当前位置:文档之家› 齿轮校核强度验算

齿轮校核强度验算

齿轮校核强度验算
齿轮校核强度验算

齿轮校核强度验算

2012年03月29日

目录

1. 选择齿轮材料 ......................................................... 4 2. 初步确定主要参数 .. (5)

2.1接触强度确定中心距 ................................................. 5 2.2初步确定模数、齿数、螺旋角、齿宽、变位系数等几何参数 ............... 6 3. 齿面接触强度核算 .. (7)

3.1分度圆上名义切向力t F .............................................. 7 3.2使用系数A K ....................................................... 7 3.3动载系数v K ....................................................... 7 3.4螺旋线载荷分布系数βH K ............................................ 8 3.5齿间载荷分布系数αH K .............................................. 8 3.6节点区域系数H Z ................................................... 8 3.7弹性系数E Z ....................................................... 8 3.8重合度系数εZ ..................................................... 9 3.9螺旋角系数βZ ..................................................... 9 3.10小齿轮大齿轮的单对齿啮系数B Z 、D Z .............................. 9 3.11计算接触应力H σ ................................................ 10 3.12寿命系数NT Z ................................................... 10 3.13润滑油膜影响系数R V L Z Z Z ....................................... 10 3.14齿面工作硬化系数W Z ............................................ 11 3.15尺寸系数X Z .................................................... 11 3.16安全系数H S .................................................... 11 4齿轮弯曲强度核算 . (12)

4.1螺旋线载荷分布系数βF K ........................................... 12 4.2螺旋线载荷分布系数αF K ........................................... 12 4.3齿轮系数αF Y (12)

4.4应力修正系数αS Y .................................................. 13 4.5重合度系数εY ..................................................... 13 4.6螺旋角系数βY ..................................................... 13 4.7计算齿根应力F σ .................................................. 14 4.8试验齿轮的应力修正系数ST Y ........................................ 14 4.9寿命系数NT Y ...................................................... 14 4.10相对齿根角敏感系数T re Y 1δ ......................................... 15 4.11相对齿根表面敏感系数T Rre Y 1....................................... 18 4.12尺寸系数x Y ..................................................... 18 4.13弯曲强度的安全系数F S . (18)

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为: Zj "亠 =■? 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为 (a) 丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b) V 2 2 _ dm2 _ R - ~ = ~R - 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 ~c = ? R =1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 AjIL 2cos8 --(e) 直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

齿轮校核强度验算

齿轮校核强度验算 2012年03月29日

目录 1. 选择齿轮材料 ......................................................... 4 2. 初步确定主要参数 .. (5) 2.1接触强度确定中心距 ................................................. 5 2.2初步确定模数、齿数、螺旋角、齿宽、变位系数等几何参数 ............... 6 3. 齿面接触强度核算 .. (7) 3.1分度圆上名义切向力t F .............................................. 7 3.2使用系数A K ....................................................... 7 3.3动载系数v K ....................................................... 7 3.4螺旋线载荷分布系数βH K ............................................ 8 3.5齿间载荷分布系数αH K .............................................. 8 3.6节点区域系数H Z ................................................... 8 3.7弹性系数E Z ....................................................... 8 3.8重合度系数εZ ..................................................... 9 3.9螺旋角系数βZ ..................................................... 9 3.10小齿轮大齿轮的单对齿啮系数B Z 、D Z .............................. 9 3.11计算接触应力H σ ................................................ 10 3.12寿命系数NT Z ................................................... 10 3.13润滑油膜影响系数R V L Z Z Z ....................................... 10 3.14齿面工作硬化系数W Z ............................................ 11 3.15尺寸系数X Z .................................................... 11 3.16安全系数H S .................................................... 11 4齿轮弯曲强度核算 . (12) 4.1螺旋线载荷分布系数βF K ........................................... 12 4.2螺旋线载荷分布系数αF K ........................................... 12 4.3齿轮系数αF Y (12)

KISSsoft关于齿轮强度的计算中文版

3. 强度计算 输入你自己的材料数据 在Kisssoft的数据库中已经包含了一些塑料的数据,如果你想在kisssoft中储存你的一些关于塑料齿轮的数据,你可以使用以下方法: 这里我们用已经做好的POM表 首先点击“Extras”->“Data base tool”,选择相应的数据然后进行计算,如图3-1。或者输入自己的数据,点击“material basic base”并在对话框的底部点击“+”,就会出现一个对话框,在这个对话框中就可以输入数据。如图3-2 (图3-1)

(图3-2) 结合有效的齿型计算强度 在KISSsoft系统中如何激活“graphical method(图解法)”。当你输入强度时,在对话框的右下方点击“Details”按钮,然后在“Form factor Yf and Ys”的下拉菜单中选择“using graphical method”如图所示

现在,计算时首先计算出的是齿轮的齿形系数Yf和它的应力修整系数Ys. 你也可以在KISSsoft系统中显示齿根应变系数,点击“Path of contact”输入你所需的设置参数,并进行运算。如下图: “Path of contact”的设置版面 然后你点击“Graphics”->“Path of contact”, 选择你所需要的图表,例如选择应力强度曲线(stress curve)的2D形式。

Tooth root stresses and Hertzian pressure

Tooth root stresses, progression in the tooth root

斜齿轮设计(详细计算过程有图有表全套)

例题:已知小齿轮传递的额定功率P=95 KW,小斜齿轮转速n1=730 r/min,传动比i=3.11,单向运转,满载工作时间35000h。 1.确定齿轮材料,确定试验齿轮的疲劳极限应力 参考齿轮材料表,选择齿轮的材料为: 小斜齿轮:38S i M n M o,调质处理,表面硬度320~340HBS(取中间值为330HBS) 大斜齿轮:35S i M n, 调质处理, 表面硬度280~300HBS(取中间值为290HBS) 注:合金钢可提高320~340HBS 由图16.2-17和图16.2-26,按MQ级质量要求选取值,查得齿轮接触疲劳强度极限σHlim及基本值σFE: σHlim1=800Mpa, σHlim2=760Mpa σFE1=640Mpa, σFE2=600Mpa

2.按齿面接触强度初步确定中心距,并初选主要参数:按公式表查得: a≥476(u+1)√KT1 φ a σHP2u 3 1)小齿轮传递扭矩T1: T1=9550×P n1 =9549× 95 730 =1243N.m 2)载荷系数K:考虑齿轮对称轴承布置,速度较低,冲击负荷较大,取K=1.6 3)查表16.2-01齿宽系数φα:取φα=0.4

4)齿数比u=Z2/Z1=3.11 5)许用接触应力σHP:σ HP =σHlim S Hmin 查表16.2-46,取最小安全系数s Hmin=1.1,按大齿轮计算σ HP2=σHlim2 S Hmin2 =760 1.1 MPa= 691MPa 6)将以上数据代入计算中心距公式:a≥476(3.11+1)√ 1.6×1243 0.4×6912×3.11 3 =292.67mm 取圆整为标准中心距a =300mm 7)确定模数:按经验公式m n=(0.007~0.02)α=(0.007~0.02)x300mm=2.1~6mm 取标准模数m n=4mm 8)初选螺旋角β=9°,cosβ= cos9°=0.988 9)确定齿数:z1=2acosβ m n(u+1)=2×300×0.988 4×(3.11+1) =36.06 Z2=Z1i=36.03×3.11=112.15 Z1=36,Z2=112 实际传动比i实=Z2/Z1=112/36=3.111 10)求螺旋角β:

齿轮设计校核

问题 : 对直齿圆柱齿轮减速器,小齿轮为50齿,大齿轮75齿,模数为4,材料都为40Cr 。小齿轮速度为2300转每分钟,传递的功率为235KW,不用考虑效率。工作年限为10年,每天2小时,轻微震动 齿轮几何尺寸计算 <1>计算分度圆直径 11504200d z m mm =?=?= 22754300d z m mm =?=?= <2>计算中心距 12()/2(200300)/2250a d d mm =+=+= 1按齿面接触疲劳强度设计校核 1.1各参数值的确定 ⑴小齿轮传递的扭矩 65119.55*10/9.75810T P n N mm ==?? ⑶由参考文献[2]表6.6,可取齿宽系数0.1=d φ。 ⑷由参考文献[2]表6.5知弹性系数MPa Z E 8.189=。 ⑸由参考文献[2]图6.15知节点区域系数5.2=H Z ⑹齿数比 1.5u =。 ⑺计算端面重合度 11*1=arccos[cos /(2)]25.365z z h ααα+=? 2*22=arccos[cos /(2)]24.006z z h ααα+=? 1122[(tan tan ')(tan tan ')]/2z z αααεαααα=-+-π =1.879αε 0.841Z ε== 1.2计算载荷系数 (1)由参考文献[2]表6.3查得使用系数 1.2A K =。因 11 151.9582300 18.29/601000601000t d n v m s ππ??===?? (2)由参考文献[2]图6.7查得动载荷系数 1.25v K =。 (3)由参考文献[2]图6.12查得齿向载荷分布系数 1.421K β=。 (4)由参考文献[2]表6.4查得齿间载荷分配系数 1.0K α=。 故载荷系数 1.2 1.25 1.421 1.0 2.1315A v K K K K K βα==???=。

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿 轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距R (图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d m1 d m2当量齿轮的分度圆直径d v1, d v2之间的关系分别为: —=cotO| =tan5j di 2 ' 2 】2 也亠= R-0.5b 亠05丄 _______________________________ 右 dj R R 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 于是《^二即-0?5備 ------------------------------- (d ) 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 q= d 脏 V 2cos6 现以m m 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 Z v 为 (h) R =1/3 O V) R 2 巧 i ■ A & ... = 直齿锥齿轮传动的几何参数

山 2片 Z J =—=—=—--- m 肌 cos5 U =匹=乞.沁 V c Z 屮] Z] COSO 士 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d )极易得出平均模数m 和大端模数m 的关系为 叫二呗―05 虬) -------------------------------------- (11) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图。 OAB 为分度圆锥,总』和用为轮齿在球面上的齿顶高和齿根高, 过点A 作直线AO 丄AO 与圆锥齿轮轴线交于点 O ,设想以OO 为轴线,OA 为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A B 附近背锥 面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大 端球面上的齿形。从而实现了平面近似球面。 (g)

齿轮强度计算公式

齿轮强度计算公式

JXSJ 52 第7节 标准斜齿圆柱齿轮的强度计算 一. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E ---弹性系数 2) Z H ---节点区域系数 3) εα---斜齿轮端面重合度 4) β---螺旋角。斜齿轮:β=80~250;人字齿轮β=200~350 5) 许用应力:[σH ]=([σH1]+[σH2])/2≤1.23[σH2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=K t b) 计算d t c) 修正d t 二. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: [] H t H E H u u bd KF Z Z σεσα≤±=1 1[] 3 2 1112??? ? ??±≥H H E d Z Z u u KT d σεψα[]3 2 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ311t t K K d d ≥[] F n sa Fa t F bm Y Y Y KF σεσα β ≤=

JXSJ 53 设计式: 3. 参数取值说明 1) Y F a 、Y Sa ---齿形系数和应力修正系数。 Z v =Z/cos 3β→Y Fa 、Y Fa 2) Y β---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=K t e) 计算m nt f) 修正m n 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 []3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥3t t n n K K m m ≥[] 3 212 1cos 2F sa Fa d t nt Y Y z Y T K m σεψβαβ≥相交两轴夹角90

塑料齿轮强度校核方法1

塑料齿轮强度校核方法 马瑞伍,余毅,张光彦 (深圳市创晶辉精密塑胶模具有限公司,广东省深圳市518000) 【摘要】随着动力传递型塑料齿轮应用领域的不断拓展,如何评估或校核塑料齿轮的强度成为设计者不得不考虑的难题。由于塑料材料种类繁多,且不同种类的塑料性能指标差异很大,所以迄今为止有关塑料齿轮的强度算法还未形成统一的标准。目前,具有代表性的塑料齿轮强度算法主要四种:①尼曼&温特尔法;②VDI 2545标准法;③KISSsoft软件基于VDI 2545标准修正法;④宝理“Duracon”法。由于第②种算法已经废止,第③种算法主要以软件形式发布,因此本文将主要介绍第①和第④种算法,以期能为塑料齿轮的设计起到一定的借鉴意义。 【关键词】塑料齿轮强度设计 1引言 在国内,塑料齿轮起步于20世纪70年代。在发展初期,塑料齿轮主要应用集中在水电气三表的计数器、定时器、石英闹钟、电动玩具等小型产品中。这时期的塑料齿轮的多为直径一般不大于25mm,传递功率一般不超过0.2KW的直齿轮。换言之,早期的塑料齿轮主要用于小空间内的运动传递,属于运动传递型齿轮。随着注塑模具技术与注塑装备及注塑工艺水平的不断提高,模塑成型尺寸更大、强度更高的塑料齿轮成为可能。现在,塑料齿轮传递动力可达 1.5KW,直径已超过150mm。动力型塑料齿轮已经成为众多产品动力传递系统的重要组成部分。虽然动力型塑料齿轮的应用越来越广泛,但相应的塑料齿轮强度计算理论或标准却比较匮乏。目前,塑料齿轮的强度计算多以金属齿轮的强度计算方法为参考,通过修正或修改某些系数来计算或评估塑料齿轮的强度是否满足使用要求,然后再通过实验方法验证强度是否满足使用要求。下面,本文将介绍具有代表性的塑料齿轮强度的计算方法或观点,以期能够为塑料齿轮的强度设计提供借鉴。2塑料齿轮强度计算方法 从查阅到的相关文献资料看,塑料齿轮的强度计算方法基本上沿用了金属齿轮的强度校核理论及计算公式。这些计算方法主要是根据材料的差异对金属齿轮的强度校核公式中的某些系数进行简化或修正。比较有代表性的塑料齿轮强度计算方法主要有四种: ①尼曼&温特尔法:该算法在尼曼&温特尔的世界名著《机械零件》第2卷第22.4节中做了明确的论 述。 ②VDI 2545标准法:该算法是VDI于1981年发布的一份指导标准。该标准仅提供了三种基础材料 POM、PA12和PA66的相关数据用于评估塑料齿轮的强度。该算法在强度计算时未考虑温度对塑料强度的影响。 ③KISSsoft软件基于VDI 2545标准修正法:该算法是KISSsoft公司基于VDI 2545标准而提出的塑料 齿轮强度的一种修正算法。该方法主要是修正VDI 2545标准中强度受温度变化的影响关系。同时,该公司与各大主流塑料材料供应商合作,提供了POM、PA12、PA66、PEEK四种主要塑齿材料的性能数据,并采用软件形式发布,为塑料齿轮设计者评估塑料齿轮的强度提供了软件工具。 ④宝理“Duracon”法:该算法是日本宝理公司发布的一种针对共聚聚甲醛(POM)材料的塑料齿轮 强度评估算法。 鉴于第②种算法已经废止,第③种算法主要以软件形式发布,因此本文将主要介绍第①、④两种算法。 2.1尼曼&温特尔法 尼曼&温特尔在其名著《机械零件》一书中指出:塑料齿轮可能出现和钢齿轮相同的破坏形式:点蚀、

塑料齿轮强度校核方法

塑料齿轮强度校核方法 The manuscript was revised on the evening of 2021

塑料齿轮强度校核方法 马瑞伍,余毅,张光彦 (深圳市创晶辉精密塑胶模具有限公司,广东省深圳市 518000) 【摘要】随着动力传递型塑料齿轮应用领域的不断拓展,如何评估或校核塑料齿轮的强度成为设计者不得不考虑的难题。由于塑料材料种类繁多,且不同种类的塑料性能指标差异很大,所以迄今为止有关塑料齿轮的强度算法还未形成统一的标准。目前,具有代表性的塑料齿轮强度算法主要四种:①尼曼&温特尔法;②VDI 2545标准法;③KISSsoft软件基于VDI 2545标准修正法;④宝理“Duracon”法。由于第②种算法已经废止,第③种算法主要以软件形式发布,因此本文将主要介绍第①和第④种算法,以期能为塑料齿轮的设计起到一定的借鉴意义。 【关键词】塑料齿轮强度设计 1引言 在国内,塑料齿轮起步于20世纪70年代。在发展初期,塑料齿轮主要应用集中在水电气三表的计数器、定时器、石英闹钟、电动玩具等小型产品中。这时期的塑料齿轮的多为直径一般不大于25mm,传递功率一般不超过的直齿轮。换言之,早期的塑料齿轮主要用于小空间内的运动传递,属于运动传递型齿轮。随着注塑模具技术与注塑装备及注塑工艺水平的不断提高,模塑成型尺寸更大、强度更高的塑料齿轮成为可能。现在,塑料齿轮传递动力可达,直径已超过150mm。动力型塑料齿轮已经成为众多产品动力传递系统的重要组成部分。虽然动力型塑料齿轮的应用越来越广泛,但相应的塑料齿轮强度计算理论或标准却比较匮乏。目前,塑料齿轮的强度计算多以金属齿轮的强度计算方法为参考,通过修正或修改某些系数来计算或评估塑料齿轮的强度是否满足使用要求,然后再通过实验方法验证强度是否满足使用要求。下面,本文将介绍具有代表性的塑料齿轮强度的计算方法或观点,以期能够为塑料齿轮的强度设计提供借鉴。 2塑料齿轮强度计算方法 从查阅到的相关文献资料看,塑料齿轮的强度计算方法基本上沿用了金属齿轮的强度校核理论及计算公式。这些计算方法主要是根据材料的差异对金属齿轮的强度校核公式中的某些系数进行简化或修正。比较有代表性的塑料齿轮强度计算方法主要有四种: ①尼曼&温特尔法:该算法在尼曼&温特尔的世界名着《机械零件》第2卷第节中做了明确的论述。 ②VDI 2545标准法:该算法是VDI于1981年发布的一份指导标准。该标准仅提供了三种基础材料 POM、PA12和PA66的相关数据用于评估塑料齿轮的强度。该算法在强度计算时未考虑温度对塑料强度的影响。 ③KISSsoft软件基于VDI 2545标准修正法:该算法是KISSsoft公司基于VDI 2545标准而提出的塑料 齿轮强度的一种修正算法。该方法主要是修正VDI 2545标准中强度受温度变化的影响关系。同时,该公司与各大主流塑料材料供应商合作,提供了POM、PA12、PA66、PEEK四种主要塑齿材料的性能数据,并采用软件形式发布,为塑料齿轮设计者评估塑料齿轮的强度提供了软件工具。 ④宝理“Duracon”法:该算法是日本宝理公司发布的一种针对共聚聚甲醛(POM)材料的塑料齿轮 强度评估算法。 鉴于第②种算法已经废止,第③种算法主要以软件形式发布,因此本文将主要介绍第①、④两种算法。 2.1尼曼&温特尔法 尼曼&温特尔在其名着《机械零件》一书中指出:塑料齿轮可能出现和钢齿轮相同的破坏形式:点蚀、磨损、轮齿折断。当塑料齿轮与钢齿轮配对时,只须验算塑料齿轮的承载能力。在热塑性塑料中还须注意其

齿轮校核

齿轮强度校核 1档位参数 传输功率:600kW 输入转速:25.68rpm;输出转速:6.0rpm Z1=25m=36 42CrMo Z2=107m=36 ZG35CrMo 齿宽:600mm 热处理:a)软齿面B)硬齿面(中频表面淬火) 2强度校核 1)根据软齿面检查 a)系数选择 使用系数Ka=1.25动载荷系数kV=1.2齿重分布系数KH=1.025 KF=1.0齿间载荷分配系数KH=1.2kf=1.2应力修正系数ysa1=1.58ysa1=1.8

弹性系数Ze=189.8,寿命系数Zn1=1.6,Zn2=1.58,yn1=2.3,YN2=2.2齿廓系数yfa1=2.75 yfa2=2.3 b)确定疲劳极限 接触疲劳极限σH1=1180mpaσh2=650mpa 弯曲疲劳极限σF1=380MPaσF2=300mpa 最小接触安全系数sh=1.1 最小弯曲安全系数sh=1.3 c)计算结果 2)硬齿面检查 a)系数选择 分布系数KF=1.01,齿重=1.01,KF=1.01 齿间载荷分配系数KH=1.1kf=1.1,应力修正系数ysa1=1.58,ysa1=1.8弹性系数Ze=189.8,寿命系数Zn1=1.6,Zn2=1.58,yn1=2.3,YN2=2.2

齿廓系数yfa1=2.75 yfa2=2.3 b)确定疲劳极限 接触疲劳极限σH1=1200Mpaσh2=700MPa 弯曲疲劳极限σF1=400MPaσF2=350Mpa 最小接触安全系数sh=1.2 最小弯曲安全系数sh=1.5 d)计算结果 齿轮是一种机械元件,它在轮缘上连续啮合以传递运动和动力。变速器已经使用很长时间了。19世纪末,齿轮加工方法的生成原理和基于此原理的专用机床和工具层出不穷。随着生产的发展,齿轮传动的稳定性越来越受到人们的重视。 通常有齿、槽、端面、法向面、顶圆、根圆、基圆和分度圆。 轮齿

(整理)2齿轮的设计及校核

2 齿轮的设计及校核 2.1 设计参数及基本参数 表2.1 设计对象主要参数 项目参数 前进档档数 5 最高时速140km/h 最大扭矩200Nm/1400r/min 最高转速4800r/min 传动比范围0.5-5.57 2.1.1 基本参数表 表2.2 各档传动比 传动比/档位一档二档三档四档五档计算值 5.57 3.14 1.77 1 0.56 实际值 5.46 3.20 1.76 1 0.58 表2.3各档齿轮齿数 档位/齿数常啮合一档二档三档五档倒档输出轴齿轮21 40 36 28 18 36

2.2 齿轮参数确定 2.2.1 齿形、压力角α、螺旋角β 汽车变速器齿轮的齿形、压力角、及螺旋角按表2.4选取。 压力角 一般大的压力角,可提高齿轮的抗弯强度与表面强度,使承载能力加大;而小的压力角,会使重合度加大,降低轮齿刚度,但其减少了动载荷,使传动平稳,降低噪声。 本设计的商用汽车要求承载能力大,齿轮的强度高,采用大压力角,全部齿轮选用相同的压力角,按国家标准为20°。 2.2.2 齿宽 (1)设计齿宽的要求 设计变速器各齿轮齿宽,应考虑变速器的质量与轴向尺寸,同时 中间轴齿轮 38 13 23 31 41 19 表2.4汽车变速器齿轮的齿形、压力角与螺旋角 项目/车型 齿形 压力角α 螺旋角β 轿车 高齿并修形的齿形 14.5°,15°,16°16.5° 25°~45° 一般货车 GB1356-78规定的标准齿形 20° 20°~30° 重型车 同上 低档、倒档齿轮22.5°,25° 小螺旋角

也要保证齿轮工作平稳以及轮齿的强度要求。齿宽可以设计得小,这样就可以减少变速器的轴向尺寸和减小质量,工作应力也会加大。而大的齿宽,工作时会因轴的变形导致齿轮倾斜,齿轮会受力不均匀产生偏载,所以应合理设计齿宽的大小。 (2)齿宽的设计方案 第一轴常啮合齿轮的齿宽可以设计得大一些,使接触应力降低,提高齿轮的传动平稳性,此外,对于选取相同的模数的各档齿轮,档位低的齿轮的齿宽(如一档齿轮齿宽)可以取得稍大一些。因而设计齿宽的时候,将影响总体设计中的变速器总的轴向尺寸。 通常根据齿轮模数的大小来选定齿宽: 直齿 b=(4.5~8.0)m ,mm 斜齿 b=(6.0~8.5)m ,mm 第一轴常啮合齿轮副齿宽的系数值可取大一些,使接触线长度增加,接触应力降低,以提高传动的平稳性和齿轮寿命。 一档齿轮:取c K =8,则齿宽为23.5mm 。 二档齿轮:取c K =7.5,则齿宽为24.5mm 。 三档齿轮: 取c K =7.5,则齿宽为25.5mm 。 五档齿轮: 取c K =7.5,则齿宽为27mm 。 常啮合齿轮:取c K =8.5,则齿宽为23.4mm 。 2.2.3 齿轮的几何参数计算 一档齿轮副: 模数mm m n 3

齿轮强度校核的新方法(图文)

齿轮强度校核的新方法(图文)论文导读:使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。本文应用了APDL,即ANSYS参数化设计语言(ANSYSParametricDesignLanguage),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。关键词:ANSYS,直齿圆柱齿轮,接触应力,齿根弯曲应力 0引言 齿轮作为在机械结构中经常用到的重要的传动零件,其强度直接影响到整个机械结构的工作性能和寿命,然而在传统齿轮设计中,齿轮的强度校核过程和设计过程主要是通过人工设计完成,计算繁琐,设计周期长且难以实现优化设计。 本文采用有限元分析法对渐开线标准圆柱直齿轮进行接触应力和齿根弯曲应力进行分析计算。并且在有限元分析中,对AYSYS[1]软件进行二次开发,即应用了APDL[2]语言,自动实现了齿轮的参数精确建模,自适应网格划分和有限元强度分析。 最后和传统经典方法进行了对比分析,证明了本方法的准确性。具有实际操作性和推广价值。论文发表。 1.齿轮强度分析的基本要求 在机械专业中,减速机是主要的重要的传动机构,而齿轮传动是其中最常见的实现方式。论文发表。因此齿轮零件的设计就显得尤为重要。

其中齿轮应力强度校核是齿轮结构设计的前提,只有相互啮合的齿轮通过了接触和弯曲强度校核计算,才能进行齿轮结构设计。当然相互啮合的齿轮种类十分繁杂。这里我们为方便起见,只考虑渐开线标准圆柱直齿轮的问题。 传统的应力强度校核计算十分烦琐,需要查阅机械设计手册中大量的数据(包括图形和图表)。而传动机构中往往是多对齿轮啮合,其中有一对不符合要求,整个计算就得重来,耗费了设计者大量的精力。因此借助计算机及相应软件完成对齿轮的优化设计十分必要。使用有限元分析软件ANSYS对齿轮进行强度分析,可对齿轮的强度设计提供可靠的依据,实现变速器齿轮的计算机辅助设计,可以加快设计进程、缩短研制周期、提高设计质量。 本文应用了APDL,即ANSYS参数化设计语言(ANSYS Parametric Design Language),设计直齿圆柱齿轮模块以及应用ANSYS有限元软件进行有限元分析方面,做一些初步的探索。 2.问题研究的主要方法及实例 本文以ANSYS软件为平台,以直齿圆柱齿轮为实例,研究了在ANSYS 环境下实现直齿轮精确建模和应力分析的方法,并与弹性力学和机械手册的计算结果进行了比较。 2.1ANSYS软件介绍 ANSYS是一个大型通用有限元软件。在机械结构系统中.主要在于分析机械结构系统受到负载后产生的力学效应.如位移、应力、变形等.根据该结果判断是否符合设计要求。

齿轮的校核与计算

1. 设计计算 1) 选择齿轮材料,确定许用应力 由表6.2选 小齿轮40Cr 调质 大齿轮 45 正火 许用接触应力[]Hlim H N Hmin Z S = s s 接触疲劳极限Hlim s 查图6-4 接触强度寿命系数N Z ,应力循环次数 811h 60603521(828365)9.86710N n jL ==创创创= 88211/9.86710/2.95 3.34510N N i ==? 查图6-5得N1N2==1Z Z 接触强度最小安全系数Hmin =1S 则[]2 H1700 1.03/1=721/N mm s = []2H2550 1.15/1=623/N mm s = 许用弯曲应力[]Flim F N X Fmin Y Y S = s s 弯曲疲劳强度极限2Flim1=378/N mm s 2Flim2=294/N mm s ,查图6-7,双向传动乘以0.7 弯曲强度寿命系数N =1Y ,查图6-8 弯曲强度尺寸系数X =1Y ,查图6-9(设模数m 小于5 mm ) 弯曲强度最小安全系数Fmin S 则[]2 F13781/1.4=270/N mm s = []2F22941/1.4=210/N mm s = 1) 齿面接触疲劳强度设计计算

确定齿轮的传动精度等级,按t (0.0130.022)v n = 度t 3.26m/s v =,参考表6.7,表6.8选取 小轮分度圆直径 1d 3齿宽系数d y 查表6.14=1d ψ 小齿轮齿数1z ,在推荐值20~40中选122z = 大齿轮齿数2z ,21 4.122089.5z iz ==?2=90Z 齿数比21/83/20=4.15u z z == 小轮转矩2T 241910 N mm T = 初定螺旋角00=15β 载荷系数K A V K K K K K b a b = A K ——使用系数,查表6.3 V K ——动载系数,由推荐值1.05~1.4 αK ——齿间载荷分配系数,由推荐值1~1.2 K b b ——齿向载荷分布系数由推荐值1.0~1.2 载荷系数 1.25 1.2 1.1 1.1 1.815K =创? 材料弹性系数E Z 查表6.4E Z 节点区域系数H Z 查图6-3=2.45H Z 重合度系数εZ 由推荐值0.75~ 0.88=0.78Z ε 螺旋角系数Z β 故,1d 31=d 46.22 法面模数n m 11cos / 2 mm n m d z b ==按表6.6圆整

标准齿轮参数计算

标准齿轮模数尺数计算公式 找对应表太不现实了! 告诉你一简单的: 齿轮的直径计算方法: 齿顶圆直径=(齿数+2)*模数 分度圆直径=齿数*模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34*3.5 齿顶圆直径=(32+2)*4=136mm 分度圆直径=32*4=128mm 齿根圆直径=136-4.5*4=118mm 7M 12齿中心距D=(分度圆直径1+分度圆直径2)/2 就是 (12+2)*7=98mm 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(GB1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30 上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法 Circular Pitch (CP)周节 齿轮分度圆直径d的大小可以用模数(m)、径节(DP)或周节(CP)与齿数(z)表示 径节P(DP)是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言 径节与模数有这样的关系: m=25.4/DP CP1/8模=25.4/DP8=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米(mm)。 除模数外,表示轮齿大小的还有CP(周节:Circular pitch)与DP(径节:Diametral pitch)。 【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按ISO标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。

变位齿轮参数及计算

一.带安全阀齿轮泵齿轮零件图所需参数表 法面模数 n m 4 齿数z 10 压力角α20° 全齿高h 9.1199 螺旋角β9.63° 螺旋方向右 变位系数x 0.40394 精度等级8-7-7JL 齿圈径向跳动Fr 0.050 公法线长度变 动公差 Fw 0.040 基节极限偏差±fpb ±0.016 齿形公差 f f0.014 齿向公差Fb 0.011 齿厚上偏差Ess -0.186 下偏差Esi -0.288 二.齿轮测绘和变位齿轮参数测量和计算 一.任务内容: 根据齿轮测绘的数据,计算出齿轮的各参数,为齿轮零件图提供正确数据。 二.准备知识 1.变位齿轮的定义: 通过改变标准刀具对齿轮毛坯的径向位置或改变标准刀具的齿槽宽度切制出的齿形为非标准渐开线齿形的齿轮。 2.齿轮类型判别: 两齿轮为大小相同的一对斜齿轮,齿数为10。因此,齿轮是变位齿轮。标准的渐开线齿轮的最小齿数应是17个齿。本齿轮泵中的齿轮齿数少于17个齿,就一定是变位齿轮。变位齿轮使齿轮传动结构紧凑,齿轮的强度增加。 3.变位齿轮的类型 变位齿轮有两大类:高度变位传动和角度变位传动,如下表所示。 传动类型高度变位传动又称零传动 角度变位传动 正传动负传动 齿数条件z1+z2≥2Zmin z1+z2<2zmin z1+z2>2zmin 变位系数要 求 x1+x2=0,x1=-x2≠0x1+x2>0 x1+x2<0 传动特点a'=a, α'=α, y=0 a'>a, α'>α, y>0 a'

主要优点 小齿轮取正变位,允许 z1a 的中心距要求。 重合度略有提高,满足 a'

相关主题
文本预览
相关文档 最新文档