当前位置:文档之家› 矩阵分解在优化方法中的应用

矩阵分解在优化方法中的应用

矩阵分解在优化方法中的应用
矩阵分解在优化方法中的应用

矩阵分解以及矩阵范数在数值计算中的应用

张先垒

(自动化与电气工程学院 控制科学与工程 2012210186)

【摘要】矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的和或

者乘积,这是矩阵理论及其应用中比较常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵的分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,它是应用于解最优化问题、特征值问题、最小二乘方问题的主要数学工具。

关键词 : 矩阵分解 对角化 逆矩阵 范数 条件数

1. 引言

矩阵分解在工程中的应用主要是在解线性方程组中,而这主要就是关系到储存和计算时间的问题上面,如何实现最小的储存和最少的计算时间是在工程计算中的头等问题。在这方年就牵涉到很多对矩阵进行怎样的分解,这篇文章介绍了基本的关于三角分解相关的内容以及关于界的稳定性的考虑。

2. 矩阵的三角分解求解线性方程组

数值求解线性方程组的方法中有一个主要是直接法,假设计算中没有舍入误差,经过有限次算术运算能够给出问题的精确解的数值方法。其中高斯消去法就是利用矩阵的分解实现的。矩阵论一种有效而且应用广泛的分解法就是三角分解法,将一个矩阵分解为一个酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积。(见课本P93例4.3)考虑一般的线性方程组,设其中的系数矩阵A 是可逆的,

1111

n m mn a a A a a ??

?

= ? ??? (1-1)

设矩阵A 的第一列中至少有一个是非零元素(否则A 就是奇异矩阵)不妨设为1i a 若一

般的记初等矩阵

[1]

如1-2式及矩阵论课本上的Givens 矩阵。

101

(,)10

1i P i j j i

j

?????????

?

=????????

???

?

(1-2) 根据矩阵理论的知识我们知道矩阵(,)P i j 左乘矩阵A ,作用就是对换A 的第i 和第j 行,右乘A 的作用是对换A 第i 和第j 列。因此通过取11(1,)P P i =,则矩阵111()ij A PA a ==中的1110a ≠。用第一行与其他行的线性组合可以将1A 第一列对角线以下部分全部变为0。这一过程写成矩阵形式即

11111B E P A E A == (1-3)

其中

1

2111

1311

111

1/1

/1/1n a s E a s a s ?

???-??

??=-??????-????

(1-4) 这里1

111s a =,注意到

1

11

11112311222321323332300

0n n n n n nn a a a a b b b B b b b b b b ????

??

??=??

?????

?

(1-5)

并且该矩阵仍然是可逆矩阵。所以22232,,,n b b b 中至少有一个不为0,设20i b ≠。

同理取22(2,)P P i =,令221A P B =如此逐步消元可得到

11111112311222

222321

1111000n n k k k k k kk kn k k nk nn a a a a a a a B E P E P b b b b ---??????????==????

??????

(1-6) 若再假设0k

ik b ≠,取(,)k k P P k i =对1k B -换行,即1k k k A P B -=可得

1111k k k k A P E P E P A --= 该矩阵的形状为

111

11112311222

22232000n n k k k

kk kn k k nk nn a a a a a a a A a a a a ????????

??=????

??????

(1-7) 在(1-6)中(,)k k P P k i =,这里k i k ≥,如果记k

k kk s a =则

1,2.,1

1/1

/1

/1k k k k k

k k k k

k n k k

E a s a s a s ++?

?

????????

?

?=-??-??????

??-?

?

(1-8) 很显然对任意的看,都有det()1k E =,det()1k P =-所以他们都是非奇异的矩阵,而且他们的逆矩阵分别是

1k k P P -= (1-9) 1,2.,1

1

/1

/1

/1k k k k k k k k k

k n k k

E a s a s a s ++?

?

????????

?

?=????????

???

?

(1-10) 经过1n -步消元法的得到矩阵

11111n n n B E P E P A ---= (1-11)

是一个上三角矩阵。如果记

1111n n M E P E P --= (1-12)

则显然线性方程组

[1]1n B x MAx Mb -== (1-13)

与原方程组同解的。通过以上变换实质上就是矩阵的分解假设消去过程中不实施矩阵行的交换,这时

121n P P P I -==== (1-14)

由(1-11)经过消去过程后,矩阵1n B -就是一个上三角矩阵记1n U B -=则

111121n A E E E U ----= (1-15)

而由(1-10)可知每个1k E -都是一个下三角矩阵。容易验证

111

121n L E E E ----= (1-16)

是一个下三角矩阵,如果记j

ij j ij jj

a l a =

则可验证(1-16)的矩阵为

2131321

2

3111

1n n n l L l l l l l ??

????

?

?=???????

?

(1-17) 最后得到

A LU = (1-18)

其中L 是一个下三角矩阵,

U 是一个上三角矩阵这样线性方程组就等价于b Ax LUx ==依次求解方程组

Ly b Ux y == (1-19)

这样就可以得到原方程组的解。(见课本P93例4.3)

2.线性方程组的解的稳定性判定

线性方程组解的稳定性。对于线性方程组

[2]

Ax b = ,,,n n n A R x b R ?∈∈ (1-20)

如果解x 关于问题(即矩阵A 和向量b

)的微小变化(即舍入误差)不敏感,则(1-5)就

是一个“好”问题,反之就是“坏”的或病态的问题。而对求解上述方程组的一个算法,如果关于问题的“微小”变化(即误差的传播在一个可以接受的范围内),则算法成为稳定的算法(即好的),反之就是一个不稳定的算法。有了范数的工具,就可以讨论线性方程组的“好坏”以及求解线性方程组的优劣问题。定义1 设A 是可逆矩阵,称1

()p p

p

K A A A -=是矩阵A 相对矩阵范数.

p

的条件数。考虑到

()A u u b b +δ=+δ

(1-21)

即由于右端的扰动引起解的变化,比较它与原有问题

Au b =

(1-22)

解的差异。由(1-6)和(1-7)两式相减可以得到

1

u A b -δ=δ

(1-23)

记.为n

R 上的向量范数及与它相容的矩阵范数,由(1-7)和(1-8)可得

1u A b -δ≤δ (1-24) b A u ≤ (1-25)

综合上述两式,有

111

A b A b u b A

A

b u

u

b

A

---δδδδ≤

= (1-26)

显然可以知道右端的扰动可能引起解扰动的上界。显然1

A

A -越小右端的变化就越小。

对于第二种情况

()()A A u u b +?+δ=

(1-27) 1()u A A u u -δ=-?+δ (1-28)

故有

1()u A A u u -δ=?+δ (1-29)

这也就是说

1

()

u A A

A

u u A

-δ?=+δ (1-30)

事实上进一步分析可以知道

1

(1())()

u A A

A

A u u A

-δ?=+O ?+δ (1-31)

可见由于问题扰动引起的解得扰动的是同一个因子。故称1

A

A -为条件数。记为cond

(A )当条件大就是病态矩阵,反之就是良态的。因此了解条件数是必要的。他可以帮助判断所得的数值解的可信度与合理性。

4.结束语

矩阵理论这门课程在工程中的应用是多方面的,在这里只选取了在求解线性方程组的的应用进行了简要的介绍。矩阵计算问题看似简单,但要获得好的数值结果并不容易。上面提到的快速算法,计算时间仍会很长。为了减少迭代步数,就必须改善阻抗矩阵的条件数,于是有些学者将预条件技术进来。常用的预条件技术有不完全LU 预条件,稀疏近似逆预条件以及基于物理特性的预条件等。预条件技术能或多或少减少迭代步数,但对于大目标来说,CPU 时间依旧很大。

5.参考文献

【1】白峰杉.数值计算分析引论[M].高等教育出版社;

【2】黄廷祝,成孝予.线性代数与空间解析几何[M]. 高等教育出版社; 【2】黄廷祝,钟守铭,李正良.矩阵理论[M] 高等教育出版社; 【3】蒋尔雄.矩阵计算[M].高等教育出版社.

特征值分解与奇异值分解

特征值:一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a 为该矩阵A的特征向量,λ为该矩阵A的特征值。 奇异值:设A为m*n阶矩阵,A H A的n个特征值的非负平方根叫作A的奇异值。记 (A) 为σ i 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做 SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

矩阵分解在优化方法中的应用

矩阵分解以及矩阵范数在数值计算中的应用 张先垒 (自动化与电气工程学院 控制科学与工程 2012210186) 【摘要】矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的和或 者乘积,这是矩阵理论及其应用中比较常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵的分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,它是应用于解最优化问题、特征值问题、最小二乘方问题的主要数学工具。 关键词 : 矩阵分解 对角化 逆矩阵 范数 条件数 1. 引言 矩阵分解在工程中的应用主要是在解线性方程组中,而这主要就是关系到储存和计算时间的问题上面,如何实现最小的储存和最少的计算时间是在工程计算中的头等问题。在这方年就牵涉到很多对矩阵进行怎样的分解,这篇文章介绍了基本的关于三角分解相关的内容以及关于界的稳定性的考虑。 2. 矩阵的三角分解求解线性方程组 数值求解线性方程组的方法中有一个主要是直接法,假设计算中没有舍入误差,经过有限次算术运算能够给出问题的精确解的数值方法。其中高斯消去法就是利用矩阵的分解实现的。矩阵论一种有效而且应用广泛的分解法就是三角分解法,将一个矩阵分解为一个酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积。(见课本P93例4.3)考虑一般的线性方程组,设其中的系数矩阵A 是可逆的, 1111 n m mn a a A a a ?? ? = ? ??? (1-1) 设矩阵A 的第一列中至少有一个是非零元素(否则A 就是奇异矩阵)不妨设为1i a 若一 般的记初等矩阵 [1] 如1-2式及矩阵论课本上的Givens 矩阵。

基于矩阵分解的协同过滤算法

万方数据

万方数据

万方数据

万方数据

基于矩阵分解的协同过滤算法 作者:李改, 李磊, LI Gai, LI Lei 作者单位:李改,LI Gai(顺德职业技术学院,广东顺德528333;中山大学信息科学与技术学院,广州510006;中山大学软件研究所,广州510275), 李磊,LI Lei(中山大学信息科学与技术学院,广州510006;中山大学软件研究 所,广州510275) 刊名: 计算机工程与应用 英文刊名:Computer Engineering and Applications 年,卷(期):2011,47(30) 被引用次数:1次 参考文献(18条) 1.Wu J L Collaborative filtering on the Nefifix prize dataset 2.Ricci F.Rokach L.Shapira B Recommender system handbook 2011 3.Adomavicius G.Tuzhilin A Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extenstions 2005(06) 4.Bell R.Koren Y.Volinsky C The bellkor 2008 solution to the Netflix prize 2007 5.Paterek A Improving regularized singular value decomposition for collaborative filtering 2007 6.Lee D D.Seung H S Leaming the parts of objects by non-negative matrix factorization[外文期刊] 7.徐翔.王煦法基于SVD的协同过滤算法的欺诈攻击行为分析[期刊论文]-计算机工程与应用 2009(20) 8.Pan R.Zhou Y.Cao B One-class collaborative filtering 2008 9.Pan R.Martin S Mind the Gaps:weighting the unknown in largescale one-class collaborative filtering 2009 https://www.doczj.com/doc/1b15006550.html,flix Netflix prize 11.罗辛.欧阳元新.熊璋通过相似度支持度优化基于K近邻的协同过滤算法[期刊论文]-计算机学报 2010(08) 12.汪静.印鉴.郑利荣基于共同评分和相似性权重的协同过滤推荐算法[期刊论文]-计算机科学 2010(02) 13.Hadoop[E B/OL] 14.Apache MapReduce Architecture 15.Wbite T.周敏.曾大聃.周傲英Hadoop权威指南 2010 16.Herlocker J.Konstan J.Borchers A An algorithmic framework for performing collaborative filtering 1999 17.Linden G.Smith B.York J https://www.doczj.com/doc/1b15006550.html, recommendations:Itemto-item collaborative filtering[外文期刊] 2003 18.Sarwar B.Karypis G.Konstan J ltem-based collaborative filtering recommendation algorithms 2001 引证文献(1条) 1.沈韦华.陈洪涛.沈锦丰基于最佳匹配算法的精密零件检测研究[期刊论文]-科技通报 2013(5) 本文链接:https://www.doczj.com/doc/1b15006550.html,/Periodical_jsjgcyyy201130002.aspx

矩阵分解的研究及应用

矩阵分解的研究及应用 摘要:将一矩阵分解为若干个矩阵的和或积,是解决某些线性问题的重要方法,其技巧性、实用性强。 本文首先分成四部分内容来阐述矩阵分解的形式及一些很常见的分解。最后举例说明矩阵分解的应用。 关键词:特征值分解 秩分解 三角分解 和分解 关于矩阵分解的形式的文献已有很多,但对于这个问题的分析各不相同。本文从四个方面来论述矩阵的分解的形式,并以一些具体的例子来说明矩阵分解在实际应用中的重要性。 一、特征值分解 性质1:任意n 阶矩阵A ,存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? ,其中1,,n λλ 为矩阵A 的 特征值。称形如这样的分解叫做矩阵A 的特征值分解。 性质1':任意n 阶矩阵A ,存在酉矩阵T ,使得11s J A T T J -?? ? = ? ??? ,其中 11i i i i i i n n J λλλ??? ? ?= ? ? ? ? ,1,2,,i s = 且1,,s λλ 为矩阵A 的特征值。 对于对称矩阵有如下结论: 定理1.1:若A 为n 阶实对称矩阵,则存在正交矩阵T ,使得11n A T T λλ-?? ? = ? ??? , 其中1,,n λλ 为矩阵A 的特征值。 证明 由性质1,知 存在酉矩阵T ,使得1 10n A T T λλ-*?? ? = ? ??? 又由于A 为n 阶实对称矩阵,因此 111 111000n n n A T T T T A T T λλλλλλ---'??**?????? ? ? ? ?'==== ? ? ? ? ? ? ? ?*??????? ? 从而,得 1 100n n λλλλ*???? ? ? = ? ? ? ?*???? 因此11n A T T λλ-?? ? = ? ??? 得证。

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

矩阵分解及其应用

《线性代数与矩阵分析》课程小论文 矩阵分解及其应用 学生姓名:****** 专业:******* 学号:******* 指导教师:******** 2015年12月

Little Paper about the Course of "Linear Algebra and Matrix Analysis" Matrix Decomposition and its Application Candidate:****** Major:********* StudentID:****** Supervisor:****** 12,2015

中文摘要 将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。 关键词:等价分解,三角分解,奇异值分解,运用

Abstract Many particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition. Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application

矩阵论知识点

矩阵论知识点 第一章:矩阵的相似变换 1. 特征值,特征向量 特殊的:Hermite矩阵的特征值,特征向量 2. 相似对角化 充要条件:(1)(2)(3)(4) 3. Jordan标准形 计算:求相似矩阵P及Jordan标准形 求Jordan标准形的方法: 特征向量法,初等变换法,初等因子法 4. Hamilton-Cayley定理 应用:待定系数法求解矩阵函数值 计算:最小多项式 5. 向量的内积 6. 酉相似下的标准形 特殊的:A酉相似于对角阵当且仅当A为正规阵。

第二章:范数理论 1. 向量的范数 计算:1,2, 范数2. 矩阵的范数 计算:1,2,,m , F 范数,谱半径 3. 谱半径、条件数 第三章:矩阵分析 1. 矩阵序列 2. 矩阵级数 特别的:矩阵幂级数 计算:判别矩阵幂级数敛散性,计算收敛的幂级数的和 3. 矩阵函数 计算:矩阵函数值, At e ,Jordan 矩阵的函数值 4. 矩阵的微分和积分 计算:函数矩阵,数量函数对向量的导数 如,dt dA(t),dt dA(t) ,)()(X R AX X X X X f T T T 等 5. 应用 计算:求解一阶常系数线性微分方程组

第四章:矩阵分解 1. 矩阵的三角分解 计算:Crout分解,Doolittle分解,Choleskey分解2. 矩阵的QR分解 计算:Householder矩阵,Givens矩阵, 矩阵的QR分解或者把向量化为与1e同方向3. 矩阵的满秩分解 计算:满秩分解,奇异值分解 4. 矩阵的奇异值分解 第五章:特征值的估计与表示 1. 特征值界的估计 计算:模的上界,实部、虚部的上界 2. 特征值的包含区域 计算:Gerschgorin定理隔离矩阵的特征值 3. Hermite矩阵特征值的表示 计算:矩阵的Rayleigh商的极值 4. 广义特征值问题 AX转化为一般特征值问题 计算:BX

2019机器学习中的数学 5 强大的矩阵奇异值分解 SVD.doc

机器学习中的数学 5 强大的矩阵奇异 值分解SVD 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@https://www.doczj.com/doc/1b15006550.html, 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。

矩阵运算、分解和特征值

实验报告(五) 院(系)课程名称:数学模型日期:年月日 班级学号实验室506 专业数学教育姓名计算机号F08 实验 名称 矩阵运算、分解和特征值成绩评定 所用 软件 MATLAB 7.0 指导教师 实验目的1.矩阵的基本运算。 2.矩阵的LU、QR和Cholesky分解。3.矩阵的特征向量和特征值。 实验内容问题1:求线性方程组 1234 124 234 1234 258 369 225 4760 x x x x x x x x x x x x x x +-+= ? ?--= ? ? -+=- ? ?+-+= ? 的解。问题2: (1)求矩阵 123 456 780 A ?? ? = ? ? ?? 的LU分解。 (2)求矩阵 123 456 789 101112 A ?? ? ? = ? ? ?? 的QR分解。 (3)求5阶pascal矩阵的Cholesky分解。 问题3: (1)求矩阵 31 13 A - ?? = ? - ?? 的特征值和特征向量。 (2)求矩阵 23 45 84 A ?? ? = ? ? ?? 的奇异值分解。

实验过程问题1:A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; >> inv(A) ans = 1.3333 -0.6667 0.3333 -1.0000 -0.0741 0.2593 1.1481 -0.1111 0.3704 -0.2963 0.2593 -0.4444 0.2593 -0.4074 -0.5185 -0.1111 ans=[1.3333,-0.6667,0.3333,-1.0000;-0.0741,0.2593,1.1481,-0.1111;0.3704,-0. 2963,0.2593,-0.4444;0.2593,-0.4074,-0.5185,-0.1111]; >> B=[8;9;-5;0]; >> ans*B ans = 2.9996 -3.9996 -1.0000 1.0003 所以线性方程的解x=[ 2.9996,-3.9996,-1.0000,1.0003] 问题2:1、A=[1,2,3;4,5,6;7,8,0]; >> [L,U]=lu(A) L = 0.1429 1.0000 0 0.5714 0.5000 1.0000 1.0000 0 0 U = 7.0000 8.0000 0 0 0.8571 3.0000 0 0 4.5000 2、A=[1,2,3;4,5,6,;7,8,9;10,11,12]; >> [Q,R]=qr(A) Q = -0.0776 -0.8331 0.5456 -0.0478 -0.3105 -0.4512 -0.6919 0.4704 -0.5433 -0.0694 -0.2531 -0.7975 -0.7762 0.3124 0.3994 0.3748 R = -12.8841 -14.5916 -16.2992 0 -1.0413 -2.0826 0 0 -0.0000 0 0 0

矩阵的奇异值分解及其应用

矩阵的奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于https://www.doczj.com/doc/1b15006550.html,, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@https://www.doczj.com/doc/1b15006550.html, 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Sem antic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧: 1)特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:

第四章 矩阵分解

矩阵分析
第四章 矩阵分解
§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解
矩阵分解前言
矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.
1
( AH~(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )
2
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).
P (i , j ) =
?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 0 1 1
初等变换与初等矩阵举例
?1 ?? 1 4 7 ? ? 1 4 7 ? ? 0 1 ?? 2 5 8 ? = ? 3 6 9 ? ; ? ?? ? ? ? ? 1 0 ?? 3 6 9 ? ? 2 5 8 ? ? ?? ? ? ? ?1 4 7??1 ? ? 1 7 4? ? 2 5 8?? 0 1? = ? 2 8 5? ? ?? ? ? ? ? 3 6 9?? 1 0? ? 3 9 6? ? ?? ? ? ?
?1 ??1 4 7? ? 1 4 7 ? ? ?? ? ? ? 0.2 ? ? 2 5 8 ? = ? 0.4 1 1.6 ? ; ? ? 1?? 3 6 9 ? ? 3 6 9 ? ? ?? ? ? ?
?1 4 7??1 ? ? 1 4 7 / 9? ? ?? ? ? ? ? 2 5 8?? 1 ? = ? 2 5 8/9? ? 3 6 9?? 1/ 9 ? ? 3 6 1 ? ? ?? ? ? ?
---- i ---- j
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1?
P (i , j ( k )) =
?1 ? ? ? ? ? ? ? ? ? ?
1
k 1
? ? ? ? ---? ? ? ---? ? ? 1?
i j
3
?1 ?? 1 2 3? ? 1 2 3 ? ? ?? ? ? ? ? ?4 1 ? ? 4 5 6 ? = ? 0 ?3 ?6 ? ; ? 1?? 7 8 9? ? 7 8 9 ? ? ?? ? ? ?
?3 ? ? 1 2 0 ? ? 1 2 3??1 ? ?? ? ? ? ? 4 5 6?? 1 ? = ? 4 5 ?6 ? ?7 8 9?? 1 ? ? 7 8 ?12 ? ? ?? ? ? ?
4
初等变换与初等矩阵的性质
3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.
初等变换与初等矩阵的性质续
命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为
? Er ? ? 0 ?1 ? ? D? ? = ? ? 0 ? ? ? ? ? ? 1 1 * * * * *? ? *? *? ? *? ? ? ? ?
一般地,?A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=
5
证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.
安徽大学 章权兵
1

浅析矩阵分解的原理及其在人脸识别中的应用

浅析矩阵分解的原理及其在人脸识别中的应用 摘要:矩阵分解方法有多种,本文首先对矩阵的分解方法做了简单的介绍,这些分解在数值代数和最优化问题的解决中都有着十分重要的角色以及在其它领域方面也起着必不可少的作用。人脸识别是指采用机器对人脸图像进行分析,进而提取有效的识别信息从而达到身份辨认的目的。近年来因其在安全、认证、人机交互、视频电话等方面的广泛应用前景而越来越成为计算机模式识别领域的热点。本文在分析矩阵分解的原理后详细针对其在人脸识别中的应用做了一些初步认识的总结。 关键词:矩阵分解QR分解奇异值分解非负矩阵分解人脸识别 矩阵是数学中最重要的基本概念之一,是代数学的一个主要研究对象,也是数学研究及应用的一个重要工具。在近代数学、工程技术、信息处理、经济理论管理科学中,也大量涉及到矩阵理论的知识,矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积或者一些矩阵之和。这些分解式的特殊形式,一是能明显地反映出原矩阵的某些特征;二是分解的方法与过程提供了某些有效的数值计算方法和理论分析依据。人脸识别是指采用机器对人脸图像进行分析 ,进而提取有效的识别信息从而达到身份辨认的目的。虽然人类能轻松地识别出人脸,但人脸的自动机器识别却是一个难度极大的课题,它涉及到图像处理、模式识别、计算机视觉和神经网络等学科,也和对人脑的认识程度紧密相关。现在矩阵分解在人脸识别中应用很广泛,有不同的算法来实现,本文将对现有的算法做总结和比较。 1 矩阵的分解方法 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decomposition)。 1.1 矩阵的三角(LU)分解 LU分解,设A=()是n阶可逆矩阵,如果A的对角线下(上)方的元素全为零,即对i>j, =0(对i

矩阵分解及其简单应用

矩阵分解及其简单应用 x=b,即有如下方程组:Ly=bUx=y 先由Ly=b依次递推求得y1, y2,……,yn,再由方程Ux=y依次递推求得 xn,xn-1,……, x1、必须指出的是,当可逆矩阵A不满足?k≠0时,应该用置换矩阵P左乘A以便使PA的n个顺序主子式全不为零,此时有: Ly=pbUx=y 这样,应用矩阵的三角分解,线性方程组的解求就可 以简单很多了。2、矩阵的QR分解矩阵的QR分解是指,如果实 非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇 异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。2、1.Schmidt正交方法的QR分解Schmidt正交方法解求QR分解原 理很简单,容易理解。步骤主要有:1)把A写成m个列向量a= (a1,a2,……,am),并进行Schmidt正交化得=(α1, α2,……,αm);2) 单位化,并令Q=(β1,β2,……,βm),R=diag(α1, α2,……,αm)K,其中a=K;3)A=QR、这种方法来进行QR分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便。2、2.Givens方法的QR分解Givens方 法求QR分解是利用旋转初等矩阵,即Givens矩阵Tij(c,s)来得 到的,Tij(c,s)是正交矩阵,并且det(Tij(c,s))=1。Tij(c,s)的第i行第i列和第j行第j列为cos,第i行第j列和第j行第i

列分别为sin和-sin,其他的都为0、任何n阶实非奇异矩阵A可通过左连乘Tij(c,s)矩阵(乘积为T)化为上三角矩阵R,另 Q=T-,就有A=QR。该方法最主要的是在把矩阵化为列向量的基础上找出c和s,然后由此把矩阵的一步步向上三角矩阵靠近。Givens方法相对Schmidt正交方法明显的原理要复杂得多,但是却计算量小得多,矩阵Tij(c,s)固有的性质很特别可以使其在很多方面的应用更加灵活。2、3.Householder方法的QR分解Householder方法分解矩阵是利用反射矩阵,即Householder矩阵H=E-2uuT,其中u是单位列向量,H是正交矩阵,detH=-1。可以证明,两个H矩阵的乘积就是Givens矩阵,并且任何实非奇异矩阵A可通过连乘Householder矩阵(乘积为S)化为上三角矩阵R,则A= QR。这种方法首要的就是寻找合适的单位列向量去构成矩阵H,过程和Givens方法基本相似,但是计算量要小一些。矩阵的QR分解可以用来解决线性最小二乘法的问题,也可以用来降低矩阵求逆的代价。矩阵的求逆是件不小的工程,尤其是阶数慢慢变大的情况时,而用先把矩阵QR分解成正交矩阵和上三角矩阵,就容易多了,况且正交矩阵的转置就是逆,这一点是其他的矩阵分解无法比拟的。在解求线性方程组中,如果系数矩阵的阶数比较大,可以利用QR分解来使计算简单化。另外,QR分解考虑的是n阶矩阵,其他的矩阵是不能用这种方法进行分解,由于QR 分解的这一前提条件,使得下面提到的满秩矩阵分解和奇异值分解就有了其特殊的意义。3、满秩分解满秩分解也称最大秩分

几种矩阵分解方法的对比

线性系统的求解是数值分析中的一个基本问题。线性系统的求解在电路分析中典型的应用就是用基尔霍夫电压定律和基尔霍夫电流定律求解电路。下面的五个方程组是对一个典型的电路系统的描述:5I1+5I2=V;I3-I4-I5=0;2I4-3I5=0;I1-I2-I3=0;5I2-7I3-2I4=0;当系统确定以后I1, I2,I3,I4,I5前面的系数就确定了。I1,I2,I3,I4,I5的具体数值将随输入电压值V5的变化而改变。求解线性系统解(也就是求解矩阵的解)常用的方法有Gaussian Elimination with Backward Substitution 法,LU Factorization法,LDL T Factorization 法和Choleski 法。其中Gaussian Elimination with Backward Substitution 法最为简单直接,它的思路就是将系数矩阵化简为一个上三角矩阵或者化简为一个下三角矩阵。但是它消耗的资源最多,以一个可描述为5*5矩阵的系统而言它需要5*5*5/3次乘法运算,即大约42次乘法运算。但系统大到100*100时这种方法的计算量非常可观。这种方法不适合处理很大的矩阵。作为Gaussian Elimination with Backward Substitution 法的改进LU Factorization(也叫LU分解法)法的思路是将系统矩阵分解成为一个上三角矩阵和一个下三角矩阵进行运算。这样的话极为方便求解迭代。假设系统为n*n的系统,那么LU分解的方法将计算量由n*n*n/3降低到2*n*n。对于一个100*100的系统LU分解法的计算量仅仅是Elimination with Backward Substitution 法的3%。尽管在决定L矩阵和U矩阵时依然需要n*n*n/3次运算但是系统一旦定下来后是不会有大的改动的,往往是外部条件改变也就是说5I1+5I2=V;I3-I4-I5=0;2I4-3I5=0;I1-I2-I3=0;5I2-7I3-2I4=0;这个系统的系数是不会经常变的,常变的只是外部条件V。LU分解法适应的范围极宽,他对系统没有特殊的要求。当描述系统的矩阵大于6*6时选用LU分解法会更为节省资源,当系统小于6*6时Elimination with Backward Substitution法效率会更高些。LDL T Factorization 法和Choleski 法和LU分解法很像似,基本思路也是将系统矩阵分解成上三角矩阵和下三角矩阵。但是这两种方法要求系统的矩阵必须是正定的,也就是说系统的任意阶行列式必需为正。这样对系统的要求就严格一些。LDL T Factorization 法需要n*n*n/6+n*n-7*n/6次乘法和n*n*n/6-n/6次加减法。Choleski 法则仅仅需要n*n*n/6+n*n/2-2*n/3次乘法和n*n*n/6-n/6次加减法。当系统较大时不失为两种很好的选择。

(完整word版)矩阵分解及其简单应用

对矩阵分解及其应用 矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、QR 分解、满秩分解和奇异值分解。矩阵的分解是很重要的一部分内容,在线性代数中时常用来解决各种复杂的问题,在各个不同的专业领域也有重要的作用。秩亏网平差是测量数据处理中的一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数的估计数大大简化了求解过程和难度。 1. 矩阵的三角分解 如果方阵A可表示为一个下三角矩阵L和一个上三角矩阵U之积,即A=LU 则称A可作三角分解。矩阵三角分解是以Gauss消去法为根据导出的,因此矩阵可以进行三角分解的条件也与之相同,即矩阵A的前n-1个顺序主子式都不为0, 即?k工0.所以在对矩阵A进行三角分解的着手的第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义。矩阵的三角分解不是唯一的,但是在一定的前提下, A=LDU勺分解可以是唯一的,其中D是对角矩阵。矩阵还有其他不同的三角分解,比如Doolittle 分解和Crout 分解,它们用待定系数法来解求 A 的三角分解,当矩阵阶数较大的时候有其各自的优点,使算法更加简单方便。 矩阵的三角分解可以用来解线性方程组Ax=b。由于A=LU,所以Ax=b可以变换成LU x=b,即有如下方程组: Ly = b { {Ux = y 先由Ly = b依次递推求得y i, y2, ........ ,y n,再由方程Ux = y依次递推求得X n, x n-1 , ... ,X1 . 必须指出的是,当可逆矩阵A不满足?k工0时,应该用置换矩阵P左乘A以便使PA 的n个顺序主子式全不为零,此时有: Ly = pb { { Ux = y 这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。 2. 矩阵的QF分解 矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR其中Q为正交矩阵,R为实非奇异上三角矩阵。QR分解的实际算法各种各样,有Schmidt正交方

浅谈矩阵的LU分解和QR分解及其应用

浅谈矩阵的LU 分解和QR 分解及其应用 基于理论研究和计算的需要,往往有必要把矩阵分解为具有某种特性的矩阵之积,这就是我们所说的矩阵分解. 本文将介绍两种常用的矩阵分解方法,以及其在解线性方程组及求矩阵特征值中的应用. 1.矩阵的LU 分解及其在解线性方程组中的应用 1.1 高斯消元法 通过学习,我们了解到利用Gauss 消去法及其一些变形是解决低阶稠密矩阵方程组的有效方法.并且近些年来利用此类方法求具有较大型稀疏矩阵也取得了较大进展.下面我们就通过介绍Gauss 消去法,从而引出矩阵的LU 分解及讨论其对解线性方程组的优越性. 首先通过一个例子引入: 例1,解方程组 (1.1) (1. 2)(1.3) 解.1Step (1.1)(2)(1.3)?-+ 消去(1.3)中未知数,得到 23411x x --=-(1.4) 2Shep . (1.2)(1.4)+ 消去(1.4)中的未知数2 x 有12323364526x x x x x x ++=-=-=-????? 显然方程组的解为* x =123?? ? ? ? ?? 上述过程相当于 111604152211?? ?- ? ?-??~111604150411?? ?- ? ?---??~111 604150026?? ? - ? ? --?? 2-()+ ()i i r 表示矩阵的行

由此看出,消去法的基本思想是:用逐次消去未知数的方法把原方程化为与其等价的三角方程组. 下面介绍解一般n 阶线性方程组的Gauss 消去法. 设111n n1nn a a a a A ?? ?= ? ??? 1n x X x ?? ?= ? ??? 1n b b b ?? ? = ? ??? 则n 阶线性方程组 AX b =(1.5) 并且A 为非奇异矩阵. 通过归纳法可以将AX b =化为与其等价的三角形方程,事实上: 及方程(1.5)为()()1 1 A X b =,其中 ()1A A =()1 b b = (1) 设(1) 11 0a ≠,首先对行计算乘数() ()1 1i11 11i a m m =.用1i m -乘(1.5)的第一个方程加到第 ()2,3,,i i n =?个方程上.消去方程(1.5)的第2个方程直到第n 个方程的未知数1x . 得到与(1.5)等价的方程组()()()11n 12n 111nn 0a a x x a ????? ? ? ? ? ? ?????? =()()112n b b ?? ? ? ??? 简记作 ()()22A b =(1.6) 其中()()() ()()()211211111 ij ij i ij i i i a m b b m a a b =-=- (2) 一般第()11k k n ≤≤-次消去,设第1k -步计算完成.即等价于 ()()k k A X b = (1.7) 且消去未知数121,,,k x x x -?.其中() ()()() ()() ()()()()11 1 11 12 12222 2k k k k kk kn k nk nna n n a a a a a A a a a a ?? ? ? ? ? = ? ? ? ?? ?

相关主题
文本预览
相关文档 最新文档