当前位置:文档之家› 高速动车组车体结构强度及动态特性研究

高速动车组车体结构强度及动态特性研究

高速动车组车体结构强度及动态特性研究
高速动车组车体结构强度及动态特性研究

西南交通大学

硕士学位论文

高速动车组车体结构强度及动态特性研究

姓名:滕万秀

申请学位级别:硕士

专业:交通运输工程

指导教师:曾京

20091201

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

新一代高速动车组车体结构创新设计 惠美玲

新一代高速动车组车体结构创新设计惠美玲 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。仿真和试验结果表明,新一代高速动车组车体结构在轻量化、强度、振动模态、空气动力学和动应力测试等方 面具有优异的性能,结构安全可靠。 关键词:高速动车组;车体结构;轻量化;振动模态;空气动力学 1车体结构优化设计 车体由司机室(仅头车)、底架、侧墙、车顶和端墙组成。司机室采用接近旋转抛物体特征的流线形造型,车体表面进行平顺化设计,具有空气动力学性能;底架 为边梁承载的无中梁形式铝合金焊接结构,车下设备采用横梁滑槽吊挂方式,便 于设备安装;侧墙和车顶为大型超薄中空铝合金型材的通长拼焊结构;端邮牵枕缓 使用高强度铝合金型材烨接结构,强化局部承载能力,根据车内设备布置的需求,端墙分为固定式和活动式两种。 1.1司机室结构 司机室结构由头部骨架、气密隔墙及焊件、窗骨架及电线支架和焊件组成。 头部骨架由纵骨架和横骨架相互插接组焊而成,外部焊接蒙皮。为提高成型精度,所有铝合金板梁均采用数控加工,外敷蒙皮采用分幅模压和涨拉成型工艺。车窗、车门三维骨架由铝合金挤压型材经模具加工后制成,保证门窗安装精度和承载强度。 为满足因速度提升带来的气密载荷值增加,司机室结构主要改动如下: (1)增加司机室蒙皮板厚; (2)改进气密隔墙,板梁结构改为双层中空型材。为更好的提升车体空气动力 学性能,对司机室轮廓进行了截面优化,为旋转抛物体特征的楔形结构,纵断面 双拱形、水平断面扁梭形。 1.2底架 底架结构主要由牵引梁、枕梁、缓冲梁、边梁、横梁和双层中空地板等结构 组成。边梁及地板由长大铝合金型材纵向焊缝整体拼接而成;中部与端部地板保留 高度差,为空调风道,内装、转向架及车下设备保留设计空间;车下安装设备采用 特殊螺栓吊挂方式,保证运用安全和安装方便。 为满足EN 12663中纵向压缩力( 1 500kN)的要求,底架部位的优化设计主要在于: (1)增加牵引梁刀把位置上下翼面的寬度和补板; (2)在高低地板处连接部位增加纵向梁,使该部位有更大的传力截面,降低该 部位因高低差导致的应力集中; (3)底架边梁结构由原来的口字形结构改为桁架结构,增加边梁的承载刚度。 1.3侧墙结构 侧墙结构主要分为头车侧墙和中间车侧墙。由于头车同机室车头造型的需要,头车侧墙长度要比中间车侧墙短些。头车和中间车侧墙上设有侧门开口和窗开口,不同的是侧门开口位置及窗开口的大小和位置有所不同。为了满足运背需要,侧 墙上还设有车号显示开口、目的地显示开口等。 为了满足高速列车士6kPa的气密载荷要求,侧墙结构主要改动如下: (1)侧墙门袋处门口两侧结构由单板凸筋加补结构改为中空型材; (2)侧墙和边梁连接部位的侧墙型材轮廓线改为圆滑过渡,增加该部位型材的

动车组铝合金车体结构整体刚度的影响因素分析

动车组铝合金车体结构整体刚度的影响因素分析 发表时间:2019-12-30T13:26:38.197Z 来源:《科学与技术》2019年 15期作者:孙爱军张宁宁孙洪沿[导读] 经济的发展,城镇化进程的加快,促进交通建设项目的增多。 摘要:经济的发展,城镇化进程的加快,促进交通建设项目的增多。动车组以其运行平稳、速度快等优点被越来越多的人所青睐。目前,国际上的高速列车大部分采用轻质铝合金作为车体的材料,我国200km/h和300km/h级的动车组车体结构也采用了铝合金这种轻质材料。铝合金车体的制造技术和传统的车体制造有很大不同。传统的通常是钢质车体结构蒙车皮,铝合金车体主要包括闭式铝合金型材焊接结构和梁板结构。闭式型材结构的铝合金车体制造主要用到弧焊焊接技术,多应用于高速列车。梁板结构铝合金车体应用于重庆的单轨车,主要用电阻焊和弧焊的方法制造。本文就动车组铝合金车体结构整体刚度的影响因素展开探讨。 关键词:动车组;铝合金车体;刚度协调;设计原则 引言 高速动车组车体整体结构刚度决定着车体整体自振频率、部件刚度决定着车体强度特性与局部振动频率、部件间刚度协调性控制着应力集中程度,进而决定着车体疲劳寿命。与传统的板梁组合车体结构不同,高速动车组铝合金车体枕梁与底架没有焊接关系,枕梁仅与底架边梁借助螺栓连接,故车体垂向载荷要经由底架边梁通过枕梁传递到转向架支撑位置;车体纵向拉、压载荷通过底架前端一面由连接型材向地板传递,一面由边梁向侧墙传递,导致位于车体传力路径上的部件应力集中现象突出。同时,车体铝合金型材的焊接热影响区强度远远低于母材强度,这些问题已成为高速动车组车体结构设计的难点。所以,高速动车组车体设计新方法的研究势在必行。 1 铝合金车体结构特殊性 为满足不同运营线路需求,铝合金车体主结构开口具有多样性。例如:为适应城市内多站点、短距离和客流量大的特点,铝合金地铁车侧门开口数量较多且尺寸较大;而城际动车组和高速动车组由于城间载客人数较少顾侧门开口少,虽两者侧门开口数量相同,但就其开口尺寸和位置而言,高速动车组车体侧门开口尺寸小且位于底架端部裙板上方,可大大提高刚度,城际动车组车体侧门开在远离端部车体底架上方,其刚度相对较薄弱;城际动车组和铝合金地铁车车顶开有两个空调安装座安装口,而地铁车车顶空调安装口较大,高速动车组车顶开有一个空调安装口,其尺寸最小。 2 车体侧门的位置 尽管车体侧墙缺口大小对车体抗弯刚度的灵敏性较低,但是,若车体侧门距离端墙很近,纵向传力路径上的刚度是严重不连续的。所以,承受纵向压缩载荷之后的车体端部变形会主要集中在端墙和侧门立柱区域,致使侧门门角、端门门角及侧门立柱设备安装孔等位置存在着严重的应力集中现象。尤其是承受窗腰带高度端部纵向载荷时,侧门缺口不仅会造成纵向载荷无法传递到侧墙,也对端墙与底架连接处形成较大的弯矩,致使端门门角处应力值偏大。当侧门无法远离端墙时,则需要有内端墙和纵向加强梁结构,以缓解压缩载荷对侧门的纵向挤压。 3 动车组铝合金车体制造流程 在进行铝合金车体制造时,首先要根据图纸由下料工段准备材料,之后再将材料运送给相应工段进行部件的生产组焊,然后将车顶、底架、侧墙、端墙等组焊好的部件送到总成工段焊接,焊接总成后再进行车体的调修、检查和交验。整个过程中,车顶、底架以及侧墙的制造和车体总成是比较重要的工序。动车组铝合金车体制造过程中主要需要自动焊接设备、铝合金加工设备,从制造到交付要经过装配———焊接———打砂———涂装———组装———调试等程序。 4 车体支撑位置对刚度的影响 某动车组与试验车车体的最大垂向载荷、车体长度、断面型材和车辆定距,两车接近,并且两车主结构开口数量及尺寸相同,但其相当弯曲刚度为1.61×1015N·mm2,不满足相当弯曲刚度指标。对于车体而言,可以将其简化为两端外伸梁,如图1所示,其中L1代表两端底架外伸长度,L2为车辆定距,W为车体上的单位长度载荷,B和D点相当于车体支撑点。理论上,由式(1)可知,支撑点之间的距离L2决定着中央位置的垂向挠度.在受到相同均布载荷作用下等截面的两种车体,车体长度和车辆定距相同的情况下,底架边梁中央位置的垂向挠度应相同,但实际上动车组铝合金车体侧墙均有缺口(侧门、侧窗和新风口等),属于变截面问题。由于车体开口位置不同,故车体每一段截面的横截面积不同,导致横截面惯性矩不同,每一段刚度也不同。

某装备结构动态特性分析

技术篇 2007年 第十期 某装备结构动态特性分析 霍 红 (中北大学,太原 030051) 摘 要:利用试验模态分析法获得了某机枪结构的模态参数,分析了机枪的动态特性,并通过基于模态试验的灵敏度分析方法,获得了影响该机枪动态特性的敏感部位,为改善机枪动态特性提供了依据. 关键词:机枪;灵敏度分析;动态特性;分析 中图分类号:TP302.7 文献标识码:A 文章编号:1005 8354(2007)10 0001 02 Analysis on structural dyna m ic characteristics for certai n equi p m e nt HUO H ong (N orth U n i ve rs i ty o f Ch i na ,T a i yuan 030051,Chi na) Abstract :A ccor ding to modal analysism etho d,modal parametersw ere derived and structural dynam ic charac teristics were analyzed.U sing sensitivit y analysis of model test ,t he dyna m ic characteristics and sensitive p oints of a m achine gun were obt ained.These woul d be used to i m prove dyna m ic propert y of t hemachine gun. K ey words :machine gun;sensitivity analysis ;struct ural dyna m ic characteristics ;analysis 收稿日期:2007 08 22 作者简介:霍红(1968 ),女,实验师,研究方向:火炮、自动武器与弹药工程. 0 引 言 当今为提高自动武器的机动性,广泛采用弹性枪架,但随着重量的减轻,武器系统的振动加剧.而武器系统的振动又直接影响到射击精度,特别是弹丸出膛 口时的横向位移、横向速度以及弹丸初始扰动等对武器射击精度影响尤其明显 [1] .为此,需掌握武器系统 的固有特性,为分析和优化机枪的动力学特性提供依据,以提高其射击精度.而系统固有特性一般可由理论分析方法和试验方法获得,前者是利用有限元分析法,后者是利用试验模态分析法,随着试验技术的发展和测量仪器精度的提高,利用试验模态分析法得到的结果越来越受到重视,并且常常作为验证有限元模型正确性的主要依据,所以,常采用理论分析和试验两种方法相结合建立模型 [1,2] ,以获得接近实际的结 果,为进一步分析如结构修改设计及结构动力特性优化设计提供良好的基础.本文以某机枪为例,采用试验模态分析法识别机枪系统的模态参数和分析其动 态特性,并在此基础上进行了灵敏度分析,获得机枪动力学特性对各参数变化的灵敏度,为机枪的动力学特性优化设计提供依据. 1 机枪结构试验模态分析 1.1 模态测试系统 模态测试系统基本由以下几部分组成:激励部分、信号测量和数据采集部分、信号分析和频响函数 估计部分 [3] .其测试系统框图见图1所示. 图1 机枪模态试验系统框图 1

动车组车辆构造与设计课后习题答案(商跃进)

第一章动车组基础知识 1.简述高速铁路特点及其列车划分方式。 a)特点:(1)速度快,旅行时间短。 (2)客运量大。 (3)准时性好,全天候。 (4)安全舒适可靠。 (5)能耗低。 (6)污染轻。 (7)效益高。 (8)占地少。 b)划分方式:普通列车:最高运行速度100一160 km/h; 快速列车:最高运行速度160—200 km/h; 高速列车:最高运行速度≥200km/h。 2.简述动车组的定义、类型及关键技术。 (一)定义:动车组:亦称多动力单元列车,是由动车和拖车或全部动车长期固定联挂在一起运行的铁路列车。 (二)类型:1.按牵引动力的分布方式分:①动力分散动车组②动力集中动车组 2.按动力装置分:①内燃动车组(DMU) ②电力动车组(EMU) : 3.按服务对象分:①长途高速动车组②城轨交通动车组 (三)关键技术:动车组总成、车体、转向架、牵引变压器、牵引变流器、牵引电机、牵引控制系统、列车网络 控制系统、制动系统。 3.简述动车组车辆的组成及其作用。 ①车体:容纳运输对象之所,安装设备之基。 ②走行部(转向架):车体与轨道之间驱动走行装置。 ③牵引缓冲连接装置:车体之间的连接装置。 ④制动装置:车辆的减速停车装置。 ⑤车辆内部设备:服务于乘客的车内固定附属装置。 ⑥车辆电气系统:车辆电气系统包括车辆上的各种电气设备及其控制电路。按其作用和功能可分为主电 路系统、辅助电路系统和控制电路系统3个部分。 4.解释动车组车辆主要技术指标及其标记的含义。 ①.自重:车辆本身的全部质量。 ②.载重/容积:车辆允许的最大装载质量和容积。 ③.定员:以座位或铺位计算。(定员=座席数+地板面积*每平方米地板面积站立人数。) ④.轴重:车轴允许负担的最大质量(包括车轴自重)。 ⑤.每延米轨道载重:车辆总质量/车辆全长(站线有效利用指标)。 ⑥.通过最小曲线半径:调车工况能安全通过的最小曲线半径。 ⑦.构造速度:安全及结构强度允许的最大速度。 ⑧.旅行速度:路程/时间,即平均速度。最高试验速度,最高运行速度。 ⑨.持续速度:在全功率下能长时间连续运行的最低速度称为持续速度。 ⑩.轮周牵引力:动轮从牵引电动机获得扭矩,通过轮轨相互作用在轮周上产生的切向反力。 ?.粘着牵引力:机把受粘着条件限制而得到的牵引力,称为粘着牵引力 ?.持续牵引力:在全功率下,对应于持续电流的引力称为持续牵引力。 ?.车钩牵引力:克服动车本身的运行阻力以后,传到车钩处用于牵引列车运行的那部分牵引力。 ?.标称功率:各牵引电动机输出轴处可获得的最大输出功率之和。 ?.车辆全长、最大高度、最大宽度:车辆两端车钩钩舌内侧距离(19.8m/29.7m);车顶最高点至轨

机械动力学与动态特性分析

课程名称:机械动力学与动态特性分析 任课老师:蒙艳玫 学院:机械工程学院 专业:机械制造及其自动化 姓名:韦荣发 学号: 1211301011

1、用机械网络分析一下系统的简化模型: 碎石机(用双重动力减震器) 画出上述系统的机械网络图,设计和分析减振效果 解:(1)由上图可得其机械网络图,如图1-1所示。 图1-1 (2)设计与分析 由图1-1机械网络图可知,整个系统会因偏心质量而发生振动,已知偏心质量m ,偏心距为e ,因此,激振力为: 由以上条件,根据基尔霍夫 节点定律列出位移响应方程: pcos wt (1)

导纳阵为: 所以,若要消除m2、K2系统的振动,即在m2点激振时,其位移响应等于零, 则其自导纳H22=0,所以,。所以: 即,,此频率就是反共振频率,当激振力的频率等于该频率时,m2 和m3的位移等于零.因此在设计减振器时,只要合理的选择减振器的质量、刚度,使它在单独振动时的固有频率等于激振力的频率,就能够消碎石机的振动。 2、结合实际研究课题,以一实际结构或机器为对象, (1)作FRFS测试分析,试述: 1)目的 结合甘蔗实地种植情况和蔗地地形, 利用ADAMS View建立一个轮式小型甘蔗收割机的样机模型, 对其行走转向性能进行仿真分析, 并在平路面基础上建立了田间常见障碍物模型,进一步对收割机越障性能进行仿真研究; 通过虚拟仿真和物理试验相结合的方法,分析比较了不同轴承及间距对刀轴刚性及甘蔗断面切割质盆的影响,并在此基础上提出了一种高刚性的轴承布局方法,为设计低破头率的小型甘蔗联合收获机切割器提供了依据. 2)方法、原理 ①选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台 ②将切割器的结构在Pro/E软件中建立三维实体模型,然后将模型导入到ANSYS软件中,将轴承利用弹性单元进行模拟 3)实验装置,过程 选用多体动力学仿真软件ADAMS View作为仿真分析的软件平台, 对轮胎、悬架转向盘和地面进行。简化建模。模型中所用到的是全局坐标系: 坐标原点在两前轮中心连线中点, 收割机前进方向为X轴负向, 垂直水平面向上为Y轴正向, Z轴正向由右手定则确定, 其质量和转动惯量与实际底盘相同。根据甘蔗种植情

新一代高速动车组车体结构创新设计

新一代高速动车组车体结构创新设计 发表时间:2019-01-03T17:10:43.290Z 来源:《基层建设》2018年第34期作者:惠美玲王鹏石守东 [导读] 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。 中车唐山机车车辆有限公司河北唐山 063035 摘要:为满足固速度提升带来的车体评价标准改变,新一代高速动车组车体在CRHs型动车组成熟结构基础上进行结构优化设计。仿真和试验结果表明,新一代高速动车组车体结构在轻量化、强度、振动模态、空气动力学和动应力测试等方面具有优异的性能,结构安全可靠。 关键词:高速动车组;车体结构;轻量化;振动模态;空气动力学 1车体结构优化设计 车体由司机室(仅头车)、底架、侧墙、车顶和端墙组成。司机室采用接近旋转抛物体特征的流线形造型,车体表面进行平顺化设计,具有空气动力学性能;底架为边梁承载的无中梁形式铝合金焊接结构,车下设备采用横梁滑槽吊挂方式,便于设备安装;侧墙和车顶为大型超薄中空铝合金型材的通长拼焊结构;端邮牵枕缓使用高强度铝合金型材烨接结构,强化局部承载能力,根据车内设备布置的需求,端墙分为固定式和活动式两种。 1.1司机室结构 司机室结构由头部骨架、气密隔墙及焊件、窗骨架及电线支架和焊件组成。头部骨架由纵骨架和横骨架相互插接组焊而成,外部焊接蒙皮。为提高成型精度,所有铝合金板梁均采用数控加工,外敷蒙皮采用分幅模压和涨拉成型工艺。车窗、车门三维骨架由铝合金挤压型材经模具加工后制成,保证门窗安装精度和承载强度。 为满足因速度提升带来的气密载荷值增加,司机室结构主要改动如下: (1)增加司机室蒙皮板厚; (2)改进气密隔墙,板梁结构改为双层中空型材。为更好的提升车体空气动力学性能,对司机室轮廓进行了截面优化,为旋转抛物体特征的楔形结构,纵断面双拱形、水平断面扁梭形。 1.2底架 底架结构主要由牵引梁、枕梁、缓冲梁、边梁、横梁和双层中空地板等结构组成。边梁及地板由长大铝合金型材纵向焊缝整体拼接而成;中部与端部地板保留高度差,为空调风道,内装、转向架及车下设备保留设计空间;车下安装设备采用特殊螺栓吊挂方式,保证运用安全和安装方便。 为满足EN 12663中纵向压缩力( 1 500kN)的要求,底架部位的优化设计主要在于: (1)增加牵引梁刀把位置上下翼面的寬度和补板; (2)在高低地板处连接部位增加纵向梁,使该部位有更大的传力截面,降低该部位因高低差导致的应力集中; (3)底架边梁结构由原来的口字形结构改为桁架结构,增加边梁的承载刚度。 1.3侧墙结构 侧墙结构主要分为头车侧墙和中间车侧墙。由于头车同机室车头造型的需要,头车侧墙长度要比中间车侧墙短些。头车和中间车侧墙上设有侧门开口和窗开口,不同的是侧门开口位置及窗开口的大小和位置有所不同。为了满足运背需要,侧墙上还设有车号显示开口、目的地显示开口等。 为了满足高速列车士6kPa的气密载荷要求,侧墙结构主要改动如下: (1)侧墙门袋处门口两侧结构由单板凸筋加补结构改为中空型材; (2)侧墙和边梁连接部位的侧墙型材轮廓线改为圆滑过渡,增加该部位型材的刚度,同时提高车体菱形模态频率。 为了提高车体模态和局部模态,底架地板由原来的单板凸筋结构改为双层中空型材;提高局部模态频率,型材内壁敷热熔性减振材料,衰减车体振动和嵘声,提升采客乘坐舒适度。 1.4 车顶结构 车顶结构主要由7块大型通长中空挤压型材焊接而成。通长挤乐型材上适当位置设通长的T形槽或焊接铆接连接骨架,用于顶板等内装部件的安装。侧顶处的两块型材为变截面设计。在车项工作的人员每隔750 mm施加100 kg集中载荷时,车顶结构具有足够强度,以支撑该载荷而不会产生永久性变形。 为满足气密载荷值的提升,车顶结构主要改动如下: (1)车填结构型材中部改为变截面,增加了车顶刚度,控制车顶垂向变形; (2)侧顶圆甄处改为变截面设计,增加该部位刚度,显著提升侧墙和车项刚度,控制其在气害载荷作用下的变形量。 1.5 端墙结构 端墙结构分为带活门的端墙结构和固定端壙结构,主要由门框、端角柱、嘴顶弯梁和端壩板(中空型材)等组成。端角柱和门框为型材焊接结构,端顶弯梁为拼焊结构。中空铝型材之间相互插接,端角柱和门口立柱采用搭接结构,侧顶圆弧处端角柱采用拼焊结构。 端墙上设蹬车扶梯。端墙设搬运卫生问模块的开口和可拆卸的结构盖板;开口处采用板梁和中空型材连接结构,结构盖板和固定端墙间采用螺栓连接并作气衡处理。 为满足气密载荷值提升及强度标准规定的端部载荷要求,端墙结构优化改进如下: (1)端部结构由板梁结构改为中空梨材; (2)优化改进端角柱结构。 2车体结构性能评估 车体强度方面,车体设计除了首先要满足静强度设计准则外,还委满足疲劳强度标准。车体刚度是在载荷作用下抵抗弹性变形的能力,相同载荷下刚度越大变形量越小,产生共振时所需变形能越大。考虑转向架振动特性,整备状态F的车体振动模态须大于10Hz,保证车体和转向架的重向主顿共振峰错开。车体空气动力学方面,车体轮廓线及同机室有很好的气动外形,降低气动阻力。

CRH2型高速动车组车辆车体结构总体设计

XX工程学院 车辆工程系 本科毕业设计(论文) 题目:C R H2型高速动车组车辆车体结构总体设计 专业:机械设计制造及其自动化 (城市轨道车辆) 班级:城轨081学号:215080301 学生姓名: 指导教师:副教授 起迄日期:2012.3~2012.6 设计地点:车辆工程实验中心

摘要 随着科技和生活水平的提高,城市之间的距离越来越小,高速动车作为一种新的交通工具,正逐步代替原有的交通。本文对CRH2型200km/h的高速动车组车体结构进行了总体设计。根据国内外高速动车的发展概况和最新研究成果,以及为实现列车车体气密性和轻量化为目的,完成了CRH2型动车组的车体结构总体设计。基本编组方案采用2动2拖,整车由8辆车组成,主要对头车车体进行了详细研究。首先,是对车体的材料选择,经过对耐候钢,不锈钢和铝合金的比较可以看得出,采用铝合金是最合适的。它可以降低车重,提高车辆加速度,降低运能消耗、牵引及制动能耗,减轻了对线路的磨耗及冲击,扩大了运输能力。其次是对车体的结构进行选择,主要以双壳结构为主,并引入了模块化的概念,把铝合金车体分成若干模块,包块底架模块,侧墙模块,车顶模块,端部模块和车体附件等五大部分,每一种模块单独加工,互不影响。最后把所有模块整合在一起,组成铝合金车体。 关键词:车辆工程;高速动车组;车体;铝合金

ABSTRACT With the technology and the improvement of living standards, the distance between the cities getting shorter and shorter. High-speed EMU as a new means of transport is replacing the existing traffic gradually. This paper introduces the design of overall body structure for 200 km/h of CRH2 EMU. According to the development overview and the latest research results of domestic and foreign high-speed EMUs, as well as to achieve the air tightness and weight of train for purpose, completing the design of overall body structure for the 200km /h EMU. 2M2T is selected as the basic formation program and it’s made up of eight vehicles, mainly taking some study on the rival car body. First of all, the choice of body material, compared with weathering steel, stainless steel and aluminum alloy, aluminum alloy is the most suitable. It can reduce the vehicle weight and improve vehicle acceleration. It also can reduce consumption of transport capacity, traction and braking, and even can reduce wear on the line and the impact, expand the transport capacity. Secondly, choose the structure of the body, mainly double-shell structure. It introduces the modular concept, the aluminum alloy body is to be divided into several modules, including block chassis modules, side-wall modules, roof modules, the end modules and annex to the bottom of vehicle, each module processes separately. Finally, form the aluminum alloy body with all modules together. Keywords: Vehicle Engineering; High-speed EMU; Body structure; Aluminum alloy

供应链动态特性分析对策(doc 13页)

供应链动态特性分析对策(doc 13页)

信息技术与供应链动态特性* 摘要随着市场竞争的加剧,供应链管理倍受关 注,但供应链动态特性却严重影响了供应链管理的 运作效率。为此,本文系统分析了供应链动态特性 产生的原因及缓解对策,并论述了信息技术在改善 供应链动态特性方面所起的重要作用。 关键词供应链牛鞭效应动态特性信息技 术 1引言 随着全球经济一体化和信息技术的高速发展,顾客个性化需求的不断增加,企业之间的竞争日益加剧,加上政治、经济、社会环境等方面的巨大变化,使得整个市场需求的不确定性大大增加。面对一个变化迅速且无法预测的买方市场, *西南交通大学经济管理学院青年教师科研基金资助项目

价格波动和理性对策,并提出了相应的对策,文献[2]则对需求预测因素进行了定量分析,等等;国内学者对该问题的研究还不多,仅有的也只是重申了文献[1]中所述的四种因素。此外,现有文献主要研究了供应链动态特性中的波动放大效应,却较少涉及对时间延迟问题的分析。为此,本文将深入系统地分析供应链动态特性产生的原因及缓解对策,并着重论述信息技术对供应链动态特性的改善。 2供应链动态特性分析 为研究供应链的动态特性,先引入一个简单的供应链模型,如图1所示。图中所示的供应链系统由顾客、零售商、批发商、制造商和供应商组成。基本的运作程序是:顾客向零售商订货;零售商收到订单后,根据库存情况再向批发商订货;批发商向制造商订货;制造商收到订单后,制订生产计划,组织产品生产。制造商将产品运送到批发商仓库;批发商收到货物后,发货给零售商;零售商最终将货物送到顾客手中。在此供应链系统中,信息传递是通过递送订单完成

结构动力特性检验方法及基本知识

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y 为速度响应的n 维随机过程列阵;{})(t y 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试

CRH1车体流线型结构

CRH1车体流线型结构 随着列车运行速度的提高,周围空气的动力作用对列车和列车运行性能也产生影响:列车高速运行引起的气动现象对周围环境也产生影响,这就是高速列车的空气动力学问题。 高速列车在行驶中所受力: 1.运行中列车承受表面压力 2.会车时列车承受表面压力 3.通过隧道时列车承受表面压力 4.列车风 5.运动列车受力 为了减少这些里的作用,高速列车车体有如下设计: 一般来说,动车和拖车的车体长、宽、高需要根据内部布置要求由设计任务书规定,所以车体设计主要是横断面设计。 其设计有以下特点: 整个车身断面呈鼓形,即车顶为圆形,侧墙下部向内部倾斜(5*左右)并以圆弧过渡到底架,侧墙上部向内倾斜(3*左右)并以圆弧过渡到车顶,这不仅能减少空气阻力,而且有利于缓解列车交汇压力波及横向阻力、侧滚力矩的作用。车辆底部形状对空气阻力影响很大,为了避免地板下部设备的外露,采用与车身横断面形状相吻合的裙板遮住车下设备,以减少空气阻力,也可以防止运行时砂石击打车下设备。另外,车体表面光滑平整,减少突出物。如侧门采用塞拉门,扶手为内置式,脚蹬做成翻板式,使

侧门关闭时可以包住它,两车辆连接处采用橡胶大风挡,与车身保持平齐,避免形成涡流。 CRH1的部分问题: 座位无法旋转:最早出厂的21组CRH1A(编号001~021)列车,一等座及二等座(定员101人)均没有回转座椅设备,导致座椅方向不能调较,所以整列列车大约有一半乘客会坐反向座位(倒后位),容易引致乘客不适。而其后的19组的CRH1A(编号022~040)作出了改进,透过减少定员(定员92人),使大部分座椅(二等座车/餐车除外)可以回转,但是回转座椅设备的可靠性比CRH2、CRH3和CRH5等动车组差,而且仍然有部份座椅仍是不能调较。

HAGC系统动态特性研究分析

HAGC系统动态特性研究分析 摘要 三十多年前,高压液压伺服系统开始流行,模拟的基本分析工作,伺服系统也开始需要开发和研究,然而这些研究只集中在相对较轻的任务系统组成的一个伺服阀,用一个小的甚至零弹簧力,双作用液压缸。通常,这些系统低自然频率(5到20赫兹)、低阻尼比和低液压。 直到六七十年代伺服系统引入了重型计量的钢铁工业中。第一次使用是为了所谓的,不断的差距预应力磨机。最重要的发展是自申请已被引入了的闭环电液伺服控制系统。 然后,过去10年的快速发展,电子与建模技术的应用液压自动计量(HAGC)成为了一个需求为高质量的平轧制产品刺激的研究成果,进一步提高系统的效率和准确度。这些研究中大多数集中在系统设计上。 由于复杂的控制系统的复杂,简化了一个连轧机液压系统包括在内的整体控制模型,包括流量执法机构不能准确模拟实际的行为(例如,伺服阀、液压元件和气缸)。虽然该算法的基本原理的可以证明系统复杂性的,尤其在大模型的情况下,但它是无法评价性能的液压系统的设计。 提高AGC系统的未来取决于液压体系的计量器具,甚至与一个优秀的控制算法,不能完善没有响应速度快、稳定、液压系统。目前,在计量体系在文献中报道的液压系统的数学模型是不足的,特别是与复杂模型相比。 在最近的发展体系中,利用HAGC原理的长程液压缸是相互促进,共同发展的。然而,它可以被质疑的长冲程气缸反应一样好,而且在短冲程单元中所扮演的角色是单作用气缸两倍。这篇文章的目的是探讨液压系统的非线性效应,并比较各缸的设计性能,各使用一个位置和压力模式。

理论 保罗利用常微分方程的稳定性的影响,为一个单作用气缸研究出一套数学模型,来检验在不同压力线的长度。在其他文章里,拉普拉斯变换块被应用于定量比较各液压系统的设计。 在这篇文章中,常微分方程先来解释每个液压部件的物理意义,紧随其后的是生成一个状态矩阵方程。 一个HAGC系统示意图显示为双作用气缸三线一回的安排,如图1中所示。 形成一套完整的液压系统的六个动态元件为: 伺服阀 输电线路 液压缸 磨机(动力学、固有频率、模量和阻尼效应) 回流管线 传感器 控制功能,就好像机体的补偿,曾被认为是文学,并不包括在这篇文章里。 图1 液压控制系统

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

高速动车组车辆车体结构总体设计

摘要 随着科技和生活水平的提高,城市之间的距离越来越小,高速动车作为一种新的交通工具,正逐步代替原有的交通。本文对CRH2型200km/h的高速动车组车体结构进行了总体设计。根据国内外高速动车的发展概况和最新研究成果,以及为实现列车车体气密性和轻量化为目的,完成了CRH2型动车组的车体结构总体设计。基本编组方案采用2动2拖,整车由8辆车组成,主要对头车车体进行了详细研究。首先,是对车体的材料选择,经过对耐候钢,不锈钢和铝合金的比较可以看得出,采用铝合金是最合适的。它可以降低车重,提高车辆加速度,降低运能消耗、牵引及制动能耗,减轻了对线路的磨耗及冲击,扩大了运输能力。其次是对车体的结构进行选择,主要以双壳结构为主,并引入了模块化的概念,把铝合金车体分成若干模块,包块底架模块,侧墙模块,车顶模块,端部模块和车体附件等五大部分,每一种模块单独加工,互不影响。最后把所有模块整合在一起,组成铝合金车体。 关键词:车辆工程;高速动车组;车体;铝合金

ABSTRACT With the technology and the improvement of living standards, the distance between the cities getting shorter and shorter. High-speed EMU as a new means of transport is replacing the existing traffic gradually. This paper introduces the design of overall body structure for 200 km/h of CRH2 EMU. According to the development overview and the latest research results of domestic and foreign high-speed EMUs, as well as to achieve the air tightness and weight of train for purpose, completing the design of overall body structure for the 200km /h EMU. 2M2T is selected as the basic formation program and it’s made up of eight vehicles, mainly taking some study on the rival car body. First of all, the choice of body material, compared with weathering steel, stainless steel and aluminum alloy, aluminum alloy is the most suitable. It can reduce the vehicle weight and improve vehicle acceleration. It also can reduce consumption of transport capacity, traction and braking, and even can reduce wear on the line and the impact, expand the transport capacity. Secondly, choose the structure of the body, mainly double-shell structure. It introduces the modular concept, the aluminum alloy body is to be divided into several modules, including block chassis modules, side-wall modules, roof modules, the end modules and annex to the bottom of vehicle, each module processes separately. Finally, form the aluminum alloy body with all modules together. Keywords: Vehicle Engineering; High-speed EMU; Body structure; Aluminum alloy

相关主题
文本预览
相关文档 最新文档