随着转子平衡技术的发展,运行机组运行机组日趋良好,作用在轴瓦上的激振力已远远小于该瓦的静载荷,因而在运行状态下轴瓦在洼窝内已不能发生跳动和撞击。所以目前大机组的球面轴瓦在运行状态下,为了保证适应转子挠曲,使轴颈和轴瓦倾斜接触的需要,轴瓦在洼窝内应能自由调整,所以轴瓦在洼窝内不但要求紧力,而且应留有0.05-0.08mm的间隙。这个间隙值一方面是满足球面轴瓦自由活动的需要;另一方面已考虑到机组发生大振动时,激振力大于轴瓦静载荷,轴瓦在洼窝内不会发生大的冲击。 若从轴瓦、转轴振动分析轴瓦紧力,显然不论激振力是否超过该瓦的静载荷,当预紧力是由瓦盖直接施加在轴瓦上时,则有紧力者,轴瓦振动能直接传至瓦盖上,测量轴瓦盖振动时,其振幅值要比无紧力时要大;如果紧力由瓦枕施加在轴瓦上,而且瓦枕与瓦盖不直接接触,则测量轴瓦盖振动时,有紧力和无紧力的振幅值不会有明显差别。 如果测量的是转轴相对振动。而且传感器的支架安装在瓦盖上,当激振力大于或等于该瓦静载荷时,无紧力时相对振动要比有紧力时大得多,无紧力时转轴相对振动等于轴颈相对于轴瓦和轴瓦相对于洼窝两者振幅矢量叠加;当激振力小于该静载荷时,有紧力和无紧力转轴相对于振动无大于差别。上述现象已为几台机组实测结果所证明。 这里应指出,下瓦在洼窝内的稳固性(上下、左右)对转轴相对振动幅值影响较大,因此下瓦在洼窝内接触状况和支承垫块用的调整垫片的平整性和密实性,在检修和安装中应达到规范要求。 综合以上所述,轴瓦紧力在当时条件下是需要的,在今天转子平衡技术条件下,轴瓦有无紧力对轴承座振动和转轴相对振动都无明显的影响。 5.5.2 轴瓦紧力频繁丧失原因及机理

相关主题
文本预览
相关文档 最新文档