当前位置:文档之家› 习题25 双缝干涉

习题25 双缝干涉

习题25 双缝干涉
习题25 双缝干涉

一、选择题

1. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距为d ,双缝到屏

的距离为D (D >>d ),所用单色光在真空中波长为λ,则屏上干涉条纹两相邻明纹之间的距离为:( )

(A )nd D

λ (B )d D n λ (C )nD d λ (D )nd

D 2λ (明纹条件 sin tan x d d d

k D θθλ≈== ,k D D x k x d d λλ?=??=,n n

λλ=) 2.双缝间距为2 mm ,双缝与幕相距300 cm 。用波长为6000?的光照射时,

幕上干涉条纹的相邻两条纹距离(单位为mm )是( )

(A )4.5 (B )0.9 (C )3.12 (D )4.15 (E )5.18

3.在双缝干涉实验中,初级单色光源S 到两缝

1s 2s 距离相等,则观察屏上中央明条纹位于图中O 处。现将光源S 向下移动到示意图中的S ′位置,则( )

O S

(A )中央明条纹也向下移动,且条纹间距不变。

(B )中央明条纹向上移动,且条纹间距不变。

(C )中央明条纹向下移动,且条纹间距增大。

(D )中央明条纹向上移动,且条纹间距增大。

(S 的位置仅仅影响中央明纹的位置)

二、填空题

1.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间

距 ,若使单色光波长减少,则干涉条纹间距 。(D x d

λ?=,都减小) 2.如图所示,在双缝干涉实验中SS

1=SS 2, 用波长为

λ的光照射双缝1S 和2S ,通过空气后在屏幕E 上

形成干涉条纹。已知P 点处为第三级明条纹,则1

S 和2S 到P 点的光程差为 。若将

整个装置放于某种透明液体中,P 点为第四级明条

纹,则该液体的折射率n = 。

(光程差sin 3d k δθλλ===,k ’/k=4/3, 则n =λ/λ’=4/3)

3.在杨氏干涉装置中,双缝至幕的垂直距离为2.00 m ,测得第10级干涉亮纹到零级亮纹间的距离为3.44 cm ,双缝间距为0.342 mm ,那么入射单色光的波长为 ?。 (sin 10x d d D δθλ=≈=,588210xd D

λ==?)

光波的一般知识 光波的叠加 分波阵面干涉

1. 解:(1)折射定律:

sin sin i r r i n n θθ= 111sin sin 0.40651.232

i r n n θθ==?=,由此得 θ1=24°

(2)8

14931051060010

c v λ-?===??Hz 88310 2.44101.23c u n ?===?m/s 6004881.23n n λλ===nm

(3) 1

1.095cos d AB θ=

=cm 则几何路程为:s1 = SA+AB+BC=11.095cm

光程为:s2= SA+AB ×1.23+BC=11.35cm

2. 解:d =0.3×10-3m ,D =1.2m 。x=22.78/2=11.39mm ,k=4 由21(2 1) 2k D x k d

λ+=+得 33

721220.31011.3910 = 6.3310(2 1) 1.29

k dx D k λ---+????==?+?m=633nm 对照色谱图,为橙色光。

3.解:nm 550=λ,4210d m -=?,D=2m ,k=10,

(1)9

210410255010 5.510210

D x k d λ---???===??m=5.5cm Δx ±10=2×x ±10=11cm (2)n=1.58,m e 6

106.6-?=

不管是否存在介质,0级明纹处,两束光的光程差都等于0. 无介质时,第k 级明条纹位置满足:r 2-r 1=k λ。

有介质时零级明条纹处两束光的光程差为:x 2-x 1 = r 2-e+ne-r 1 = 0,即

r2-r1 = - (n – 1)e = k λ

671 1.581 6.61075.510

n k e λ----=-=-??=-? 即零级明纹将移至原来的第-7级明纹处。

4.解:(1)∵ D x k d

λ=,∴ D d k x λ==2mm (2)由1122k k λλ=得 122143

k k λλ== 所以 所以λ1的第4 级与λ2的第3 级明纹第一次重合。重合位置:

11 1.8D x k d

λ==mm , (3)由亮纹位置可知:6

310xd Dk k

λ-?== 试探 k=5,6,7得λ=6000,5000,4286?。

杨氏双缝干涉实验的改进

广东技术师范学院学报(自然科学) 2012年第2期Journal of Guangdong Polytechnic Normal University No .2,2012 杨氏双缝干涉实验的改进 彭小兰王红成刘敏霞 (东莞理工学院,广东东莞523808) 摘 要:传统的杨氏双缝干涉测量光波波长实验是采用钠灯作为光源.光通过单缝衍射后照射到双缝上,并通 过测微目镜测量条纹宽度,双缝间距则直接采用读数显微镜进行测量.但这种方法观察干涉现象需在较暗环境中进行,且测量结果和理论值差别较大.因此改用激光光源,直接在光屏上观察读数,并且改进测量双缝宽度的方法,测量误差就会大大降低. 关键词:杨氏双缝干涉实验;实验改进;波长测量中图分类号:G 642.0 文献标识码:A 文章编号:1672-402X (2012)02-0006-04 收稿日期:2012-04-30 基金项目:东莞理工学院教育教学改革与研究资助项目(201203,201005). 作者简介:彭小兰(1970-),女,湖南衡阳人,东莞理工学院电子工程学院实验师.研究方向:光学及大学物理实验. 0引言 光是自然界的一种基本现象,对于光的本性的认识经历了一个漫长而曲折的过程.中17世纪存在着以牛顿为代表的微粒说和以惠更斯为代表的波动理论的争论.微粒说主张“光是微粒流”,利用该理论可以解释光的直线传播、反射和折射定律.而惠更斯的波动说认为光是“以太”中传播的波,但由于当时没有实验的验证使得整个18世纪人们对光的本性的认识停滞不前.1801年托马斯·杨演示了著名的双孔干涉实验.此实验通过巧妙的设计把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象,使光的干涉现象成功地被实验演示出来,并用波动理论做了很好的解释,初步测定了光波波长,有力地验证和支持了惠更斯等人的光的波动理论.杨氏双孔干涉实验是光学发展史上具有里程碑意义的实验之一,为波动光学奠定了基础[1].目前,各高校都利用双缝代替双孔进行实验,即杨氏双缝干涉实验,并作为光学实验课程的必开实验,让学生了解光的干涉现象,掌握光的波动特性.一般地,该实验都是使用钠灯作为光源,用测微目镜观察实验现象.然而根据多年的实验教学实践,我们发现利用该实验方法进行测量光波波长虽然原理比较简单,但需要在比较黑暗的实验环境中完成[2],且实验中用测微目镜读取数据时很容易引起 视觉疲劳,再加上学生还没有掌握很好的光学实验技术,要想获得比较理想的实验效果存在一定的难度.基于这一点,本文将钠灯改为激光光源,并对该实验进行相应改进,取得了较好的效果. 1杨氏双缝干涉实验原理 空间两列波在相遇处要发生干涉现象,这两列波必须满足以下三个相干条件:振动方向相同;频率相同;相位差恒定.杨氏双缝干涉属于分波阵面干涉,实验原理如图1所示.用单色光照射到开有小孔S 的不透明的光阑上,透过小孔的光作为点光源,在点光源后面放置另一块光阑,开有两个很靠近的小孔S 1和S 2,它们构成一对相干光[3-4].在观察屏P 上显示出两束光的交叠区出现一系列明暗相间的直条纹,即干涉条纹.通常,为了提高干涉条纹的亮度,S 、 S 1和S 2常用3条互相平行的狭缝来代替,而且不用 图1 杨氏双缝干涉实验原理

双缝干涉条纹间距公式地推导——两种方法

双缝干涉条纹间距公式的推导

双缝干涉条纹间距公式的推导 如图建立直角坐标系,其x 轴上横坐标为2d -的点与2 d 的点为两波源。这两个波源的振动情况完全相同,则这两个波源发生干涉时的加强区为到两个波源的距离差为波长整数倍λn (零除外)的双曲线簇。其中??? ??- 0,2d 、??? ??0,2d 为所有双曲线的公共焦点。这个双曲线簇的方程为: 122222222 =??? ??-??? ??-??? ??λλn d y n x 用直线l y =去截这簇双曲线,直线与双曲线的交点为加强的点。将l y =代入双曲线簇的方程,有:

122222222 =??? ??-??? ??-??? ??λλn d l n x 解得: 2222 4λ λn d l n x -+= 上式中,d 的数量级为m 410-,λ为m 710-。故2 222d n d =-λ,x 的表达式简化为: 22 4d l n x +=λ 其中l 的数量级为m 010,d 的数量级为m 4 10-。故422 10≈d l ,x 的表达式简化为: d l n d l n x λλ==22 可见,交点横坐标成一等差数列,公差为 d l λ,这说明: (1)条纹是等间距的; (2)相邻两条纹的间距为d l λ。 至此,证明了条纹间距公式:λd l x = ?。

氏双缝干涉条纹间距到底是不是相等的? 海军航空工程学院磊梁吉峰选自《物理教师》2008年第11期 在氏双缝干涉实验中,在现行的高中物理教科书中得出相邻的明纹(或者暗纹)中心间距为:Δx=Lλ/d,其中L为双缝与屏的间距,d为双缝间距,对单色光而言,其波长λ为定值,所以我们得出的结论是干涉图样为等间距的一系列明暗相同的条纹,但是在现行的高中物理教科书中所给的干涉条纹的照片却并非如此,如图1。我们可以看到只是在照片中央部分的干涉条件是等间距的,但是在其边缘部分的条纹的间距明显与中央部分的条纹间距不同。问题到底出在哪里呢? 首先我们来看现行的教科书上对于氏双缝干涉的解释,如图2。 设定双缝S1、S2的间距为d,双缝所在平面与光屏P平行。双缝与屏之间的垂直距离为L,我们在屏上任取一点P1,设定点P1与双缝S1、S2的距离分别为r1和r2,O为双缝S1、S2的中点,双缝S1、S2的连线的中垂线与屏的交点为P0,设P1与P0的距离为x,为了获得明显的干涉条纹,在通常情况下L>>d,在这种情况下由双缝S1、S2发出的光到达屏上P1点的光程差Δr为 S2M=r2-r1≈dsinθ,(1) 其中θ也是OP0与OP1所成的角。 因为d<

杨氏双缝干涉实验报告

实验报告 班级:XX级物理学学号:XXXXXXXXXXX 姓名:XXX 成绩: 实验内容:杨氏双缝干涉实验指导老师:XXX 一实验目的:通过杨氏双缝干涉实验求出钠光的波长。 二实验器材:钠光灯,双缝,延伸架测微目镜,3个二维平移底座,2个升降调节座, 透镜L1,二维架,可调狭缝S,透镜架,透镜L2,双棱镜调节架. 三实验原理:波在某点的强度是波在该点所引起的振动的强度,因此正比于振幅的平方。如果两波在P点引起的振动方向沿着同一直线。那么,根据△φ=2π/λδ=2π/(r2-r1)=k (r2-r1)k为波数。则对应2πj即r2-r1=2jλ/2(j=0,±1,±2…)(1—14)差按等于λ/2的整数倍,两波叠加后的强度为最大值,而对应于△φ=(2j+1) λ\2(j=0,±1,±2…) (1—15)式那些点,光程差等于λ/2的奇数倍,称为干涉相消。如果两波从s1,s2向一切方向传播,则强度相同的空间各点的几何位置。满足r2-r1=常量,r2-r1≈s2s1=d满足下列条件的各点,光强为最大值r2-r1≈ d=jλ考虑到r<

用双缝干涉实验测波长

用双缝干涉实验测光的波长教学设计 一、设计思想 本堂课主要利用光的干涉现象测量光的波长。通过本实验,我们可以更进一步地了解光波产生稳定的干涉现象的条件,观察白光及单色光的干涉图样,并测定单色光的波长。学生在实验中,通过了解每个实验元件的作用,学会科学设计实验仪器和实验方案的思维方法;同时培养学生的实践能力、自学能力,培养学生的科学态度,让学生体验探究科学的艰辛与喜悦。 二、教学目标 1.知识目标: ⑴知道波长是光的重要参数 ⑵通过实验,学会运用光的干涉测定光的波长 ⑶更进一步理解光产生干涉的条件及探究干涉条纹的间距与哪些因素有关 ⑷认识物理实验和数学工具在物理学发展过程中的作用,掌握物理实验的一些基本技能,会使用基本的实验仪器,培养学生独立完成实验的能力。 2.能力目标: 学会为达到实验目的而设计各种实验元件,培养学生的创造性思维和实践能力;学习科学探究方法,发展自主学习能力,养成良好的思维习惯,能运用物理知识和科学探究方法解决一些问题。 3.情感目标: 通过本节课,培养学生的科学研究态度,体验探索科学的艰辛与喜悦。 三、重点与难点 经历科学探究过程,自己设计实验、完成实验并测定光的波长。 第 1 页共6 页

四、教学过程 1.实验装置的介绍——双缝干涉仪。 它由各部分光学元件在光具座上组成。如图—1所示。 光源滤光片单缝双缝遮光筒屏 图—1 双缝干涉仪 2.观察双缝干涉图样——探究干涉条纹的间距与哪些因素有关 光源发出的光经滤光片成为单色光,单色光通过单缝后,相当于线光源,经双缝产生稳定的干涉图样,干涉条纹可从屏上观察到。 把直径约10cm、长约1m的遮光筒水平放在光具座上,筒的一端装有双缝,另一端装有毛玻璃屏,在筒的观察端装上测量头。取下双缝,打开光源,调节光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮,然后放好单缝和双缝。单缝和双缝间的距离约为5cm~10cm,使缝相互平行,中心大致位于遮光筒的轴线上。这时在屏上就会看到白光的双缝干涉图样(如图—2)。 图—2 白光的双缝干涉图样 在单缝和光源间放上滤光片就可见到单色光的双缝干涉图样(如图—3)。 第 2 页共6 页 图—3 单色光的双缝干涉图样

习题25 双缝干涉

一、选择题 1. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距为d ,双缝到屏 的距离为D (D >>d ),所用单色光在真空中波长为λ,则屏上干涉条纹两相邻明纹之间的距离为:( ) (A )nd D λ (B )d D n λ (C )nD d λ (D )nd D 2λ (明纹条件 sin tan x d d d k D θθλ≈== ,k D D x k x d d λλ?=??=,n n λλ=) 2.双缝间距为2 mm ,双缝与幕相距300 cm 。用波长为6000?的光照射时, 幕上干涉条纹的相邻两条纹距离(单位为mm )是( ) (A )4.5 (B )0.9 (C )3.12 (D )4.15 (E )5.18 3.在双缝干涉实验中,初级单色光源S 到两缝 1s 2s 距离相等,则观察屏上中央明条纹位于图中O 处。现将光源S 向下移动到示意图中的S ′位置,则( ) O S

(A )中央明条纹也向下移动,且条纹间距不变。 (B )中央明条纹向上移动,且条纹间距不变。 (C )中央明条纹向下移动,且条纹间距增大。 (D )中央明条纹向上移动,且条纹间距增大。 (S 的位置仅仅影响中央明纹的位置) 二、填空题 1.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间 距 ,若使单色光波长减少,则干涉条纹间距 。(D x d λ?=,都减小) 2.如图所示,在双缝干涉实验中SS 1=SS 2, 用波长为 λ的光照射双缝1S 和2S ,通过空气后在屏幕E 上 形成干涉条纹。已知P 点处为第三级明条纹,则1 S 和2S 到P 点的光程差为 。若将 整个装置放于某种透明液体中,P 点为第四级明条 纹,则该液体的折射率n = 。 (光程差sin 3d k δθλλ===,k ’/k=4/3, 则n =λ/λ’=4/3)

中学物理教学法《双缝干涉》实验

1、实验名称:光的双缝干涉、光具盘几何光学演示实验 2、实验目的:解中学物理教学中对几何光学、光的干涉、衍射实 验的要求,熟悉光具盘、双缝干涉实验仪的结构、性能,熟练 掌握它们的使用方法和操作技能;通过实验培养借助仪器说明 书学习独立使用仪器的能力;体会新型光具盘在设计上的特色 和尚存在的问题 3、实验教学目的:⑴双缝干涉:学会利用双缝干涉原理测量光的 波长;培养严谨的记录数据、分析数据的习惯。⑵光具盘:学 会利用光具盘中的实验仪器验证几何光学中的基本原理。 4、实验教学要求:认识区分常用几何光学仪器和元件,了解它们 的特点、光路元和用处;本演示实验光路的安装和调整使学生 通过自己动手操作,掌握一定的实验测量方法。学会利用双缝 干涉原理测量光的波长。学会利用光具盘中的实验仪器验证几 何光学中的基本原理。 5、实验在这一章有什么意义:进一步了解光的性质,明白光的干 涉原理和干涉图样的形成。通过光具盘验证光学的原理可以使 学生更直观地看到这些光学原理所对应的光学现象,理论还要 通过实验说话,有助于学生更深刻的理解光的波动性。 6、实验仪器:j2515型双缝干涉试验仪、j2501-1型光具盘演示仪、 学生电源。 7、实验原理:⑴双缝干涉:两条靠的很近的平行双缝,能把一个 线光源发出的光分成两束相干光,当这两列相干光在空间相遇

时,会出现相互加强或相互减弱的现象,即在光程差等于零或等于波长整数倍的地方,相互加强形成亮点;在光程差等于半波长的奇数倍的地方,相互抵消形成暗点。若在双缝后面置一屏幕,则可以见到明暗相间的干涉条纹。⑵光具盘:根据已有光学原理,自行组装光具盘中的光学仪器从而验证所学光学原理对应现象的真实性。 8、 实验的基本方法、基本过程:①按照说明书对实验仪器进行安 装,并进行调节使各部分等高共轴。②在遮光管一端装上观察系统,调节使之出现双缝。③先观察白色光干涉现象,然后观察单色光并记录.④计算。 9、 数据记录 1.红光 d=0.200mm L=600mm 游标尺读数 1 2 3 4 平均值 X 1(mm) 10.52 10.50 10.52 10.50 10.51 X 7(mm) 22.52 22.54 22.54 22.52 22.53 mm X X L d L d 4171067.66 51.1053.22600200.017-?≈-?=--?=?X ?= 红λ 2.绿光 d=0.200mm L=600mm 游标尺读数 1 2 3 4 平均值 X 1(mm) 9.92 9.90 9.92 9.92 9.915 X 7(mm) 19.52 19.52 19.54 19.54 19.53 mm L d L d 4171034.56 915.953.196002.017-?≈-?=-X -X ?=?X ?=绿λ

杨氏双缝干涉实验探究及其应用

《光学测量》课之科普调研报告 指导老师:黎小琴 学生姓名:安晶晶 学生学号:201311010115 专业班级:物理13101 布置日期:2015.11.17 截止日期:2015.12.1 完成日期:2015.11.25

杨氏双缝干涉实验探究及其应用 一、杨氏双缝干涉实验的结果 1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了光的波长,为光的波动学说的确立奠定了基础。 实验中我们根据光的干涉原理,即光程差等于波长的整数倍时,P点有光强最大值,光程差等于半波长的奇数倍时,P点的光强最小。当光源为单色光时,在屏上出现一系列平行等距的明暗直条纹组成,干涉条纹是一组平行等间距的明、暗相间的直条纹。中央为零级明纹,上下对称,明暗相间,均匀排列。而且干涉条纹不仅出现在屏上,凡是两光束重叠的区域都存在干涉,故杨氏双缝干涉属于非定域干涉。当D、λ一定时,e与d成反比,d越小,条纹分辨越清。λ1与λ2为整数比时,某些级次的条纹发生重叠。 当用白光作实验, 则除了中央亮纹仍是白色的外,其余各级条纹形成从中央向外由紫到红排列的彩色条纹—光谱。 二、对杨氏双缝干涉实验的结果的讨论分析 1、狭缝s的存在有没有必要

在“杨氏实验”中,s是一很小的狭缝(或小孔),通过s的光照射到s1和s2上,在光屏上形成明暗相间的干涉条纹.同学们往往提出,这个狭缝s的存在是否有必要?若用一个普通光源代替s去照射s1和s2,光屏上能否出现干涉条纹?回答当然是狭缝s的存在是必要的.用普通光源代替s,光屏上不可能出现干涉条纹.因为干涉条件要求,只有同一波列自身之间才能发生干涉,不同的光源之间,以及同一光源的不同部分发出的光都不满足相干条件.由于狭缝s的存在,且s很小.光波到达s1、s2就成为发射柱面波(s若为小孔,则发射球面波)的波源.它们又各发出一个柱面(或球面)形次波.由于这两个次波来自同一个波面,因此它们的频率相同;由于s1与s2距离很近,因此振动方向近似一致;又由于s1和s2的振动位相差保持一定.所以这两列光波满足相干条件,这是利用分波阵面法获得相干光波的典型方法. 2、为什么白光也能产生双缝干涉 相干条件要求两相干光的频率相同,而在白光中各种波长都有,为什么会发生干涉?确实,白光中包含着各种频率的可见光,不同频率的光波是不相干的.但以两缝射出的白光中,相同频率的单色光之间能够发生干涉现象.s为白光光源时,由s发出的任一波长的任一列光波都照s1和s2上,所以s1中的任一列光波都能在s2中找到与其相干的一列波.s1和s是相干的白光光源,每一种波长的光在观察屏上都得到一组杨氏条纹.各种波长的杨氏条纹叠加起来便得到白光杨氏干涉图样分布.由于各种单色光在中央线上,相位差都等于零,振动都要加强,于是各单色的光在中央线上都显示明纹,因此中央明纹仍是白色的.又因中央明纹的宽度与波长成正比,所以各单色光的中央明纹宽度不同.于是在白色明纹的边缘彩带,紫光靠里,红光靠外.其它各级明纹也因单色光波长不同而分开,形成七色光带,有次序地循环排列. 3、波长及装置结构变化时干涉条纹的移动和变化 (1)光源S位置改变:S下移时,零级明纹上移,干涉条纹整体向上平移;S上移时,干涉条纹整体向下平移,条纹间距不变。 (2)双缝间距d改变:当d增大时,e减小,零级明纹中心位置不变,条纹变密。当d 减小时,e增大,条纹变稀疏。 (3)双缝与屏幕间距D改变:当D 减小时,e减小,零级明纹中心位置不变,条纹变密。当D 增大时,e增大,条纹变稀疏。 (4)入射光波长改变:当λ增大时,△x增大,条纹变疏;当λ减小时,△x减小,条纹变密。 4、在小孔后加透明介质薄膜,干涉条纹变化

双缝干涉条纹间距公式的推导__两种方法

双缝干涉条纹间距公式的推导 word版整理

word 版 整理

word版整理

word 版 整理 双缝干涉条纹间距公式的推导 如图建立直角坐标系,其x 轴上横坐标为2d -的点与2 d 的点为两波源。这两个波源的振动情况完全相同,则这两个波源发生干涉时的加强区为到两个波源的距离差为波长整数倍λn (零除外)的双曲线簇。其中??? ??- 0,2d 、??? ??0,2d 为所有双曲线的公共焦点。这个双曲线簇的方程为: 122222222 =??? ??-??? ??-??? ??λλn d y n x 用直线l y =去截这簇双曲线,直线与双曲线的交点为加强的点。将l y =代入双曲线簇的方程,有:

word 版 整理 122222222 =??? ??-??? ??-??? ??λλn d l n x 解得: 2222 4λ λn d l n x -+= 上式中,d 的数量级为m 410-,λ为m 710-。故2 222d n d =-λ,x 的表达式简化为: 22 4d l n x +=λ 其中l 的数量级为m 010,d 的数量级为m 4 10-。故422 10≈d l ,x 的表达式简化为: d l n d l n x λλ==2 2 可见,交点横坐标成一等差数列,公差为 d l λ,这说明: (1)条纹是等间距的; (2)相邻两条纹的间距为d l λ。 至此,证明了条纹间距公式:λd l x = ?。

杨氏双缝干涉条纹间距到底是不是相等的? 海军航空工程学院李磊梁吉峰选自《物理教师》2008年第11期 在杨氏双缝干涉实验中,在现行的高中物理教科书中得出相邻的明纹(或者暗纹)中心间距为:Δx=Lλ/d,其中L为双缝与屏的间距,d为双缝间距,对单色光而言,其波长λ为定值,所以我们得出的结论是干涉图样为等间距的一系列明暗相同的条纹,但是在现行的高中物理教科书中所给的干涉条纹的照片却并非如此,如图1。我们可以看到只是在照片中央部分的干涉条件是等间距的,但是在其边缘部分的条纹的间距明显与中央部分的条纹间距不同。问题到底出在哪里呢? 首先我们来看现行的教科书上对于杨氏双缝干涉的解释,如图2。 设定双缝S1、S2的间距为d,双缝所在平面与光屏P平行。双缝与屏之间的垂直距离为L,我们在屏上任取一点P1,设定点P1与双缝S1、S2的距离分别为r1和r2,O 为双缝S1、S2的中点,双缝S1、S2的连线的中垂线与屏的交点为P0,设P1与P0的距离为x,为了获得明显的干涉条纹,在通常情况下L>>d,在这种情况下由双缝S1、S2发出的光到达屏上P1点的光程差Δr为 word版整理

实验用双缝干涉测光的波长(精)

实验用双缝干涉测光的波长 ●教学目标 一、知识目标 1.复习巩固双缝干涉实验原理. 2.观察双缝干涉图样,掌握实验方法. 3.测定单色光的波长. 二、能力目标 培养学生的动手能力和分析处理“故障”的能力. 三、德育目标 1.培养工作中的合作精神. 2.耐心细致的实验态度. ●教学重点 L 、d 、λ的准确测量. ●教学难点 “故障”分析及排除. ●教学方法 1.通过复习弄清测量原理. 2.学生动手实验,观察图样测定波长. ●教学用具 双缝干涉仪、光具座、光源、学生电源、导线、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头、刻度尺. ●课时安排 1课时 ●教学过程 一、复习基础知识 如图20—29所示,灯丝发出的光,经过滤片后变成单色光,再经过单缝S 时发生衍射,这时单缝S 相当于一单色光源,衍射光波同时达到双缝S 1和S 2之后,再次发生衍射,S 1、S 2双缝相当于两个步调完全一致的单色相干光源,通过S 1、S 2后的单色光在屏上相遇并叠加,当路程差P 1S 2-P 1S 1=k λ(k =0、1、2…)时,在P 1点叠加时得到明条纹,当路程差P 2S 2-P 2S 1= (2k +1)· 2 (k =0、1、2…)时,在P 2点叠加时得到暗条纹.相邻两条明条纹间距Δx ,与入射光波长λ,双缝S 1、S 2间距d 及双缝与屏的距离L 有关,其关系式为:Δx =d L λ,只要测出L ,d ,Δx ,根据这一关系就可求出光波波长λ.

若不加滤光片,通过双缝的光源将是白光,因干涉条纹间距(条纹宽度)与波长成正比,因此在亮纹处,各种颜色的光宽度不同,叠加时不能完全重合,从而呈现彩色条纹. 二、测量方法 两条相邻明(暗)条纹间的距离Δx 1用测量头测出.测量头由分划板、目镜、手轮等构成,(课本图实—3),转动手轮,分划板会左、右移动.测量时,应使分划板中心刻线对齐条纹的中心(课本图实—4),记下此时手轮上的读数a 1,转动手轮,使分划板向一侧移动,当分划板中心刻线对齐另一条相邻的明条纹中心时,记下手轮上的刻度数a 2,两次读数之差就是相邻两条明条纹间的距离,即Δx =|a 1-a 2|. Δx 很小,直接测量时相对误差较大,通常测出n 条明条纹间距离a ,再推算相邻两条明(暗)条纹间的距离,即条纹宽度Δx =1 n a . 三、学生活动 1.观察双缝干涉图样 (教师指导学生按步骤进行测量,也可引导学生先设计好步骤,分析研究后再进行,教师可将实验步骤投影) 步骤:(1)按课本图实—2,将光源、单缝、遮光管、毛玻璃屏依次安放在光具座上. (2)接好光源,打开开关,使灯丝正常发光. (3)调节各器件的高度,使光源灯丝发出的光能沿轴线到达光屏. (4)安装双缝,使双缝与单缝的缝平行,二者间距约5~10 cm. (5)放上单缝,观察白光的干涉条纹. (6)在单缝和光源间放上滤光片,观察单色光的干涉条纹. 2.测定单色光的波长 (1)安装测量头,调节至可清晰观察到干涉条纹. (2)使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,转动手轮,使分划板中心刻线移动;记下移动的条纹数n 和移动后手轮的读数a 2,a 1与a 2之差即为n 条亮纹的间距. (3)用刻度尺测量双缝到光屏间距离L . (4)用游标卡尺测量双缝间距d (这一步也可省去,d 在双缝玻璃上已标出) (5)重复测量、计算,求出波长的平均值. (6)换用不同滤光片,重复实验. 四、实验过程中教师指导 (1)双缝干涉仪是比较精密的实验仪器,实验前教师要指导学生轻拿轻放,不要随便拆分遮光筒,测量头等元件,学生若有探索的兴趣应在教师指导下进行. (2)滤光片、单缝、双缝、目镜等会粘附灰尘,要指导学生用擦镜纸轻轻擦拭,不用其他物品擦拭或口吹气除尘. (3)指导安装时,要求学生注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且竖直,引导学生分析理由. (4)光源使用线状长丝灯泡,调节时使之与单缝平行且靠近. (5)实验中会出现像屏上的光很弱的情况.主要是灯丝、单缝、双缝、测量头与遮光筒不共轴线所致;干涉条纹的清晰与否与单缝和双缝是否平行很有关系.因此(3)(4)两步要求应在学生实验中引导他们分析,培养分析问题的能力. (6)实验过程中学生还会遇到各种类似“故障”,教师要鼓励他们分析查找原因.

杨氏双缝实验实验报告

杨氏双缝干涉 一、实验目的 (1) 观察杨氏双缝干涉现象,认识光的干涉。 (2) 了解光的干涉产生的条件,相干光源的概念。 (3) 掌握和熟悉各实验仪器的操作方法。 二、实验仪器 1:钠灯(加圆孔光阑) 2:透镜L 1(f=50mm ) 3:二维架(sz-07) 4:可调狭缝s (sz-27) 5:透镜架(sz-08,加光阑) 6:透镜L 2(f=150mm ) 7:双棱镜调节架(sz-41) 8:双缝 三、实验原理 由光源发出的光照射在单缝s 上,使单缝s 成为实施本实验的缝光源。由杨氏双 缝干涉的基本原理可得出关系式△x= L λ/d ,其中△x 是像屏上条纹的宽度──相邻两条亮纹间的距离,单位用mm ;L 是从第二级光源(杨氏狭缝)到显微镜焦平面的距离,单位用mm ;λ是所用光线的波长,单位用nm ;d 是第二级光源(狭缝)的缝距(间隔),单位用mm 。 9 :延伸架 10:测微目镜架 11:测微目镜 12:二维平移底座(sz-02) 13:二维平移底座(sz-02) 14:升降调节座(sz-03) 15:二维平移底座(sz-02) 16:升降调节座(sz-03)

四、实验步骤 (1)调节各仪器使光屏上出现明显的明暗相间的条纹。 (2)使钠光通过透镜L1汇聚到狭缝s上,用透镜L2将s成像于测微目镜分划板M 上,然后将双缝D置于L2近旁。在调节好s,D和M的mm刻线平行,并适当调窄s之 后,目镜视场出现便于观察的杨氏条纹。 (3)用测微目镜测量干涉条纹的间距△x,用米尺测量双缝至目镜焦面的距离L,用显微镜测量双缝的间距d,根据△x=Lλ/d计算钠黄光的波长λ。 五:数据记录与处理 数据表如下: M/条x1(mm)x2(mm x(mm)λ(mm) r1(cm) r2(cm) d1(mm) d2(mm) r(cm) d(mm) r的平均值:d的平均值: 根据公式△x=L*λ/d求得λ(如表所示),最后求得λ的平均值为 六:误差分析

第11章 波动光学(习题与答案)

第11章 波动光学 一. 基本要求 1. 解获得相干光的方法。掌握光程的概念以及光程差与相位差的关系。 2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。 3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。 4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。 5. 理解自然光和偏振光及偏振光的获得方法和检验方法。 6. 理解马吕斯定律和布儒斯特定律。 二. 内容提要 1. 相干光及其获得方法 能产生干涉的光称为相干光。产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。 获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。 2. 光程、光程差与相位差的关系 光波在某一介质中所经历的几何路程l 与介质对该光波的折射率n 的乘积n l 称为光波的光学路程,简称光程。若光波先后通过几种介质,其总光程为各分段光程之和。若在界面反射时有半波损失,则反射光的光程应加上或减去2 λ。 来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为 δλ π?2=? 其中λ为光在真空中的波长。 3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。其对应的光程差为 ?? ???=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成D x d =δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。 杨氏双缝干涉明、暗条纹的中心位置

用双缝干涉测量光的波长(含答案)

实验十五用双缝干涉测量光的波长 一、实验目的 1.理解双缝干涉的原理,能安装和调试仪器. 2.观察入射光分别为白光和单色光时双缝干涉的图样. 3.掌握利用公式Δx=l d λ测波长的方法. 二、实验原理 单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)条纹间的距离Δx与双缝间的距离d、双缝到屏的距离l、单色光的波长λ之间满足λ=d·Δx/l. 三、实验器材 双缝干涉仪,即:光具座、光源、滤光片、单缝、双缝、遮光筒、毛玻璃屏、测量头,另外还有学生电源、导线、刻度尺. 附:测量头的构造及使用 如图1甲所示,测量头由分划板、目镜、手轮等构成,转动手轮,分划板会向左右移动,测量时,应使分划板的中心刻度对齐条纹的中心,如图乙,记下此时手轮上的读数.然后转动测量头,使分划板中心刻线与另一条纹的中心对齐,再次记下手轮上的刻度.两次读数之差就表示这两个亮条纹间的距离. 图1 实际测量时,要测出n条亮条纹(暗条纹)的宽度,设为a,那么Δx= a n-1 . 四、实验步骤 1.安装仪器 (1)将光源、遮光筒、毛玻璃屏依次安放在光具座上,如图2所示. 图2 (2)接好光源,打开开关,使白炽灯正常发光.调节各部件的高度,使光源灯丝发出的光能沿 轴线到达光屏.

(3)安装单缝和双缝,中心位于遮光筒的轴线上,使双缝和单缝相互平行. 2.观察与记录 (1)调整单缝与双缝间距为几厘米时,观察白光的干涉条纹. (2)在单缝和光源间放上滤光片,观察单色光的干涉条纹. (3)调节测量头,使分划板中心刻度线对齐第1条亮条纹的中心,记下手轮上的读数a1; 转动手轮,使分划板向一侧移动,当分划板中心刻度线与第n条相邻的亮条纹中心对齐时,记下手轮上的刻度数a2,则相邻两条纹间的距离Δx=\f(|a1-a2|,n-1). (4)换用不同的滤光片,测量其他色光的波长. 3.数据处理 用刻度尺测量出双缝到光屏间的距离l,由公式λ=错误!Δx计算波长.重复测量、计算,求出波长的平均值. 五、误差分析 测定单色光的波长,其误差主要由测量引起,条纹间距Δx测量不准,或双缝到屏的距离测不准都会引起误差,但都属于偶然误差,可采用多次测量取平均值的方法来减小误差. 六、注意事项 1.调节双缝干涉仪时,要注意调整光源的高度,使它发出的一束光能够沿着遮光筒的轴线把屏照亮. 2.放置单缝和双缝时,缝要相互平行,中心大致位于遮光筒的轴线上. 3.调节测量头时,应使分划板中心刻线和条纹的中心对齐,记清此时手轮上的读数,转动手轮, 使分划板中心刻线和另一条纹的中心对齐,记下此时手轮上的读数,两次读数之差就表示这两条纹间的距离. 4.不要直接测Δx,要测多个亮条纹的间距再计算得Δx,这样可以减小误差. 5.白光的干涉观察到的是彩色条纹,其中白色在中央,红色在最外层. 记忆口诀 亮光源、滤光片,单缝双缝成一线; 遮光筒、测量头,中间有屏把像留; 单缝双缝平行放,共轴调整不能忘; 分划线、亮条纹,对齐平行测得准; n条亮纹读尺数,相除可得邻间距; 缝距筒长记分明,波长公式要记清. 例1在“用双缝干涉测光的波长”实验中:

用matlab实现杨氏双缝干涉的实验仿真

用MATLAB实现杨氏双缝干涉实验仿真摘要: 实验室中,做普通光学实验,受到仪器和场所的限制;实验参数的改变引起干涉图样的改变不明显,难以体现实验的特征。本文利用MATLAB仿真杨氏双缝干涉实验,创建用户界面,实现人机交互,输入不同实验参数,使干涉现象直观表现出来。 关键词: MATLAB;杨氏双缝干涉实验;用户界面设计;程序编写;仿真。 1. 引言: 在计算机迅猛发展的今天,光学实验的仿真越来越多的受科研工作者和教育工作者关注。其应用主要有两个方面:一是科学计算方面,利用仿真实验的结果指导实际实验,减少和避免贵重仪器的损害;二是在光学教学方面,将抽象难懂的光学概念和规律,由仿真实验过程直观的描述,使学生对学习感兴趣。在科学计算方面,国外的光学实验仿真是模拟设计和优化光学系统的过程中发展起来的,在这方面美国走在最前,其中最具代表性的是劳伦斯利和弗莫尔实验光传输模拟计算机软件Prop92及大型总体优化设计软件CHAINOP和PROPSUITE;另外法国也开发完成其具有自身特点的光传输软件Miro。在光学教学方面,国外已有相关的配有光盘演示光学实验的教材。我国用于科学研究的光学实验计算机数值仿真软件随开发较晚,但也已经取得了显著成绩。特别是1999年,神光——III原型装置TLL分系统集成实验的启动为高功率固体激光驱动器的计算机数值模拟的研究创造了条件。目前已基本完成SG99光传输模拟计算软件的开发,推出的标准版本基本能稳定运行。目前该软件已经应用于神光——III主机可行性论证的工作中。计算机仿真具有观测方便,过程可控等优点,可以减少系统对外界条件对实验本身的限制,方便设置不同的参数,借助计算机的高数运算能力,可以反复改变输入的实验条件系统参数,大大提高实验效率。MATLAB是MatlabWorks公司于1982年推出的一套高性能的数值计算和可视化软件。具有可扩展性,易学易用性,高效性等优势。 通过对目前计算机仿真光学实验的现状和相关研究的分析,本文将用Matlab编程实现杨氏双缝干涉实验的仿真。利用Matlab GUI建立用户界面,实

双缝干涉实验的研究

本科毕业论文(设计) 题目:双缝干涉实验的研究 学生:王晓敏学号: 201040610236 学院:物理与电子科学学院专业:物理学 入学时间: 2010 年 9 月 13 日 指导教师:屈奎职称:讲师 完成日期: 2014 年 5 月 12 日

诚信承诺 我谨在此承诺:本人所写的毕业论文《双缝干涉实验的研究》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

双缝干涉实验的研究 摘要:通过简单的方法和常用的材料分别设计制作出适合于实验室测量用和教室演示用双缝干涉实验器材。介绍了光源的选择和双缝的制作,并对刻线的不同情况对干涉图像的影响进行了图示说明。 关键词:双缝干涉;自制器材;波长; Study of the Double-slit Interference Experiment Abstract: A method and a simple design commonly used materials are suitable for laboratory measurements and classroom presentations with double-slit interference experiment equipment. Select the source and describes the production of double-slit, and the different situations engraved lines on interference images were illustrated. Key words: double-slit interference; homemade equipment; wavelength

杨氏双缝干涉实验讲义

杨氏双缝干涉 一、实验目的 1、理解干涉的原理; 2、掌握分波阵面法干涉的方法; 3、掌握干涉的测量,并且利用干涉法测光的波长。 二、实验原理 图1 杨氏双缝干涉原理图 杨氏双缝干涉原理如图1所示,其中S为单缝,S1和S2为双缝,P为观察屏。如果S 在S1和S2的中线上,则可以证明双缝干涉的光程差为 式中,d为双缝间距,θ是衍射角,l是双缝至观察屏的间距。当 由干涉原理可得,相邻明纹或相邻暗纹的间距可以证明是相等的,为 ,因此,用厘米尺测出l,用测微目镜测双缝间距d和相邻条纹的间距Δx,计算可得光波的波长。 三、实验仪器 1:钠灯(加圆孔光阑);2:透镜L1(f’=50mm);3:二维架(SZ-07);4:可调狭缝(SZ-27);5:透镜架(SZ-08);6:透镜L2(f’=150mm);7:双棱镜调节架(SZ-41);8:双缝;9:延伸

架(SZ-09);10:测微目镜架(SZ-36);11:测微目镜(SZ-03)12、13、15:二维平移底座(SZ-02);14、16:升降调节座(SZ-03) 图2 实验装置图 四、实验内容及步骤 1、参考图2安排实验光路,狭缝要铅直,并与双缝和测微目镜分划版的毫尺刻线平行。双缝与目镜距离适当,以获得适于观测的干涉条纹。 2、调单缝、双缝,测微目镜平行且共轴,调节单缝的宽度,三者之间的间距,以便在目镜中能看到干涉条纹。 3、用测微目镜测量干涉条纹的间距△x以及双缝的间距d,用米尺测量双缝至目镜焦面的距离l,计算钠黄光的波长λ,并记录结果。 4、观察单缝宽度改变,三者间距改变时干涉条纹的变化,分析变化的原因。 五、实验数据及结果 1、测钠光波长数据表 次数△x(mm)d(mm)l(mm) (nm) 1 2 3

#杨氏双缝干涉实验#

杨氏双缝干涉实验 【实验目的】 1、了解杨氏双缝干涉现象基本原理, 2、了解杨氏双缝干涉实验装置基本结构并掌握光路调整方法, 3、观察双缝干涉现象并掌握光波波长的一种测量方法。 【实验仪器】 杨氏双缝干涉仪器一台(WSY-6-0.5mm ),测微目镜一个(0.01mm ),钠灯光源一套。 【实验原理】 1801年,托马斯·杨巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两光源之间相位差的方法来研究光的干涉现象。用叠加原理解释了干涉现象并在历史上第一次测定了光波的波长. 1. 相干条件: 空间两列波在相遇处要发生干涉现象,这两列波必须满足以下三条相干条件。1)振动方向相 同;2)频率相同;3)相位差恒定。 2. 相干光的获得与波长测量基本原理: 杨氏双缝干涉属分波阵面干涉,其相干光路如图所示。波长为λ的钠黄光入射单缝S 后可视S 为单色线光源,该线光源所发柱面波经间距为d 的双缝S1与S2后可在屏上获得干涉条纹,条纹间距为 ,屏到双缝的距离为 ,待测光波波长近似为: d xd ' ?= λ 一: (l)了解钠灯光源与使用方法,预热钠灯, (2)了解杨氏双缝干涉实验仪基本结构, (3)开启钠灯电源预热钠灯, (4)将各光学元件按顺序置于光学导轨上正确布置实验光路并调至同轴等高, (5)观察双缝干涉现象并适当调节单缝方位旋钮使条纹清晰易于观测, 二:测量条纹间距与缝屏距离 (1)了解测微目镜的基本结构与使 用方法,反复练习读数。 (2)选6-8条暗纹为测量对象利用测微目连续读取其位置读数记录于附表, ( 3 )在光具座导轨上分别读取取缝与测微目镜位置读数, (4)关闭钠灯归整仪器结束验。

看说双缝实验

看说双缝实验 一项人类无法给出合理解释的科学实验,一种神秘力量在主导着感官 罡罡先生 2018-07-06 07:07:20 把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。 无数的科学家马上开始动手设计实验。当科学家在确定电子已经通过双缝后,迅速的在后面的板上放上摄像机的结果是,出现了两道条纹!反之亦然,如果迅速的拿掉摄像机,又会出现干涉条纹,即使我们在决定拿掉摄像机的时候,电子已经通过了双缝!这说明了什么?这意味着当我们没有看电子的时候,电子就不是实在的东西,它像个幽灵向四周散发开来,以波的形态悬浮在空间中。你一睁开眼睛,所有的幻影就立马消失,电子的波函数在瞬间坍缩,变成一个实实在在的粒子,随机出现在某个位置上,让你能看到它。 这个实验几乎颠覆了几千年来人们对客观世界的主流认识,具体而言,就是在人类认识世界的过程中,人的意识决定着客观对象的呈现方式。听起来好像天方夜谭,可这真真实实就是电子双缝干涉实验带给我们的震撼。在二十一世纪初科学界评选的令人头皮发炸的十大实验中,该实验高居榜首。用“毛骨悚然”来形容该实验一点也不为过。

用双缝干涉测光的波长

十八 用双缝干涉测光的波长 (一)目的 了解光波产生稳定的干涉现象的条件;观察双缝干涉图样;测定单色光的波长。 (二)原理 据双缝干涉条纹间距λd L x =?得,波长x L d ??=λ。已知双缝间距d ,再测出双缝到屏的距离L 和条纹间距Δx ,就可以求得光波的波长。 (三)器材 实验装置采用双缝干涉仪,它由各部分光学元件在光具座上组成,如图实18-1所示,各部分元件包括光源、滤光片、单缝、双缝、遮光筒、光屏。 (四)步骤 1.将光源和遮光筒安装在光具座上,调整光源的位置,使光源发出的光能平行地进入遮光筒并照亮光屏. 2.放置单缝和双缝,使缝相互平行,调整各部件的间距,观察白光的双缝干涉图样. 3.在光源和单缝间放置滤光片,使单一颜色的光通过后观察单色光的双缝干涉图样. 4.用米尺测出双缝到光屏的距离L,用测量头测出相邻的两条亮(或暗)条纹间的距离Δx. 5.利用表达式x L d ??= λ,求单色光的波长. 6.换用不同颜色的滤光片,观察干涉图样的异同,并求出相应的波长. (五)注意事项 1.放置单缝和双缝时,必须使缝平行,并且双缝和单缝间的距离约为5~10cm. 2.要保证光源、滤光片、单缝、双缝、遮光筒和光屏的中心在同一条轴线上。 3.测量头的中心刻线要对应着亮(或暗)条纹的中心. 4.为减小实验误差,先测出n 条亮(或暗)条纹中心间的距离a,则相邻两条亮(或暗)条纹间的距离1 -=?n a x . (六)例题 例1.(1)如图实18-2所示,在“用双缝干涉测光的波长”实验中,光具座上放 光源 滤光片 单缝 双缝 遮光筒 屏 图实18-1 图实18-2

相关主题
文本预览
相关文档 最新文档