当前位置:文档之家› 电磁感应定律

电磁感应定律

电磁感应定律
电磁感应定律

电磁感应1

1. 如图所示,金属直杆MN 两端接有导线,通过细导线水平悬挂于竖直放置的线圈上方,MN 与线圈轴线处于同一竖直平面内。若将a 、c 端接电源正极,b 、d 端接电源负极,则此时金属直杆MN 受到安培力的方向是

A. 竖直向上

B. 竖直向下

C. 垂直纸面向外

D. 垂直纸面向里 2. 如图所示,当导线棒MN 在外力作用下沿导轨向右运动时,流过R 的电流方向是

A. 由A 到B

B. 由B 到A

C. 无感应电流

D. 无法判断 3. 下列说法中正确的是

A. 线圈中磁通量变化越大,线圈中产生的感应电动势一定越大

B. 线圈中磁通量越大,线圈中产生的感应电动势一定越大

C. 线圈放在磁场越强的位置,线圈中产生的感应电动势一定越大

D. 线圈中磁通量变化越快,线圈中产生的感应电动势一定越大

4. 粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a 、b 两点间电势差绝对值最大的是

A. A

B. B

C. C

D. D

5. 如图所示,ab 是水平面上一个圆的直径,在ab 的正上方有一根通电导线ef ,且ef 平行于ab ,当ef 竖直向上平移时,穿过这个圆面的磁通量将( )

A. 逐渐变大

B. 逐渐变小

C. 始终为零

D. 不为零,但始终保持不变

6. 一正方形导体框abcd ;其单位长度的电阻值为r ,现将正方形导体框置于如图所示的匀强磁场中,磁感应强度的大小为B ,用不计电阻的导线将导体框连接在电动势为E ,不计内阻的电源两端,则关于导体框所受的安培力下列描述正确的是

A. 安培力的大小为2EB r ,方向竖直向上

B. 安培力的大小为4EB

3r ,方向竖直向下

C. 安培力的大小为EB r ,方向竖直向下

D. 安培力的大小为EB

r ,方向竖直向上

7. 矩形导线框固定在匀强磁场中,如图①所示.磁感线的方向与导线框所在平面垂直,规定磁场的正方向为垂直纸面向里,磁感应强度B 随时间t 变化的规律如图②所示,则( )

A. 从0到t 1时间内,导线框中电流的方向为abcda

B. 从0到t 1时间内,导线框中电流越来越小

C. 从0到t 2时间内,导线框中电流的方向始终为adcba

D. 从0到t 2时间内,导线框ab 边受到的安培力越来越大

8. 法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是()

A. 既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流

B. 既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流

C. 既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势

D. 既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流

9. 一个面积S=4×10-2 m2、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t 变化的规律如图所示,则下列判断正确的是()

A. 在开始的2 s内穿过线圈的磁通量的变化率等于-0.08 Wb/s

B. 在开始的2 s内穿过线圈的磁通量的变化量等于零

C. 在开始的2 s内线圈中产生的感应电动势等于-0.08 V

二、多选题

A. 磁通量的变化量

B. 磁通量的变化率

C. 感应电流的大小

D. 流过导体横截面的电荷量

11. 如图,bc间电阻为R,其他电阻均可忽略,ef是一电阻不计的水平放置的导体棒,质量为m,棒的两端分别与竖直框架保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当ef从静止下滑经一段时间后闭合S,则

A. S闭合后ef可能立即做匀速运动

B. ef最终速度随S闭合时刻的不同而不同

C. S闭合后一段时间内ef可能做加速运动

D. ef的机械能与回路内产生的电能之和一定不变

12. 有一种高速磁悬浮列车的设计方案是:在每节车厢底部安装强磁铁(磁场方向向下),并且在沿途两条铁轨之间平放一系列线圈.下列说法中正确的是()

A. 列车运动时,通过线圈的磁通量会发生变化

B. 列车速度越快,通过线圈的磁通量变化越快

C. 列车运动时,线圈中会产生感应电动势

D. 线圈中的感应电动势的大小与列车速度无关

13. 一空间有垂直纸面向里的匀强磁场B,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图所示,磁感应强度

B=0.5 T,导体棒AB、CD长度均为0.2 m,电阻均为0.1 Ω,重力均为0.1 N,现用力向上拉动导体棒AB,使之匀速上升(导体棒AB、CD与导轨接触良好),此时CD静止不动,则AB上升时,下列说法正确的是()

A. AB受到的拉力大小为2 N

B. AB向上运动的速度为2 m/s

C. 在2 s内,拉力做功,有0.4 J的机械能转化为电能

D. 在2 s内,拉力做功为0.6 J

14. 单匝矩形线圈在匀强磁场中匀速转动,转动轴垂直于磁场。若线圈所围面积的磁通量随时间变化的规律如图所示,则()

A. 线圈中O时刻感应电动势最小

B. 线圈中C时刻感应电动势为零

C. 线圈中C时刻感应电动势最大

D. 线圈从O至C时间内平均感应电动势为0.4 V

15. 如图甲所示,100匝的线圈横截面积是0.1 m2,线圈两端A、B与一个理想电压表相连。线圈中有垂直纸面向里的磁场,磁场的磁感应强度按图乙规律变化,则()

甲乙

A. 电压表的示数是2 V

B. 电压表的示数是2.5 V

C. A点电势高于B点

D. B点电势高于A点

16. 下列说法正确的是()

A. 电路中如果存在感应电动势,那么就一定存在感应电流

B. 电路中如果有感应电流,那么就一定有感应电动势

C. 穿过电路的磁通量变化量越大,电路中产生的感应电动势越大

D. 穿过电路的磁通量变化率越大,电路中产生的感应电动势越大

17. 将一磁铁缓慢或者迅速地插到闭合线圈中的同一位置,不发生变化的物理量是()

A. 磁通量的变化量

B. 磁通量的变化率

C. 感应电流的大小

D. 感应电流的方向

18. 如图所示,半径为r的n匝线圈在边长为l的正方形ABCD之外,匀强磁场充满正方形区域并垂直穿过该区域,当磁场以ΔB

Δt

的变化率变化时,线圈产生的感应电动势大小为。

19. 在如图甲所示的电路中,螺线管匝数n=1 500,横截面积S=20 cm2。螺线管导线电阻

r=1.0 Ω,R

1=4.0 Ω,R

2

=5.0 Ω,C=30 μF。在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化,

则电容器上极板带电,电容器所带的电荷量为C。

20. 如图所示,两平行长直金属导轨置于竖直平面内,间距为L ,导轨上端有阻值为R 的电阻,质量为m 的导体棒垂直跨放在导轨上,并搁在支架上,导轨和导体棒电阻不计,接触良好,且无摩擦.在导轨平面内有一矩形区域的匀强磁场,方向垂直于纸面向里,磁感应强度为B .开始时导体棒静止,当磁场以速度v 匀速向上运动时,导体棒也随之开始运动,并很快达到恒定的速度,此时导体棒仍处在磁场区域内,试求:

(1)导体棒的恒定速度;

(2)导体棒以恒定速度运动时,电路中消耗的电功率.

21. 如图所示,长L 1、宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v 匀速拉出磁场的过程中。

(1)拉力F 大小; (2)拉力的功率P ; (3)拉力做的功W ;

(4)线圈中产生的电热Q ;

(5)通过线圈某一横截面的电荷量q 。

22. 如图所示,MN 、PQ 为光滑金属导轨(金属导轨电阻忽略不计),MN 、PO 相距L =50 cm,导体棒AB 在两轨道间的电阻为r =1 Ω,且可以在MN 、PQ 上滑动,定值电阻R 1=3 Ω,R 2=6 Ω,整个装置放在磁感应强度为B =1.0 T 的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F 拉着AB 棒向右以v =5 m/s 速度做匀速运动。求:

(1)导体棒AB 产生的感应电动势E 和AB 棒上的感应电流方向。 (2)导体棒AB 两端的电压U AB 。

参考答案

1. 【答案】C 【解析】根据右手螺旋定则可知通电线圈的上端相当于磁铁N 极,再根据左手定则可知,金属直杆中电流由M 到N ,所以金属直杆受到的安培力垂直纸面向外,C 正确。

2. 【答案】A 【解析】根据右手定则,磁感线垂直穿过掌心,大拇指与切割方向一致,四指指向即为感应电流的方向,所以流过R 的电流方向是由A 到B ,A 项正确,BCD 项错误;综上本题选A 。

3. 【答案】D 【解析】根据法拉第电磁感应定律,有E =n ΔΦ

Δt ,磁通量变化大,不能确定磁通量的变化率大,所以感应电动势不一定大,A 项错误;磁通量大,也不能确定磁通量的变化率大,所以感应电动势不一定大,B 项错误;磁场较强,不能保证磁通量变化,且变化率大,所以电动势不一定大,C 项错误;线圈中磁通量变化越快,说明磁通量的变化率大,线圈中产生的感应电动势一定越大,D 项正确;综上本题选D 。

4. 【答案】B 【解析】本题考查了法拉第电磁感应定律内容,意在考查学生的理解和应用能力。

设正方形线框的边长为l 。根据法拉第电磁感应定律,导线切割磁感线产生的电动势为Blv ,选项ACD 中a 、b 两

点间的电势差的绝对值为14

Blv ,选项B 中a 、b 两点间的电势差的绝对值为3

4

Blv 。综上本题选B 。

5. 【答案】C 【解析】解:由题,通电直导线产生稳定的磁场,由于从线圈这面穿过,又从这面穿出,则穿过线框的磁感线的条数为零,磁通量为零,当ef 竖直向上平移时,穿过这个圆面的磁通量将为零,故C 确,ABD 错误

6. 【答案】B 【解析】由图可知,电路接通后流过导体框的电流方向为ad 及abcd ,假设导体框的边长为L ,由

欧姆定律可得ad 边的电流大小为I 1=F Lr ,流过bc 边的电流大小为I 2=F

3Lr

;又由左手定则可知两边所受的安培力

方向均竖直向下,则导体框所受的安培力大小为F =BI 1L +BIL 2=

4EB

3r

,故选项B 正确;故选B.

7. 【答案】C 【解析】由楞次定律,从0到t 2时间内,导线框中电流的方向始终为adcba ,A 错误、C 正确;由法拉第

电磁感应定律和闭合电路欧姆定律,从0到t 2时间内,导线框中电流恒定,B 错误;由安培力公式,从0到t 2时间内,导线框ab 边受到的安培力先减小后增大,D 错误.

8. 答案】A 【解析】由电磁感应原理,可判断A 正确.

9. 【答案】A 【解析】由E =n ΔΦΔt =n ΔB

Δt ·S 得 在开始的2 s 内线圈中产生的感应电动势

E =100×-42

×4×10-2

V=-8 V

磁通量变化率

ΔΦ

Δt

=-0.08 Wb/s 第3 s 末虽然磁通量为零,但磁通量变化率为0.08 Wb/s,故感应电动势不为零。所以选A 。

10. 【答案】AD 【解析】本题考查了法拉第电磁感应定律的知识点,意在考查考生的应用能力。将磁铁插到闭合线圈的同一位置,磁通量的变化量相同.而用的时间不同,所以磁通量的变化率不同.感应电流I =E R

=△Φ

△t?R ,感应

电流的大小不同,流过线圈横截面的电荷量q =

△Φ

R

,两次磁通量的变化量相同,电阻不变,所以q 与磁铁插入线

圈的快慢无关.选A 、D.

11. 【答案】ACD 【解析】本题考查了法拉第电磁感应定律的内容,意在考查学生的理解和应用能力。

当ef 从静止下滑经一段时间后,由于有一定的速度,故闭合S 后可能受到的安培力与重力大小相等,做匀速运动,选项A 正确;当闭合S 后也可能受到的安培力小于重力,则S 闭合后一段时间内ef 做加速运动,选项C 正确;不论哪个时刻将S 闭合,ef 最终均做匀速运动,速度相等,选项B 错误;根据能量守恒,ef 的机械能与回路内产生的电能之和一定不变,选项D 正确。综上本题选ACD 。

12. 【答案】ABC 【解析】列车运动时,安装在每节车厢底部的强磁铁产生的磁场使通过线圈的磁通量发生变化;列车速度越快,通过线圈的磁通量变化越快,根据法拉第电磁感应定律可知,由于通过线圈的磁通量发生变化,线圈中会产生感应电动势,感应电动势的大小与通过线圈的磁通量的变化率成正比,与列车的速度有关.由以上分析可知,A 、B 、C 正确.

13. 【答案】BC 【解析】对导体棒CD 分析:mg =BIl =B 2l 2v

R ,得v =2 m/s,故选项B 正确;对导体棒AB 分

析:F =mg +BIl =0.2 N,选项A 错误;在2 s 内拉力做功转化的电能等于克服安培力做的功,即W =F 安vt =0.4 J,选项C 正确;在2 s 内拉力做的功为Fvt =0.8 J,选顶D 错误。

14. 【答案】BD 【解析】感应电动势E =ΔΦΔt ,而磁通量变化率是Φ-t 图的切线斜率,当t =0时Φ=0,但ΔΦ

Δt ≠0。若求平均

电动势,则用ΔΦ与Δt 的比值去求。O 到C 时间内ΔΦ=2×10-3

Wb,则E =

ΔΦ

Δt

=0.4 V,D 正确。 15. 【答案】AC 【解析】E =n ΔΦ

Δt =n ΔB

Δt ·S =2 V,由楞次定律和安培定则可判断A 点电势高于B 点,综上所述A 、C 正

确。

16. 【答案】BD 【解析】当电路的磁通量发生变化时,就有感应电动势产生,磁通量变化率越大,电路中产生的感应电动势越大,若电路闭合,就会有感应电流。选项B 、D 正确。

17. 【答案】AD 【解析】将磁铁插到同一位置,磁通量的变化量相同,而用时不同,所以磁通量的变化率不同,感应电动势的大小不同,感应电流的大小不同。根据楞次定律可知,两次感应电流的方向相同。

18. 【答案】n ΔBl 2

Δt

【解析】线圈中磁场的有效面积为正方形ABCD 的面积l 2。由法拉第电磁感应定律得线圈中的感应电动势

E =n

ΔΦΔt =n ΔB Δt

·l 2

。 19. 【答案】负 1.8×10-5

【解析】因磁场在增强,由楞次定律和安培定则可推知电容器上极板带负电,由法拉第电磁感应定律得

E =n ΔΦΔt =n ΔB Δt

S

U =IR 2=

E

R 1+R 2+r R 2

Q =CU

由以上三式解得

q =1.8×10-5

C 。 20.

(1) 【答案】设棒速为v',有

E =BL (v -v'),

F 安=BIL =

BLE

R

=B 2L 2(v -v ')R

棒受力平衡有:mg =F 安,联立得:v'=v -mgR

B 2L

2方向向上 (2) 【答案】P =E 2R ,得:P =m 2g 2R

B 2L 2. 21.

(1) 【答案】由电磁感应定律可知,线圈左边切割磁感线产生感应电动势为E =BL 2v ,由闭合电路欧姆定律可知,回路

电流

I =E R

=

BL 2v

R

,安培力大小F 安=BIL 2=B 2L 22v

R

,则拉力

F =F 安=B 2L 22v

R

。 (2) 【答案】拉力的功率P =Fv =B 2L 22v 2

R

。 (3) 【答案】拉力做的功

W =FL 1=B 2L 22L 1v

R

。 (4) 【答案】线圈中产生的电热Q 等于克服安培力做的功,即

Q =W =B 2L 22L 1v

R

。 (5) 【答案】通过某一截面的电荷量q =I Δt ,电流I =E

R =ΔΦ

R Δt ,ΔΦ=BL 1L 2,由以上几式得q =

BL 1L 2

R

。 22.

(1) 【答案】导体棒AB 产生的感应电动势E =BLv =2.5 V,由右手定则,AB 棒上的感应电流方向向上,即沿B →A 方

向。

(2) 【答案】R 并=R 1×R

2R 1

+R 2

=2 Ω,I =E R

并+r

=

2.53 A,U AB =I ·R 并=53

V≈1.7 V 。

高中物理电磁感应定律知识点加例题资料

中国最负责任的教育机构 私塾国际学府学科教师辅导教案 组长审核: 学员编号:年级:年级课时数:3课时 学员姓名:辅导科目:物理学科教师:杨振 授课主题 教学目的 教学重点 授课日期及时段 教学内容 新课讲-练-总结 一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量. 2.定义式:Φ=BS. 说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角. 3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负. 4.单位:韦伯,符号:Wb. 5.磁通量的直观含义:表示磁场中穿过某一面积磁感线的条数. 6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS. (2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S. (3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B·S,而不是零。 (3)磁通量的变化率ΔΦ/Δt:表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大

电磁感应定律练习

电磁感应定律练习 班级 1.发现电流磁效应的科学家是() A. 奥斯特 B. 安培 C. 法拉第 D. 库仑 2.当线圈中的磁通量发生变化时,下列说法中正确的是:( ) A. 线圈中一定有感应电动势 B. 线圈中有感应电动势,其大小与磁通量成正比 C. 线圈中一定有感应电流 D. 线圈中有感应电动势,其大小与磁通量的变化量成正比3.如图所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中, 下列判断中正确的是( ) A. 金属环在下落过程中的机械能守恒 B. 金属环在下落过程中动能的增加量小于其重力势能的减少量 C. 金属环的机械能先减小后增大 D. 磁铁对桌面的压力始终大于其自身的重力 4.用均匀导线做成的单匝正方形线框,每边长为0.2米,正方形的一半放在和纸面垂直向里的匀强磁场中,如图示,当磁场以20T/s的变化率增强时,线框中点a、b两点电势差是:()A. Uab=0.2V B. Uab=-0.2V C. Uab=0.4V D. Uab=-0.4V 5.如图所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的 条形磁铁,磁铁的S极朝下.在将磁铁的S极插入线圈的过程中,下列正确的是 A. 通过电阻的感应电流的方向为由b到a,线圈与磁铁相互排斥 B. 通过电阻的感应电流的方向为由a到b, 线圈与磁铁相互排斥 C. 通过电阻的感应电流的方向为由a到b,线圈与磁铁相互吸引 D. 通过电阻的感应电流的方向为由b到a, 线圈与磁铁相互吸引 6.空间存在竖直向上的匀强磁场,将一个不会变形的单匝金属圆线圈放入该磁场中,规定图甲所示的线圈中的电流方向为正。当磁场的磁感应强度B随时间t按图乙所示的规律变化时,能正确表示线圈中感应电流随时间变化的图线是()7.关于感应电动势,下列几种说法中正确的是:() A. 线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大 B. 穿过线圈的磁通量越大,线圈中的感应电动势越大 C. 线圈放在磁场越强的位置,线圈中的感应电动势越大 D. 线圈中的磁通量变化越快,线圈中产生的感应电动势越大 8.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=100cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的() A. 线圈中的感应电流方向为逆时针方向 B. 电阻R两端的电压随时问均匀增大 C. 前4s通过电阻R的电荷量为4×10﹣2C D. 线圈电阻r消耗的功率为4×10﹣2W 9.一个边长为10 cm的正方形金属线框置于匀强磁场中,线框匝数n=100,线框平面与磁场垂直,电阻为20 Ω。磁感应强度随时间变化的图象如图所示.则前两秒产生的电流为_ _ 10.一个200匝、面积为2 20cm的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s由0.1 T均匀增加到0.5 T。在此过程中穿过线圈的磁通量的变化是___________ Wb;线圈产生的感应电动势的大小是________ V。 11.如图所示,10匝线圈上方有一竖立的条形磁体,此时线圈的磁通量为0.02Wb,现把条形磁体插入线圈,线圈的磁通量变为0.10Wb,该过程经历的时间为0.4s。求: (1)该过程线圈的磁通量的变化量; (2)该过程线圈产生的感应电动势。 12.如图所示,磁感应强度B=1T的匀强磁场垂直纸面向里,纸面的平行导轨宽l=1m,金属棒PQ 以1m/s速度紧贴着导轨向右运动,与平行导轨相连的电阻R=1Ω,其他电阻不计。 (1)运动的金属棒会产生感应电动势,相当电源,用电池、电阻和导线等符号画出这个装置的等效电路图。 (2)通过电阻R的电流方向如何?大小等于多少? 13.如图甲所示,有一面积2 100 s cm =,匝数n=100匝的闭 合线圈,电阻为10 R=Ω,线圈中磁场变化规律如图乙所示, 磁场方向垂直纸面向里为正方向,求 (1)t=1s时,穿过每匝线圈的磁通量为多少? (2)t=2s,线圈产生的感应电动势为多少?

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

2019届高考物理二轮复习 计算题题型专练(五)电磁感应规律的综合应用

计算题题型专练(五) 电磁感应规律的综合应用 1.如图所示,两根间距为L =0.5 m 的平行金属导轨,其cd 左侧水平,右侧为竖直的1 4圆 弧,圆弧半径r =0.43 m ,导轨的电阻与摩擦不计,在导轨的顶端接有R 1=1.5 Ω的电阻,整个装置处在竖直向上的匀强磁场中,现有一根电阻R 2=10 Ω的金属杆在水平拉力作用下,从图中位置ef 由静止开始做加速度a =1.5 m/s 2 的匀加速直线运动,金属杆始终保持与导轨垂直且接触良好,开始运动的水平拉力F =1.5 N ,经2 s 金属杆运动到cd 时撤去拉力,此时理想电压表的示数为1.5 V ,此后金属杆恰好能到达圆弧最高点ab ,g =10 m/s 2 ,求: (1)匀强磁场的磁感应强度大小; (2)金属杆从cd 运动到ab 过程中电阻R 1上产生的焦耳热。 解析 (1)金属杆运动到cd 时,由欧姆定律可得 I =U R 1 =0.15 A 由闭合电路的欧姆定律可得E =I (R 1+R 2)=0.3 V 金属杆的速度v =at =3 m/s 由法拉第电磁感应定律可得E =BLv ,解得B =0.2 T (2)金属杆开始运动时由牛顿第二定律可得F =ma ,解得 m =1 kg 金属杆从cd 运动到ab 的过程中,由能量守恒定律可得Q =12 mv 2 -mgr =0.2 J 。

故Q= R1 R1+R2 Q=0.15 J。 答案(1)0.2 T (2)0.15 J 2.如图所示,两条间距L=0.5 m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B=0.4 T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab =0.1 kg、m cd=0.2 kg的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2 Ω,导轨电阻不计。ab在沿导轨所在斜面向上的外力F作用下,沿该斜面以v=2 m/s的恒定速度向上运动。某时刻释放cd,cd向下运动,经过一段时间其速度达到最大。已知重力加速度g=10 m/s2,求在cd速度最大时,求: (1)abcd回路的电流强度I以及F的大小; (2)abcd回路磁通量的变化率以及cd的速率。 解析(1)以cd为研究对象,当cd速度达到最大值时,有:m cd g sin α=BIL① 代入数据,得:I=5 A 由于两棒均沿斜面方向做匀速运动,可将两棒看作整体,作用在ab上的外力:F=(m ab +m cd)g sin α② (或对ab:F=m ab g sin α+BIL) 代入数据,得:F=1.5 N (2)设cd达到最大速度时abcd回路产生的感应电动势为E,根据法拉第电磁感应定律,

1利用电磁感应定律计算感应电动势-推荐下载

1.利用电磁感应定律计算感应电动势 电磁感应定律适用于一切电磁感应现象,作为电磁感应定律的应用之一,是依据这一定律计算感应电动势。 由于穿过闭合电路的磁通量发生变化(或某段导线做切割磁感线运动),在闭合电路中(或在导线中)就产生感应电动势,基于电动势的存在,可视为一电源,做切割磁感线运动的导线,或磁通量发生变化的闭合电路内部,即为电源内部——内电路,和该内电路相连接的那部分电路为外电路。不难看出,在这种情况下,问题便归结为闭合电路的计算问题, 2.运用ε=Blvsinθ应注意的问题 (1)表达成ε=BLvsinθ中的L不是导体的实际长度,而是导线做切割磁感线运动的有效长度,可以理解为产生感应电动势的导体两端点连接线,在切割速度v的垂直方向上投影的长度。 如图所示,导线皆在纸面内运动,磁感应强度为B的匀强磁场方向垂直纸面向里,各图中导线的有效长度L分别为:

有效长度L=0。 在图1(c)中,按v1方向运动,有效长度L=a/2;a(a为等边三角 方向运动,有效长度 形之边长)按v2方向运动,有效长度L=a/2;按v3 (2)表达式ε=BLvsinθ中,θ为运动速度v与磁感强度B之间的夹角。若θ=kπ(k=c,±1,±2…)时,即运动速度方向与磁感强度B的方向平行时,ε=BLvsinθ=0,尽管导体运动,但没有感应电动势产生。

(3)在运用表达式ε=BLvsinθ解题时,往往遇到磁场方向、导体运动方向、感应电流方向、安培力方向、外力方向比较复杂的空间立体图。此时,应将复杂的空间图形简化为单向视图。 例如,在图2中,导线AB中通以电流,电流方向由B→A,边长为d的正方形闭合线框abcd绕着OO’轴以角速度ω匀速转动,轴OO’与导线AB平行,二者相距为l,线框的电阻值为R,当线框转到与 AB、00’所在平面垂直时,ab、cd边所在处磁场的磁感应强度的大小均为B O ,求此时,线框中感应电流的大小和方向。 分析可知,导线AB中的电流I O在空间所产生的磁场的方向与线框abcd运动的方向成一定的夹角,画出这样一个涉及电流磁场的方向、做切割磁感线运动的导线运动方向、感应电流方向的立体图形比较困难。但是,可将空间图形简化成一单向视图,如图3所示。

5.1 电磁感应定律和全电流定律(20030605)

5 时变电磁场 电场、磁场矢量不仅是空间坐标的函数,而且是时间的函数,这样的场称为时电磁变场。在时变电磁场中,电场与磁场互相依存、互相制约,已不可能如前面三种静态场那样分别进行研究,而必须在一起进行统一研究。 在本章中,首先引出并扩展电磁感应定律的适用范围,在提出位移电流概念的基础上,将安培环路定律推广到时变场中,导出普遍适用的全电流定律。从而总结出得出变化的磁场产生电场、变化的电场产生磁场,这种电场与磁场的普遍联系。 然后,总结电磁场的基本方程(即麦克斯韦方程组),媒质的构成方程和它在分界面的衔接条件。介绍动态位和达朗贝尔方程的解答,提出电磁场的波动性和电磁波概念。 其三,由基本方程出发推导出反映电磁场中能量守恒与能量转换的坡印廷定理和坡印廷矢量。再进一步介绍正旋稳态时变场中电磁场的基本方程和坡印廷矢量。 5.1 电磁感应定律和全电流定律 5.1.1 电磁感应定律 (1) 定律的内容 1831年法拉弟在大量实验基础上归纳总结,提出了电磁感应定律。 当一导体回路l 所限定的面积S 中的磁通发生变化时,在这个回路中就要产生感应电势,形成感应电流。感应电势的大小与S 中的磁通对时间的变化率成正比,感应电势的实际方向由楞次定律确定。 楞次定律指出:感应电动势及其所产生的 感应电流总是企图阻止与导体回路相交链的磁通的变化。 感应电动势可表示为 l S

() S B d d d d d ?? - =- =s t t ψε (5.1.1) 式中“-”号体现楞次定律:当规定感应电势的参考方向与回路交链的磁通ψ的方向成右手螺旋关系时,“-”号反映感应电势的真实方向。 实际上引起磁链变化的因素比较多,上式应写为偏导数形式 S B d ????- =??- =s t t ψε (5.1.2) 分析电磁感应现象,是由于在导体中存在有一种感应电场,其场强ind E l E d ind ?=?l ε l 为导体线圈回路。于是电磁感应定律又可表位 S B l E d d ind ???- =???s l t (5.1.3) 要求式中l 回路循行方向与B 的方向符合右螺旋关系。当 t ??B 不为零时, 0d ind ≠??S E l ,说明感应电场是有旋场。 (2)法拉弟电磁感应定律的推广 法拉弟电磁感应定律反映了感应电势与导体回路l 限定面积中交链的磁通对时间变化率的关系,它没有涉及到导体的材料特性和周围的媒质特性。Maxwell 在研究电磁场基本规律时将电磁感应定律作了推广。 当变化的磁场客观存在时,场中某一回路所交链的磁链的变化也是客观存在的。在该处放置一导体回路,就可以产生感应电势,测得感应电流,反映出感应电场的存在,感应电流的大小与导体的电导率有关。假若在变化磁场中某处设想有一假想回路存在,它所交链的磁链同样在变化,显然也应当有感应电场存在,也同样具有感应电势,只不过不能测量到感应电流而已。由此引伸,可以认为感应电场不仅仅存在于导体内,而且存在于变化磁场所在的场域空间。于是,我们对于感应电场的看法由一个导体回路扩展到了整个变化的磁场空间。 由上面的分析,应当这样来理解电磁感应定律:在一个变化的磁场中总伴随着一个感应电场,总存在感应场强。这正是Maxwell 的重大贡献。

电磁感应定律练习

4.穿过某线圈的磁通量随时间变化的关系,如右下图所示,在下列 几段时间内,线圈中感应电动势最小的是( ) A .0 ~2 s B .2 s ~4 s C .4 s ~5 s D .5 s ~10 s 5.如图所示,ab 和cd 是位于水平面内的平行金属导轨,其电阻可忽略不计,ac 之间连接一个阻值为R 的电阻,ef 为一个垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并沿轨道方向无摩擦地滑动,ef 长为l ,电阻可忽略,整个装置处于匀强磁场中,磁场方向垂直于纸面向里.磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 受到的安培力为( ) A .v B 2l 2R B .vBl R C .vB 2l R D .vBl 2R 17.如图所示,一水平放置的平行导体框宽度L =0.5 m ,接有R =0.2 Ω的电阻,磁感应强度B =0.4 T 的匀强磁场垂直导轨平面方向向下,现有一导体棒ab 跨放在框架上,并能无摩擦地沿框架滑动,框架及导体ab 电阻不计,当ab 以v =4.0 m/s 的速度向右匀速滑动时,试求: (1)导体ab 上的感应电动势的大小及感应电流的方向,ab 两端电压? (2)要维持ab 向右匀速运动,作用在ab 上的水平外力为多少?方向怎样? (3)电阻R 上产生的热功率多大? 如图所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角的绝缘斜面上,两导轨间距L=1m , 导轨的电阻可忽略。M 、P 两点间接有阻值为R 的电阻。一根质量m=1kg 、电阻r=0.2 的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好。整套装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直斜面向下。自图示位置起,杆受到大小为(式中v 为杆ab 运动的速度,力F 的单位为N )、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R 的电流随时间均匀增大。(g 取10m/s 2,)⑴试判断金属杆在匀强磁场中做何种运动,并请写出推理过程;⑵求电阻的阻值R ;⑶金属杆ab 自静止开始下滑通过位移x = 1m 电阻R 产生的焦耳热Q 1=0.8J,求所需的时间和该过程中拉力做的功W

(完整版)法拉第电磁感应定律练习题40道

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号 一、选 择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

法拉第电磁感应定律的应用

法拉第电磁感应定律 2.确定目标 本节课讲解应用法拉第电磁感应定律计算感应电动势问题,会区别感应电动势平均值和瞬时值。 二 精讲精练 (一)回归教材、注重基础 例 (见教材练习题P21 T2)如图甲所示,匝数为100匝,电阻为5Ω的线圈(为表示线 圈的绕向图中只画了2匝)两端A 、B 与一个电压表相连,线圈内有指向纸内方向的磁场,线圈中的磁通量按图乙所示规律变化。 (1)求电压表的读数?确定电压表的正极应接在A 还是接在B ? (2)若在电压表两端并联一个阻值为20Ω的电阻R .求通过电阻R 的电流大小和 方向? ,面 时间内,匀强磁场平行于线圈轴线向右穿过,则该段时间线圈两12)t B --

变式3.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为 B,用电阻率为ρ、横 截面积为S的导线做成的边长为L的正方形线框abcd水平放置,OO′为过ad、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框 左半部分以OO′为轴向上转动60°,如图中虚线所示。若转动后磁感应强度随时 间按kt 变化(k为常量),求: B B+ = (1)在0到t 0时间内通过导线横截面的电荷量? (2)t0时刻ab边受到的安培力? (三)真题检测,品味高考 1.(2014·新课标全国Ⅰ)如图 (a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

2. (2012·福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀 强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B 随时间t 的变化关系如图乙所示(T0为已知量)。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。当t=0T 到t=05.1T 这段时间内的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.求:这段时间内,细管内涡旋电场的场强大小E 。 (四)拓展深挖、把握先机 拓展:如图甲所示,匝数为n 匝,电阻为r,半径为a 的线圈两端A 、B 与电容为C 的电容器 和电阻R 相连,线圈中的磁感应强度按图乙所示规律变化(取垂直纸面向内方向为正方向)。求: (1)流过电阻的电流大小为多少? (2)电容器的电量为多少? 三 总结归纳 1. 应用法拉第电磁感应定律计算感应电动势。 2. 会判断导体两端电势的高低。

电磁感应基本概念和基本规律

第一节:电磁感应基本概念和规律 引导:上学期主要学习的是安培力,有电流有磁场产生力的作用(产生了运动),这学期通过运动和磁场产生电流。物理和数学和化学上总是这样呈现出对立或者是有联系的学习,相互推导,你把安培力学的懂你肯定就能把这个学的很精通。在学习之前我们要有目标有计划的学习,这次我们的目标就是第一次月考,迎接第一次月考,只要真正的落实到每个细节上到位了,我有把握你月考能考出个好成绩。我会把最重要的知识点和常考点做详细的讲解和批注,让我们学习的效率达到质的提升。 F(安)=BIL 本节课所需掌握重点: 什么是电磁感应现象? (穿过闭合线路的磁通量发生变化,闭合电路中游感应电流的产生,若电路不闭合,虽然没有电流,但仍然有感应电动势的产生,这种现象就称为电磁感应现象) 电磁感应的实质是什么? (电磁感应就是利用磁场获得电流的过程,其实质其实是产生一个感应电动势,有感应电流肯定有感应电动势,有感应电动势不一定有感应电流) 感应电流产生的条件? 磁通量发生变化:(1)B发生变化,(2)S发生变化,(3)B和S都发生变化 闭合线路(只有闭合线路才有电流穿过) 磁通量值得注意的几点? 公式,有效面积,标量 磁通量的变化量注意? 末状态减去初状态,磁通量和匝数没有关系 当把概念了解透彻了我们再说练习

本节考点分类归纳: 【一】科学家事迹(作为了解) 1820年丹麦物理学家()发现了电流的磁效应 1831年英国物理学家()发现了电磁感应现象 【二】概念性考点(简单但易错,仔细阅读,牢记几条概念) 1.关于电磁感应现象,下列说法中正确的是( D ) A.只要有磁感线穿过电路,电路中就有感应电流 B.只要闭合电路在做切割磁感线运动,电路中就有感应电流 C.只要穿过闭合电路的磁通量足够大,电路中就有感应电流 D.只要穿过闭合电路的磁通量发生变化,电路中就有感应电流 2:关于感应电动势和感应电流的关系,下列说法正确的是( B ) A:如果电路中有感应电动势,那么电路中就一定有感应电流 B:如果电路中有感应电流,那么电路中一定有感应电动势 C:两个电路中感应电动势较大的电路,其感应电流也一定较大 D:两个电路中感应电流较大的电路,其感应电动势也一定较大 3.关于磁通量,下列说法正确的是( C ) A.磁通量不仅有大小,还有方向,是矢量 B.在匀强磁场中,线圈面积越大,磁通量就越大 C.磁通量很大时,磁感应强度不一定大 D.在匀强磁场中,磁通量大的地方,磁感应强度一定也大 4.下列关于产生感应电流的说法中,正确的是(B ) A.不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就一定有感应电流产生B.只要闭合电路中有感应电流产生,穿过该电路的磁通量就一定发生了变化 C.只要导体做切割磁感线的运动,导体中就有感应电流产生 D.闭合电路中的导体做切割磁感线运动时,导体中就一定有感应电流产生 5.下列关于磁通量的说法正确的是( C ) A.穿过一个面的磁通量等于磁感应强度和该面面积的乘积 B.在匀强磁场中,穿过某一平面的磁通量等于磁感应强度和该面面积的乘积

2012届高三物理总复习 9.1电磁感应现象 法拉第电磁感应定律基础测试 鲁科版

电磁感应现象 法拉第电磁感应定律基础测试 1.下列关于感应电动势大小的说法中,正确的是( ) A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B .线圈中磁通量越大,产生的感应电动势一定越大 C .线圈放在磁感应强度越强的地方,产生的感应电动势一定越大 D .线圈中磁通量变化越快,产生的感应电动势越大 解析:选D.由法拉第电磁感应定律E = n ΔΦ Δt 知,感应电动势与磁通量的变化率成正比, 与磁通量的大小、磁通量的变化和磁感应强度无关,故只有D 项正确. 2.(2011年陕西汉中调研)一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图9-1-11所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪种方法可使感应电流增加一倍( ) 图9-1-11 A .把线圈匝数增加一倍 B .把线圈面积增加一倍 C .把线圈半径增加一倍 D .改变线圈与磁场方向的夹角 解析:选C.设导线的电阻率为ρ,横截面积为S 0,线圈的半径为r ,则I =E R =n ΔΦΔt R = n πr 2 ΔB Δt sin θρ n ·2πr S 0 =S 0r 2ρ·ΔB Δt ·sin θ.可见将r 增加一倍,I 增加一倍,将线圈与磁场方向的夹 角改变时,sin θ不能变为原来的2倍(因sin θ最大值为1),若将线圈的面积增加一倍,半径r 增加到原来的2倍,电流也增加到原来的2倍,I 与线圈匝数无关.综上所述,只有C 正确. 3.(2011年福建调研)如图9-1-12所示,半径为r 的半圆形金属导线(CD 为直径)处于磁感应强度为B 的匀强磁场中,磁场方向垂直于线圈平面,有关导线中产生感应电动势的大小,下列说法中错误的是( )

(完整版)法拉第电磁感应定律基础及提高题目练习

基础夯实 1.穿过一个单匝线圈的磁通量始终为每秒均匀地增加2 Wb ,则 ( ) A .线圈中的感应电动势每秒增加2 V B .线圈中的感应电动势每秒减小2 V C .线圈中的感应电动势始终为2 V D .线圈中不产生感应电动势 答案:C 解析: 由法拉第电磁感应定律E =n ΔΦ Δt =2 V ,所以线圈中感应电动势始终为2 V ,C 项正确. 2.如图所示的几种情况中,金属导体中产生的感应电动势为Bl v 的是( ) A .乙和丁 B .甲、乙、丁 C .甲、乙、丙、丁 D .只有乙 答案:B 3.如图所示,竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平初速度v 0抛出,设在整个过程中棒始终平动且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是( ) A .越来越大 B .越来越小 C .保持不变 D .无法判断

答案:C 解析:金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E =BL v 知,电动势也不变,故C 正确. 4.穿过某线圈的磁通量随时间变化的关系,如图所示,在下列几段时间内,线圈中感应电动势最小的是( ) A .0~2s B .2s ~4s C .4s ~5s D .5s ~10s 答案:D 解析:图象斜率越小,表明磁通量的变化率越小,感应电动势也就越小. 5.如图所示,金属框架处于与框架垂直的匀强磁场中,导体棒与框架接触良好且无摩擦,现用力F 拉导体棒向右做匀加速运动,则力F 的变化规律为图象中的( ) 答案:B 解析:∵F =ma +B 2L 2R v =ma +B 2l 2a R t ∴B 选项正确. 6.如图所示,将一半径为r 的金属圆环在垂直于环面的磁感应强度为B 的匀强磁场中用力握中间成“8”字型,并使上、下两圆半径相等.如果环的电阻为R ,则此过程中流过

对电磁感应定律的理解和应用

第18卷 第12期 武汉科技学院学报 Vol.18 No.12 2005年12月 JOURNAL OF WUHAN UNIVERSITY OF SCIENCE AND ENGINEERING Dec. 2005 对电磁感应定律的理解和应用 袁作彬 (湖北民族学院 物理系,湖北 恩施 445000) 摘要:电磁感应定律是电磁学中的一条重要定律,它的两种表述形式,分别反映了电磁感应的宏观表现和微 观机制。对电磁感应定律的理解和运用是电磁学教学的一个重要内容。分析了现行教材中用法拉第电磁感应 定律判定感应电动势方向方法的弊端,提出了一种简便方法,并给出了验证的实例。 关键词:法拉第电磁感应定律;感应电动势;右手定则 中图分类号:O441.3 文献标识码:B 文章编号:1009-5160(2005)-0147-02 电磁感应定律是电磁学教学中的重要内容,结合教学实践,谈谈对于电磁感应定律两种表述及利用法拉第电磁感应定律判断感应电动势的简便方法。 1 电磁感应定律的两种表述 电磁感应定律是电磁学的重要规律,它有两种表述形式。电磁感应定律的第一种表述为: t d d φε?= (1) 式(1) 是电磁感应的宏观表现,它表明当通过闭合回路所围面积的磁通量发生变化时,回路中就产生感应电动势(不论引起磁通量变化的原因是什么)。同时,无论回路的绕行方向怎样选择,ε总与t d d φ的符号相反。 进一步分析引起磁通量变化的原因,有电磁感应定律的第二种表述:[1~3] →→ →→→?????×=∫∫∫S d t B l d B L S )(νε (2) 式(2)中的第一项就是由于导体运动而产生的动生电动势()d L B d l εν→→→ =×?∫,第二项则是由于磁场变化而产生的感生电动势S d t g ∫∫??=ε,式(2)反映出电磁感应的微观机制。由此可以看出,动生电动势和感生电动势的物理过程是有区别的。关于这两种表述表述是否等价的问题,有许多文献讨论,至今仍无定论。[4~6] 2 电磁感应定律的应用 式(2)所示的第二种表述是从微观机理出发揭示电磁感应现象,它不仅揭示了电磁感应现象的微观本质,而且也便于应用。利用式(2),既可以方便地计算由非闭合导体在磁场中做切割磁力线运动而产生的动生电动势,也便于计算静止的闭合导体由于磁场变化而产生的感生电动势,当然也可以计算闭合导体在变化的磁场中运动时产生的感应电动势。 对于第一种表述,现行教材中是这样处理的:在讨论ε的正负之前,将回路的绕向与以回路为边界的曲面法向矢量n r 统一在右手螺旋定则下。在图1所示的四种情形中,一律规定回路的绕向如图中虚线所示,按右手定则,以它为边界的曲面法 收稿日期:2005-08-23 作者简介:袁作彬(1966-),讲师,硕士,研究方向:理论物理.

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

专题四 第19练 电磁感应的两个基本规律(知识点完整归纳)

第19练电磁感应的两个基本规律 A级保分练 1.(多选)(2020·广东深圳市第二次测试)如图1所示,电磁感应现象在科技和生活中有着广泛的应用,下列说法正确的是() 图1 A.图(a)中利用了发射线圈和接收线圈之间的互感现象构成变压器,从而实现手机充电B.图(b)中给电磁炉接通恒定电流,可以在锅底产生涡流,给锅中食物加热 C.图(c)中如果线圈B不闭合,S断开将不会产生延时效果 D.图(d)中给电子感应加速器通以恒定电流时,被加速的电子获得恒定的加速度 答案AC 解析电流流过发射线圈会产生变化的磁场,当接收线圈靠近该变化的磁场时就会产生感应电流给手机充电,即利用发射线圈和接收线圈之间的互感现象构成变压器,从而实现手机充电,故A正确;恒定的电流激发恒定的磁场,穿过金属锅的磁通量不变,不会发生电磁感应现象,没有涡流产生,故B错误;如果线圈不闭合,则B线圈中不产生感应电流,故不会产生延时效果,故C正确;给电子感应加速器通以恒定电流时产生的磁场不变,即磁通量不变,则不会产生感生电场,则不能加速电子,故D错误. 2.(2020·福建厦门市3月质检)如图2所示,一根质量为M、长为L的铜管放置在水平桌面上,现让一块质量为m、可视为质点的钕铁硼强磁铁从铜管上端由静止下落,强磁铁在下落过程中不与铜管接触,不计空气阻力,在此过程中()

图2 A.桌面对铜管的支持力一直为Mg B.铜管和强磁铁组成的系统机械能守恒 C.铜管中没有感应电流 D.强磁铁下落到桌面的时间t>2L g 答案 D 解析强磁铁通过铜管时,导致铜管的磁通量发生变化,从而产生感应电流,故C错误;磁铁在铜管中运动的过程中,虽不计空气阻力,但在下落过程中,出现安培力做功产生内能,所以系统机械能不守恒,故B错误;由于铜管对磁铁有向上的阻力,则由牛顿第三定律可知磁铁对铜管有向下的力,则桌面对铜管的支持力F>Mg,故A错误;因铜管对磁铁有阻力,所以运动时间与自由落体运动相比会变长,即有t>2L g ,故D正确. 3.(多选)(2020·江西吉安市期末)如图3甲所示,螺线管固定在天花板上,其正下方的金属圆环放在台秤的托盘上(台秤未画出),台秤的托盘由绝缘材料制成,台秤可测量托盘上物体的重力,现给螺线管通入如图乙所示的电流,以甲图中箭头所指方向为电流的正方向,则下列说法正确的是() 图3 A.0~t2时间内,俯视看,金属圆环中的感应电流先沿顺时针方向后沿逆时针方向 B.t1时刻,圆环中的感应电流不为零,托盘秤的示数等于圆环的重力 C.t1~t3时间内,托盘秤的示数先大于圆环的重力后小于圆环的重力 D.t2~t4时间内,金属圆环中的感应电流先减小后增大 答案BC 解析0~t2时间内,圆环中的磁通量先向下减小,后向上增大,根据楞次定律可知,圆环中

电磁感应定律习题含答案

法拉第电磁感应定律练习题 1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是 [ ] A.都会产生感应电流 B.都不会产生感应电流 C.甲、乙不会产生感应电流,丙、丁会产生感应电流 D.甲、丙会产生感应电流,乙、丁不会产生感应电流 1.关于感应电动势大小的下列说法中,正确的是 [ ] A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势 [ ] A.以2v速率向+x轴方向运动 B.以速率v垂直磁场方向运动 4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示 [ ] A.线圈中O时刻感应电动势最大 B.线圈中D时刻感应电动势为零 C.线圈中D时刻感应电动势最大 D.线圈中O至D时间内平均感电动势为0.4V 5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是 [ ] A.将线圈匝数增加一倍

B.将线圈面积增加一倍 C.将线圈半径增加一倍 D.适当改变线圈的取向 6.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为 [ ] A.4∶1 B.1∶4 C.2∶1 D.1∶2 8.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量和电阻均相同的两根滑杆ab和cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab和cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是 [ ] A.cd向左运动 B.cd向右运动 C.ab和cd均先做变加速运动,后作匀速运动 D.ab和cd均先做交加速运动,后作匀加速运动 9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS和PQ的中点,关于线框中的感应电流 [ ] A.当E点经过边界MN时,感应电流最大 B.当P点经过边界MN时,感应电流最大 C.当F点经过边界MN时,感应电流最大 D.当Q点经过边界MN时,感应电流最大 10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。一根长直金属棒与轨道成60°角放置,且接触良好,则当金属棒以垂直于棒的恒定速度v沿金属轨道滑行时,其它电阻不计,电阻R 中的电流强度为 [ ] 11.如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边

1003法拉第电磁感应定律应用

1003法拉第电磁感应定律应用1 一、电磁感应电路问题的理解和分类 1.对电源的理解:电源是将其他形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类: (1)确定等效电源的正负极,感应电流的方向,电势高低,电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻,路端电压,电功率的问题. (3)根据电磁感应的平均感应电动势求解电路中通过的电荷量: 【针对训练】 1.(2009·广东汕头六都中学质检)如图所示,在磁感应强度B=0.5 T的匀强磁场中,有一等边三角形ABC的固定裸导体框架,框架平面与磁感线方向垂直,裸导体DE能沿着导体框架滑动,且滑动时一直能与框架保持良好的接触.已知三角形的边长为0.2 m,且三角形框架和导体DE的材料、横截面积相同,它们单位长度的电阻均为每米10 Ω,当导体DE以v=4.2 m/s的速度(速度方向与DE垂直)下滑至AB、AC的中点M、N时,求: (1)M、N两点间感应电动势的大小; (2)流过导体框底边BC的电流多大?方向如何? 二、求解电磁感应与力学综合题的思路 思路有两种:一种是力的观点,另一种是能量的观点. 1.力的观点 力的观点是指应用牛顿第二定律和运动学公式解决问题的方法.即先对研究对象进行受力分析,根据受力变化应用牛顿第二定律判断加速度变化情况,最后找出求解问题的方法.2.能量观点 动能定理、能量转化守恒定律在电磁感应中同样适用. 三、电磁感应综合题中的两部分研究对象 电磁感应中的综合题有两种基本类型.一是电磁感应与电路、电场的综合;二是电磁感应与磁场、导体的受力和运动的综合;或是这两种基本类型的复合题,题中电磁现象、力现象相互联系、相互影响和制约. 这类题综合程度高,涉及的知识面广,解题时可将问题分解为两部分:电学部分和力学部分. 1.电学部分思路:将产生感应电动势的那部分电路等效为电源.如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串、并联.分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.

相关主题
文本预览
相关文档 最新文档