当前位置:文档之家› 高流动性混凝土工作性能试验方法研究

高流动性混凝土工作性能试验方法研究

高流动性混凝土工作性能试验方法研究
高流动性混凝土工作性能试验方法研究

浅谈高性能混凝土技术性能特点

浅谈高性能混凝土的技术性能特点 摘要:阐述了国内外学者对高性能混凝土的认识与定义,介绍了高性能混凝土的性能特点及其优越性能,以推广高性能混凝土的广泛应用。 关键词:高性能混凝土原材料配合比拌和物力学性耐久性 一、高性能混凝土的定义 高性能混凝土(High-Performance concrete 简称HPC)是20世纪80年代末90年代初,一些发达国家基于混凝土结构耐久性设计提出的一种全新概念的混凝土,它以耐久性为首要设计指标,这种混凝土有可能为基础设施工程提供100年以上的使用寿命。对高性能混凝土的具体定义或含义,国际上迄今为止尚没有一个统一的理解,各个国家不同人群有不同的理解。一般说来,高性能混凝土是指高强、高耐久性、高工作性。 随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长,因此发展高性能混凝土势在必行。而且工程结构采用高性能混凝土可以节约资源、降低工程造价,利于环境保护和可持续发展。 二、高性能混凝土的性能特点及其优越性 通过实验可以得出高性能混凝土与普通混凝土相比具有以下各方面的特点: 1、原材料性能特点 高性能混凝土采用硅酸盐水泥或普通硅酸盐水泥,采用硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰水泥、复合水泥;高性能混凝土水泥混和料采用矿渣或粉煤灰,普通混凝土水泥混合料采用矿渣、粉煤灰、石灰石、煤矸石、磷渣;高性能混凝土采用水泥的比表面积≤350m2/kg,普通混凝土水泥的比表面积≤300m2/kg;高性能混凝土采用水泥中的游离氧化钙含量≤1.0%,碱含量≤0.80%,熟料中的C3A含量≤8%,氯离子含量≤0.10%(钢筋混凝土)/≤0.06%(预应力混凝土);普通混凝土水泥中的游离氧化钙含量≤1.5%,碱含量、熟料中的C3A含量、氯离子含量无特殊要求。 高性能混凝土采用的矿渣粉中MgO含量≤14%,普通混凝土对此无要求;高性能混凝土采用的粉煤灰中氯离子含量不宜大于0.02%,CaO含量≤10%,游离CaO含量≤1.0%,普通混凝土对此无要求。 高性能混凝土与普通混凝土采用的砂子区别见下表1 表1 砂子

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

混凝土拌合物性能试验方法标准学习记录

混凝土拌合物性能试验法标准学习记录 学习普通混凝土拌合物性能试验法标准的检测项目、检测法、判定依据、仪器设备、检测环境条件、检测程序等。 2、检测环境条件的变化 制备混凝土拌合物时,试验环境相对湿度不宜小于50%,试验室的温度应保持在20±5℃,所用材料、试验设备、容器及辅助设备的温度宜与试验室温度保持一致。 3、取样与试样的制备 3.1 同一组混凝土拌合物的取样应从同一盘混凝土或同一车混凝土中取样。取样量应多于试验所需量的1.5倍,且宜不小于20L。 3.2 混凝土拌合物的取样应具有代表性,宜采用多次采样的法。一般在同一盘混凝土或同一车混凝土中的约1/4处、1/2处和3/4处之间分别取样,并搅拌均匀;第一次取样和最后一次取样的时间间隔不宜超过15min。 3.3 宜在取样后5min开始各项性能试验。 3.4 试验室制备混凝土拌合物的搅拌应符合下列规定: 3.4.1、混凝土拌合物应采用搅拌机搅拌。拌和前应将搅拌机冲洗干净,并预拌少量同种混凝土拌合物或水胶比相同的砂浆,搅拌机壁挂浆后将剩余料卸出。 3.4.2、应将称好的粗骨料、胶凝材料、细骨料和水(外加剂一般先溶于水)依次加入搅拌机,难溶和不溶的粉状外加剂宜与胶凝材料同时加入搅拌机,液体和可溶外加剂宜与拌合水同时加入搅拌机 3.4.3、混凝土拌合物宜搅拌2min以上,直至搅拌均匀; 3.4.4、混凝土拌合物一次拌和量不宜少于搅拌机公称容量的1/4;不应大于搅拌机容量,且不应少于20L; 3.5 试验室搅拌混凝土时,材料用量应以质量计。骨料的称量精度应为±0.5%;水泥、掺合料、水、 外加剂的称量精度均应为±0.2%。3.6 在试验室制备混凝土拌合物时,拌合时试验室的温度应保持在20±3℃,所用材料的温度宜与试验室温度保持一致。 4 坍落度及经时损失试验试验应按下列步骤进行: 4.1.1)、坍落度筒壁和底板应润湿无明水;底板应放置在坚实水平面上,并把坍落度筒放在底板中心,然后用脚踩住二边的脚踏板,坍落度筒在装料时应保持在固定的位置; 2)、混凝土试样应分三层均匀地装入坍落度筒,捣实后每层高度应约为筒高的三分之一。每装一层,应用捣棒在筒由边缘到中心按螺旋形均匀插捣25次; 3)、插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒应插透本层至下一层的表面; 4)、顶层混凝土装料应高出筒口,插捣过程中,如果混凝土低于筒口,则应随时添加; 5)、顶层插捣完后,取下装料漏斗,应将混凝土拌合物沿筒口抹平;

高性能混凝土技术研究

客运专线施工技术研究 高性能混凝土技术研究 汇报资料 中铁四局集团公司试验检测中心 二〇〇五年九月

武广客运专线高性能混凝土技术研究 一、立项的必要性: 武广铁路客运专线的混凝土要求为耐久性混凝土,在铁路上应用高性能混凝土在集团公司尚属空白,因此有必要针对当地的原材料对高性能混凝土进行深入的研究,找出各种影响因素对混凝土性能的影响及既满足施工要求又具有较好的经济效益的高性能混凝土配合比。 二、研究内容: 以武广铁路客运专线为主要背景,根据《铁路混凝土结构耐久性设计规范》和《京沪高速铁路高性能混凝土技术条件》要求,试验配制出具有可靠性强和经济性好的高性能混凝土。研究内容主要包括: 1、高性能混凝土用原材料的优化比选; 2、不同强度等级、不同环境条件下的高性能混凝土配制方法与控制参数; 3、高性能混凝土的工作性能、物理和力学特性; 4、高性能混凝土各项耐久性指标,高性能混凝土施工的质量控制与质量保证措施。 三、应达到的目标: 总目标: 根据工程情况和特点,以本地区常用原材料为基础,配制出武广铁路客运专线所需的高性能混凝土。在具体配制设计中,通过优化比选,使其具有很高的可靠性和较好的经济性,以达到能在实际工作中

得以应用的目的。在试验研究中,对海工耐久混凝土的材料组成及配制技术中若干关键问题进行较深入研究探讨,寻找可为今后施工供借鉴的经验。 具体目标: 1、武广铁路客运专线高性能混凝土优化设计; 2、粉煤灰活化技术在高性能混凝土设计中的应用; 3、梁体高性能混凝土耐久性试验研究; 4、高性能混凝土平板及水泥环抗裂性试验的自动测试判别系统的研制; 5、高性能混凝土电通量性能快速推定; 6、高性能混凝土施工质量控制措施实施方案。 四、技术关键: 1、针对该项目目前磨细矿粉资源偏少、价格较高情况,应用粉煤灰活化技术,在满足技术性能指标的前提下,下部工程结构采用大掺量粉煤灰技术,最大限度减低磨细矿粉的掺量,降低工程成本; 2、应用综合技术措施(矿物及化学外加剂品种和配比的优选、养护制度优化等)提高梁体高性能混凝土耐久性试验研究,达到技术性和经济性俱佳的设计目的; 3、高性能混凝土平板及圆环约束抗裂性试验的自动测试判别系统的研制; 4、高性能混凝土电通量性能快速推定。 五、进度安排及预期目标:

高流动混凝土微观构造特征研究_李建军

2010年12期(总第72期 )作者简介:李建军(1963-),河北石家庄人,正高级工程师,从事高速公路建设管理工作。 1研究背景 高流动混凝土亦称为自密实混凝土,它具有优良的变形能力和抗离析性,在浇注过程中不用振捣而完全依靠自重作用自由流淌,穿越钢筋间隙充分填充模板空间,同时具有足够的粘聚性,防止离析泌水,拌合物均匀密实,硬化后具有良好的力学性能和耐久性能。高流动混凝土于1988年由日本东京大学的冈村甫教授发明,自发明以来,在日本、美国、瑞典、荷兰等国的桥梁、隧道等重大工程中得到成功应用。我国近年来也对该项技术进行了深入的研究,在北京首都机场新航站楼的简体墙、大亚湾核电站的核废料容器建设工程、厦门集美历史风貌建筑的保护工程、长江三峡等多个水电站的导流洞、左岸左厂坝的引水工程、润扬长江大桥的建设工程、福建万松关的隧道工程、拉萨河特大桥的钢管拱、国家体育馆结构周圈型钢混凝土梁等大型工程中得到应用,取得了较好的技术、经济和社会效益。 与传统混凝土相比,高流动混凝土不经过振捣,完全靠自身流动进行填充,与经受振捣的混凝土相比其内部结构发生变化。振捣的混凝土在振捣作用下内部气泡部分溢出,剩余的气泡(包括拌合中混入的和引气剂引入的)和水泥水化形成的孔隙组成了混凝土的微观孔隙构造。而高流动混凝土流动性好,内部气泡在浇注过程中基本上没有溢出,它使用了大量的矿物添加剂,其内部孔隙构造与普通混凝土相比将有较大不同。由于上述拌和和浇注施工工艺的不同,将导致高流动混凝土与普通混凝土在微观构造上出现不同,并进而影响混凝土的性能。目前,众多研究者对高流动混凝土的诸性能进行 了研究,而对高流动混凝土的微观构造特点关注较少,部分研究者初步探讨了高流动混凝土微观构造特点、通过添加纤维改善其微观构造提高其抗火性能、骨料与浆体界面过渡区的物理力学性能特点等,但对高流动混凝土与普通混凝土微观构造的差异及其对耐久性的影响等方面的研究,尚未见较系统的相关报道。 本文以高流动混凝土和普通混凝土微观构造特点为关注对象,在室内进行了不同配合比的高流动混凝土和普通混凝土的微观构造和宏观耐久性试验,探讨了二者在微观构造上的差异及其对宏观耐久性的影响。 2实验材料及配合比 2.1原材料 本文实验使用的水泥为新北京水泥厂有限责任公司生产的P ·O 42.5级水泥。粉煤灰为北京丰台轻体材料厂生产的F 类Ⅰ级粉煤灰,细度( 45μm 方孔筛筛余)为4.4%,密度2300kg/m 3。高炉矿渣为首钢嘉华生产的S95级高炉矿渣粉末,比表面积为0.41m 2/g ,密度2800kg/m 3。硅灰为北京邦德印材料研究所提供的硅灰,比表面积为24.1m 2/g ,密度2100kg/m 3。 粗集料为河北三河产碎石和北京市丰台区产河卵石,最大粒径分别为20mm 和16mm ,表观密度分别为2720和2700kg/m 3。本论文实验中使用的减水剂均为苏州某公司生产的聚羧酸高效减水剂,固含量40%,减水率30%以上。2.2配合比 本文中,高流动混凝土和普通混凝土的设计强度等级均为C60。为了得到不同的微观构造,本文分别设计 高流动混凝土微观构造特征研究 李建军 (河北省高速公路衡大筹建处,河北 邢台 055750) 摘 要:本研究配制了强度相同(C60)的高流动混凝土和普通混凝土,测定了不同类型混凝土的强度、工作性 等基本性能,并测定了混凝土微观孔隙构造分布和抗冻耐久性等宏观性能。实验研究表明,由于配合比和施工方法不同,高流动混凝土具有与普通混凝土不同的微观孔隙构造特征,并进而影响混凝土的宏观性能。因此,在高流动混凝土应用中,应充分考虑高流动混凝土微观构造特征带来的新变化。关键词:高流动混凝土;微观构造;添加剂;工程应用中图分类号:TU528.53 文献标识码:B 81

浅谈高性能混凝土的应用与发展现状

浅谈高性能混凝土的应用与发展现状 发表时间:2019-05-06T08:56:58.743Z 来源:《建筑学研究前沿》2019年1期作者:姚琪 [导读] 对高性能混凝土技术的研究会越来越深人,高性能混凝土将会得到更进一步的发展。 临沂天元混凝土工程有限公司山东临沂 276000 摘要:高性能混凝土是近20多年发展起来的一种新型混凝土,是混凝土发展的重要里程碑,能够节约更多的资源与能源,减少对环境的污染,且高性能混凝土具有优良的经济性能、力学性能和耐久性能等,是混凝土发展的必然趋势,也是混凝土未来发展的方向。研究高性能混凝土的发展与应用,对今后建筑的安全性和稳定性有着不可忽视的作用,随着社会生产生活的发展和需要,对高性能混凝土技术的研究会越来越深人,高性能混凝土将会得到更进一步的发展。 关键词:高性能;混凝土;发展;应用 一、前言 随着现代化进程的不断加快,我国的建设规模日益扩大,混凝土作为当今世界使用量最大、使用面最广的建筑材料之一,其性能倍受人们的重视。高性能混凝土是近20多年发展起来的一种新型混凝土,由于具有高耐久性、高强度、高体积稳定性和高工作性等许多优良特性,被认为是目前全世界性能最为全面的混凝土[1]。高性能混凝土技术正在快速发展并且被运用到更多工程项目中,研究高性能混凝土的发展与应用,对今后建筑的安全性和稳定性有着不可忽视的作用,高性能混凝土的理念和技术体系将有助于提升我国混凝土技术水平,同时提升混凝土工程质量[2]。 二、高性能混凝土的性能 1、耐久性能 高性能混凝土通过掺入高效减水剂和矿物质超细粉,有效的降低了水胶比,减少混凝土内部的空隙,确保混凝土结构可持续,使混凝土结构能够安全可靠地工作 50 年以上。 2、工作性能 高性能混凝土因其掺入了高效减水剂及活性矿物超细粉,混凝土的和易性得到很好的改善,更有利于工程的施工。因高性能混凝土粘聚性、保水性好,基本不会出现泌水、离析等现象,混凝土具有更好的稳定性和均匀性。 3、力学性能 高性能混凝土因水胶比低,内部比普通混凝土更均匀稳定,所以具有更好的力学性能,现阶段的超高性能混凝土得抗压强度可高达300MPa。 4、体积稳定性 高性能混凝土的体积变化比较小,具有较高的体积稳定性,因为混凝土在硬化早期水化热较低,硬化后期具有较小的收缩变形,更好的保证了工程质量,不会因收缩变形引起挤压造成工程质量问题。 5、经济性 高性能混凝土因其具有较高的强度,良好的耐久性,使得结构使用寿命大大的提高,维修费用也相应减少。同条件下,还可以减少构件尺寸,减小自重,增加使用空间,具有很好的经济性。 三、高性能混凝土的配比要求 1、细集料 高性能混凝土的细骨料宜选用质地坚硬、洁净、级配良好的天然中、粗河砂。河砂越精细,强度越低,超过 2.3 细度模数的中砂,能够达到 C50-C80的硬度要求;而超过 2.6 细度模数的中砂或者粗砂能够达到 C80-C100的硬度要求[3]。 2、粗集料 高性能混凝土必须选用强度高、吸水率低、级配良好的粗骨料,宜选择表面粗糙、外形有棱角、针片状含量低的硬质碎石。粗骨料的压碎指标控制在10%以内,粒径在 10~20mm 为宜,最大不能超过 25mm,含泥量控制在 1%以内。混凝土体积的稳固性与线膨胀系数有直接的关系,系数越小,带来的温度效应力则越小[4]。 3、掺合料 矿物掺和料对混凝土具有减水、活化、致密、润滑、免疫、填充的作用,它能延缓水泥水化过程中水化粒子的凝聚,减轻坍落度损失。高性能混凝土中常用的活性细掺合料有硅粉、磨细矿渣粉、粉煤灰、天然沸石粉等,掺入活性细掺合料可以有效改善水泥浆的流动性,空隙得到充分填充,硬化后的水泥石具有更高的强度,还可以改善混凝土中水泥石与骨料的界面结构,使混凝土的强度、抗渗性与耐久性均得到提高[5]。 4、减水剂 外加剂与水泥相适应性、减水率、流动性、含气量、掺量都将影响混凝土的工作性,高性能混凝土具有较高的强度,较好和易性以及低水灰比,必须使用减水率在20%以上的高效减水剂,现使用较多的聚羧酸减水剂,其减水率能达到 30%左右,具有掺量低、减水率高、收缩小、不含氯离子等特点。 四、高性能混凝土的研究现状与可持续发展 近年来,行业内对高性能混凝土在减少水泥用量、提高混凝土工程耐久性和服役寿命、促进绿色生产和绿色施工、促进节能减排、延长建筑物全生命周期、经济和环境效益最大化等方面已具有普遍认同,推广应用高性能混凝土已成为混凝土行业现阶段的重要课题。高性能混凝土由于具有高体积稳定性、高工作性能、高强、高耐久性和安全性等优良性能,具有十分广阔的发展前景,是未来混凝土产业发展的方向和必然趋势。随着社会的不断发展,节能、环保等关系人类生存和发展的重大课题已逐渐大家所重视,因此,“绿色混凝土”必将是高性能混凝土的方向发展。绿色高性能混凝土是现代混凝土技术发展的必然结果,具有以下特点:

高性能混凝土性能

高性能混凝土性能 讲授目录 HPC的性能相对于传统混凝土而言当然应当是优异的。我们分以下几个方面来讨论。 高性能混凝土的工作性 高性能混凝土的体积稳定性 高性能混凝土的耐久性 高性能混凝土的力学问题 高性能混凝土的高温性能 一、高性能混凝土的工作性 高性能混凝土的优良工作性,既包括传统混凝土拌和物工作性中的流动性、黏聚性(抗离析性)和泌水性等方面,又包括现代混凝土为适应泵送、免振等施工要求而要求的大流动性、坍落度保留好等方面。 为使硬化后的混凝土具有较高的强度和密实性,与普通混凝土相比,高性能混凝土中胶凝材料用量可能增大,除水泥外,往往还要加入1-2种矿物外加剂,同时使用高效减水剂,在较低水胶比下获得高流动性,因此拌和物的黏性增大,变形需要一定的时间。 高性能混凝土的流变性仍近似于宾汉姆体。可以用屈服剪切应力和塑性黏度两个参数来表达其流变性能,而在实际工程中采用变形能力和变形速度来反映高性能混凝土的工作性更为合理。 新拌混凝土的流变学参数

用宾汉姆体描述新拌混凝土流变学特性时,屈服值(屈服应力)是最重要的参数。屈服值是使材料发生变形所需的最小应力。坍落度值越小,表明混凝土拌合物的屈服值越大,在较小的应力作用下越不易变形。 影响混凝土屈服值的主要因素有用水量和化学外加剂。 ②塑性黏度 是反映作用应力与流动速度之间关系的参数。坍落度大致相同,塑性黏度大,混凝土拌合物流动和变形速度慢。 胶凝材料用量多的混凝土,其塑性黏度有增大的趋向。特别是使用塑化剂减少单位体积用水量时,黏性较不掺塑化剂且坍落度相同的混凝土拌合物明显增大,造成泵压增大,可泵性变差。 高性能混凝土工作性的测定方法 坍落度与坍落流动度 V型漏斗试验 U形充填性试验装置 J-环试验 L形流动仪及测试指标试验

高性能混凝土试验研究

高性能混凝土结构试验研究 吴欠欠 1 (1.大连大学,辽宁大连 226611) 摘要:高性能混凝土的性能需要不断地试验以了解其详细的参数,对两个方面的混凝土性能进行了试验研究。一是早期开裂是高性能混凝土应用中经常出现的问题,这不仅影响混凝土的外观质量,也给混凝土的耐久性带来不利影响。针对这一问题,利用平板法约束试验,研究自然环境下不同水胶比,大掺量粉煤灰以及聚丙烯纤维对海工高性能混凝土早期开裂的影响。二是高性能混凝土在工程中应用越来越广泛。本文对配筋和未配筋的高性能混凝土徐变进行了深入的试验和理论分析。对 12 个高性能混凝土试件进行了为期 360 天的分析研究。 关键词:高性能混凝土;早期开裂;聚丙烯纤维;大掺量粉煤灰;徐变 Abstract: In order to understand the performance of high performance concrete . There were two aspects of the test had been gong .The first is early-age cracking is a recurrent problem in the application of high performance concrete,it not only affects the outward appearance quality of concrete but also brings adverse effect on durability of concrete. Aiming at this problem. The influences of different water-binder ratio,large volume fly ash and polypropylene fiber on early cracking of maritime high performance concrete by using flat-restraint test on the natural environment were studied . The second is high performance concrete is widely used in different projects now.The creep of high performance concrete members is deeply analyzed,and the creeps of 12 specimens are measured in 360 days. Key words: high performance concrete;cracking at early age;polypropylene fiber;high volume fly ash;creep 0 引言 目前正是我国经济高速发展的时期,由此也带来了我国混凝土建设的高峰。许多耗资巨大的重要建筑(构筑)物,如高层建筑、超高层建筑、大型公共建筑、跨海大桥、海底隧道、海上采油平台、海岸和近海岸工程已经建成或正在兴建。这些重要的基础设施大部分是混凝土结构且耗资巨大,一般要求的使用期限是100 年以上。日本和欧美国家已提出500 年服役寿命的要求和概念。目前已建工程因结构高度和耐久性要求的提升,普通混凝土已经不能满足要求。海洋工程中钢筋与混凝土材料受海洋环境的侵蚀作用而过早破坏的现象非常严

高性能混凝土浅议

高性能混凝土浅议 介绍了高性能混凝土的发展及现状,概念及其特点,从水泥、水、骨料、高效减水剂等方面探讨了高性能混凝土原材料的技术要求,以期提高混凝土的耐久性和强度。 标签:高性能混凝土特点耐久性高效减水剂强度 混凝土材料的发展史,是从一百多年前波特兰水泥发展开始的,水泥是混凝土的胶结材料。高性能混凝土(High performance concrete,简称HPC)在目前的建筑中被广泛采用,是混凝土的主要发展方向。在当前的建筑业中,出现了大量复杂的大跨度桥梁,高层建筑,地下、水下建筑等工程。在这种苛刻的使用环境条件下,普通的混凝土已经无法满足这些工程建设的需要。物理性能更好,而且具有长期耐久性的混凝土应运而生。通常我们把这种比普通混凝土抗渗性好、强度高、工作性高、耐久性高、体积稳定性高的混凝土称之为高性能混凝土。简单来说,高性能混凝土大幅度地提高了混凝土的耐久性、工作性、适用性、强度、体积稳定性和经济性等多方面的性能。其中高强度、高工作性、高耐久性这三项指标是体现高性能混凝土的基本指标。 1 目前,高性能混凝土的主要发展动向 ①强度超高的活性细粉混凝土。②制造工艺绿色环保化的混凝土。③具有自我诊断、控制、修复能力的机敏型高性能混凝土。④普通混凝土的高性能化。 2 高性能混凝土的使用优点 ①强度高。提高混凝土强度后,相同载荷下所需要的梁柱等构件截面尺寸可以相应的减小,这就减少了混凝土的使用量,建筑本身的重量与地基的负荷,增加建筑的使用面积,节约建筑成本。②工作性好。高性能高混凝土具有良好的流变特性,适合采用先进的混凝土输送泵施工,施工速度得到有效提高,节约工期,工人劳动强度减少很多。③耐久性好。高性能混凝土孔径小,水和其他杂质不易渗入,这就保障了其抗冻性和抗渗性,同时抗拉性能也大大提高。另外,高性能混凝土比普通混凝土的使用寿命要高一倍,能达到100年左右。大多数混凝土结构的破坏事故的原因都是由于混凝土超出了使用寿命而工程没有进行重建,而不是强度达不到要求,因此高耐久性是高性能混凝土的主要指标。高性能混凝土在各项性能指标上都超出普通混凝土很多,因此在目前的工程建设中得到广泛的应用。最初研制高性能混凝土是为了提高混凝土的耐久性。为了提高混凝土的耐久性,高性能混凝土把水灰比降低到0.37以下,这样做能够使混凝土结构相当致密,渗透系数比一些建筑用岩石还要低,并且强度提高很多。美国的大多数超高层的建筑由于建造年代较早强度等级一般都不超过C60,国内在近些年才引进高性能混凝土技术,最初是在铁路的轨道和某些桥梁构建中应用,到80年代末高性能混凝土才在一些一线城市的高层建筑中逐渐使用。到了21世纪,我国国民经济飞速增长,建筑业更是在各地蓬勃发展,高性能混凝土在基础设施建筑和民

大流动度混凝土概述、配合比、主要性能

大流动度混凝土概述、配合比、主要性能 (一)概述 和干硬性混凝土相反,大流动度混凝土具有较大的坍落度和流动性。它与一般的高坍落度混凝土不同,它不是靠增加混凝土的单位用水量和水泥用量来增加流动度,而是采取加入高性能减水剂来达到增大流动度的目的。 有关此类混凝土的名称,包括:流动混凝土、流态混凝土、流化混凝土、大流动度混凝土等。作者认为“流动”与“流态”差别不大,都表明较塑性混凝土的流动性大。“流化”略有差别,应该理解为较塑性混凝土流动性更大些。“大流动度”显然与塑性混凝土差别更大,更能体现此种混凝土具有高流动性的特点。因此,作者认为应统一称为“大流动度混凝土”较符合实际。 大流动度混凝土大流动度的获得,是掺用高效减水剂实现的。高效减水剂,又称超塑化剂、高性能减水剂,也有称流化剂的。主要包括:聚羧酸、氨基磺酸盐、萘磺酸盐甲醛缩合物、密胺磺酸盐甲醛缩合物、改性木质磺酸盐等。如果使用在大流动度混凝土中,作者认为称流化剂合适。 根据流化剂加人次序的不同,大流动度混凝土可分为先加入法(P法)和后加入法(F法)两种。先加入法就是传统的加入方法,即与混凝土其他材料同时加入搅拌,因此也称为同时加入法;后加入法就是大流动度混凝土的拌制方法。即先用常规方法制成坍落度为5~8cm的基准混凝土,运至现场后,在浇筑之前再加入高效能流化剂,经二次搅拌,使其成为坍落度达20cm以上的、不易离析的流动混凝土。后加法与先加泫相比,获得相同流态的混凝土,流化剂添加量仅为先加法的50%~80%。后添加的这种效果,是由于水泥粒子和水接触后生成的水化物,直接与高效能减水剂相互作用的结果。使用后加法时,这些水化物吸附流化剂的量少。一般的做法,是采用后加入法,可以减少坍落度损失。

普通混凝土力学性能试验方法标准

普通混凝土力学性能试验方法 2004-5-23 15:57:28 admin 普通混凝土力学性能试验方法GBJ81―85 主编部门:城乡建设环境保护部批准部门:中华人民国计划委员会施行日期:1986 年7 月1 日关于发布《普通混凝土拌合物性能试验方法》等三本标准的通知计标〔1985〕1889 号根据原建委(78)建发设字第562 号通知的要求,由城乡建设部中国建筑科学研究院会同有关单位共同编制的《普通混凝土拌合物性能试验方法》等三本标准,已经有关部门会审。现批准《普通混凝土拌合物性能试验方法》GBJ80 -85、《普通混凝土力学性能试验方法》GBJ81-85 和《普通混凝土长期性能和耐久性能试验方法》GBJ82―85 等三本标准为标准,自一九八六年七月一日起施行。该三本标准由城乡建设部管理,其具体解释等工作由中国建筑科学研究院负责。出版发行由我委基本建设标准定额研究所负责组织。

计划委员会一九八五年十一月二十五日编制说明本标准是根据原建委(78)建发设字第562 号通知的要求,由中国建筑科学研究院会同各有关单位共同编制而成的。在编制过程中,作了大量的调查研究和试验论证工作,收集并参考了国际标准和其它国外有关的规标准,经过反复讨论修改而成的。在编制过程中曾多次征求全国各有关单位的意见,最后才会同有关部门审查定稿。本标准为普通混凝土基本性能中有关力学性能的试验方法。容包括立方体抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度以及抗折强度等五个方法。由于普通混凝土力学性能试验涉及围较广,本身又将随着仪器设备的改进和测试技术的提高而不断发展,故希望各单位在执行本标准过程中,注意积累资料、总结经验。如发现有需要修改补充之处,请将意见和有关资料寄中国建筑科学研究院混凝土研究所,以便今后修改时参考。城乡建设环境保护部一九八五年七月第一章总则第1.0.1 条为了在确定混凝土设计特征值、检验或控制现浇混凝土工程或预制构件的质量时,有一个统一的混凝土力学性能试验方法,特制订本标准。第1.0.2 条本标准适用于工业与民用建筑和一般构筑物中所用普通混凝土的基本性能试验。

高性能混凝土论文

试论高性能混凝土 姓名:*** 学院:************ 学号:**********

摘要 , 高性能混凝土是一种是以耐久性为主要指标同时具备高强、高早强、高施工性等优异性能的新型混凝土。应该通过制备的科学性以及提高浇筑、捣实等施工方法和工艺来提高混凝土的高施工性、高强度和体积稳定性从而提高道路桥梁的使用寿命和整体经济效益。 The high-performance concrete is based on durability as the main indicators, alongwith highstrength,high early strength, high workability andexcellent performanceofnew concrete.Through the preparation ofthe scientific and improve the casting, to trace the actualconstruction methods andprocess to improve concrete construction,high strengthand volumestability, therebyenhancing thelife and the overall economicbenefitsof roads and bridges. 关键字:高强、高性能混凝土 1 高性能混凝土的定义 高性能混凝土(HighPerformance Concrete,简称HPC)是在高强度混凝土(High Strength Concrete,简称HSC)的基础上发展起来的。在不同国家,甚至是同一国家的不同应用部门,对高性能混凝土的定义都有差别。美国和加拿大的学者认为高性能混凝土应该是高耐久性的,而不仅仅是高强度;除了强度之外,高耐久性还应包括高的体积稳定性、低渗透性和高工作性。日本学者更重视混凝土的工作性,认为高流态、免振自密实混凝土就是高性能混凝土。英国和北美学者则更重视混凝土的强度。 综合分析各种观点,我国学者提出:高性能混凝土是在大幅度提高常规混凝土性能的基础上采用现代(先进的预拌)混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高效外加剂的一种新型高技术混凝土。高性能混凝土应具有几种性能:耐久性、工作性及各种力学性能。 但目前,高性能混凝土的概念又有了新的变化,清华大学冯乃谦教授提出普通混凝土也可能高性能化,其研究成果在工程实际中也得到了应用。因此,高性能混凝土并不一定强调高强,还包括普通混凝土的高性能化。 2 高性能混凝土产生的背景 传统的混凝土虽然已有近200 年的历史,也经历了几次大的飞跃,但今天却面临着前所未有的严峻挑战: (1)随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。 这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长。 (2) 进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土 结构,特别是早年修建的桥梁等基础设施老化问题,需要投入巨资进行维修或更新。1987 年美国国家材料咨询局的一份政府报告指出:在美国当时的57.5

完整word版,高性能混凝土

高性能混凝土技术(应用推广) 河北省高速公路石安改扩建筹建处马洪忠 2013年12月沧州

高性能混凝土技术应用推广 一高性能混凝土简介 1 定义 对于高性能混凝土的定义,不同国家、不同学者由于各自认识、实践、应用范围和目的要求存在差异,对高性能混凝土有着不同的定义和解释。 我国著名混凝土专家、中国工程院院士吴中伟教授在其与廉慧珍教授合著的《高性能混凝土》中总结了国外学者的观点,结合中国实际情况,提出以下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。针对不同用途要求,对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济性。为此,高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、水、集料外,必须掺加足够数量的矿物掺和料和高效外加剂。 这一定义目前已被我国工程界广泛接受。 2 高性能混凝土的优点 与普通混凝土相比,高性能混凝土具有如下优点: (1)具有一定的强度和高抗渗能力,但不一定具有高强度,中、低强度亦可。 (2)具有良好的工作性,混凝土拌和物具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。(3)使用寿命要长,对于一些特殊工程的特殊部位,控制结构设计的并不是混凝土的强度,而是其耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 (4)具有较高的体积稳定性,即混凝土在硬化早期具有较低的水化热,硬化后期具有较小的收缩变形。 因此可以说,高性能混凝土可以为社会各个方面、各个层次的人员带来无穷的好处:◆对业主或用户——因耐久性好,工程安全使用期延长,可减少维修费,保证安全,这实际上是最大的经济效益。 ◆对社会——降低能耗、料耗,利用工业废渣、减少噪声污染,对环境有利,并消除不安全感。

混凝土流动性评价方法

1.1.3混凝土流动性研究方法 从基本组成和施工方式来看,耐火浇注料属于混凝土,也称作耐火混凝土。仅就施工作业性而言,他们应该是完全相同的。因此,在研究耐火浇注料流动性和全组分流变性时,完全可以借鉴混凝土在这方面的研究方法。 混凝土流动性的传统研究方法有塌落度实验、维勃稠度实验、跳桌实验、重塑实验和变形实验等。传统的实验方法不能令人满意,它们或多或少都带有经验性和随意性,不能很好地模拟实际施工条件,所获得的实验数据与新拌混凝土的基本性质并无本质上的联系[8]。 近年来,一些新的研究方法不断被提出,其中比较典型的几种为: (1)坍落流动度试验 进行坍落度试验时,同时测定塌落度、拌和物扩展到直径50cm所需的时间T50和流动终止时的扩展直径,依据这三个参数可综合判断新拌混凝土的施工性能。吴中伟院士[9]在其专著《高性能混凝土》介绍了一种与之相关的工作性简易评价方法,即用坍落度结合扩展值来评价高性能混凝土的工作性。如图1.1所示。 图1.1 高性能混凝土拌和物工作性的简易评价 S l-坍落度S f-扩展值 Fig1.1 The evaluation of the workability of fresh HPC S l-Slump S f-Slump flow spread (2)Orimet法 英国学者Bartons提出用Orimet法测定混凝土拌和物的流速[10-12],实验装置见图1.2。该法用竖管中拌和物的流出速度来反映粘性系数的大小,流出速度小,则粘性系数大,反之则小。拌和物的粘性系数主要影响施工过程中拌和物在自重或外力的作用下填充密实的程度与可泵性。Orimet仪能较好地模拟拌和物在泵管中的运动情形,操作简单,测定快速,而且重复性良好,便于现场施工时工作性的检测与控制

浅谈高性能混凝土

浅谈高性能混凝土 介绍高性能混凝土发展过程,指出高性能混凝土特性,阐明高性能混凝土技术要点及施工控制。 标签:高性能混凝土技术要点施工控制 0 引言 高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,同时低水胶比,选用优质原材料,掺加足够数量矿物细掺料和高效外加剂的配置特点,被认为是目前全世界性能最为全面的混凝土。本文根据参加新建铁路哈尔滨至大连客运专线工程施工的实际经验,简单谈谈高性能混凝土技术。 1 高性能混凝土定义 1990年5月,美国国家标准与技术研究院与美国混凝土协会召开会议,首次提出高性能混凝土这个名词。对高性能混凝土至今国际上没有一个公认的定义,美国和加拿大的学者强调并侧重是硬化后混凝土的性能,特别是耐久性;而日本学者则重视混凝土在新拌状态的高流动性与自密实性。综合各国学者意见,高性能混凝土具有体现工程设计和施工要求的综合的优异的技术特性。一般认为高性能混凝土是指用常规的硅酸盐或普通硅酸盐水泥、砂石等做原材料,使用常规制作工艺,主要依靠高效减水剂和活性矿物掺合料配制的水泥混凝土。 2 高性能混凝土特性 2.1 自密实性高性能混凝土的用水量较低,流动性好,抗离析性高,从而具有较优异的填充性。因此,配好恰当的大流动性高性能混凝土有较好的自密实性。 2.2 体积稳定性高性能混凝土体积稳定性较高,表现为具有高弹性模量、低收缩与徐变、低温度变形。普通混凝土弹性模量为20~25GPa,采用适宜的材料与配合比的高性能混凝土,其弹性模可达40~45GPa。采用高弹性模量、高强度的粗集料并降低混凝土中水泥浆体的含量,选用合理配合比配制的高性能混凝土,90天龄期干缩值低于0.04%。 2.3 强度高性能混凝土抗压强度已超过200MPa。目前,28d平均强度介于100~120MPa的高性能混凝土,已在工程中应用。高性能混凝土抗拉强度与抗压强度值比较高强混凝土有明显增加,高性能混凝土早期强度发展加快,而后期强度的增长率却低于普通强度混凝土。 2.4 水化热由于高性能混凝土的水灰比较低,会较早的终止水化反应,因此,

浅谈高性能混凝土耐久性的特点及应用

浅谈高性能混凝土耐久性的特点及应用 发表时间:2017-12-11T15:56:24.677Z 来源:《建筑学研究前沿》2017年第19期作者:刘颜峰 [导读] 通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 齐鲁交通发展集团有限公司德州分公司山东省德州市 253000 摘要:高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 关键词:混凝土;耐久性;应用;控制措施 从去年在105国道到现在聊城路网改建,接触高性能混凝土也有两年时间了,对高性能混凝土耐久性有点皮毛认识。 高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。具体是: 1)拌合料呈高塑或流态、可泵送、不离析,在减河大桥40米箱梁混凝土坍落度180-220mm,便于浇筑密实; 2)在凝结硬化过程中和硬化后的体积稳定,水化热低,不产生微细裂缝,徐变小; 3)有很高的抗渗性。其中高工作性是高性能混凝土必须具备的首要条件,即高流动性、高抗分离性、高间隙通过性、高填充性、高密实性、高稳定性;并同时具备低成本的技术经济合理性。高性能混凝土具有很丰富的技术内容,其核心是保证耐久性。 1混凝土工程耐久性不足的后果 混凝土工程因其工程量浩大,将会因耐久性不足对未来社会造成极为沉重的负担。据我从网上搜索的资料美国一项调查显示,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3,000座,平均寿命30年,其中32%的水坝年久失修。 美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。中国50-60年代所建设的混凝土工程已使用40余年,如果我国混凝土工程的平均寿命按30-50年计,在今后的10-30年内,为了维修建国以来所建基础设施的费用,将是极其巨大的。 目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。作为21世纪的高性能混凝土,更要从提高混凝土耐久性入手,以降低巨额的维修和重建费用。 2影响混凝土耐久性的主要因素 一般混凝土工程的使用年限约为50-100年,不少工程在使用10-20年后,有的甚至使用9年以后,即需要维修。用普通水泥混凝土所完成的工程不能满足耐久性(超耐久)要求的根本原因,在于混凝土本身的内部结构。 首先,为满足混凝土施工工作性要求,即用水量大、水灰比高,因而导致混凝土的孔隙率很高,约占水泥石总体积的25%-40%,特别是其中毛细孔占相当大部分,毛细孔是水分、各种侵蚀介质、氧气、二氧化碳及其它有害物质进入混凝土内部的通道,引起混凝土耐久性的不足。 其次,水泥石中的水化物稳定性不足。水泥水化后的主要化合物是碱度较高的高碱性水化矽酸钙、水化铝酸钙、水化硫铝酸钙。此外,在水化物中还有数量很大的游离石灰,它的强度极低,稳定性极差,在侵蚀条件下,是首先遭到侵蚀的部分。要大幅度提高混凝土的耐久性,就必须减少或消除这些稳定性低的组分,特别是游离石灰。 3提高混凝土耐久性的技术途径 如前分析,要提高混凝土的耐久性,必须降低混凝土的孔隙率,特别是毛细管孔隙率,最主要的方法是降低混凝土的拌和用水量。但是如果纯粹的降低用水量,混凝土的工作性将随之降低,又会导致捣实成型工作困难,同样造成混凝土结构不致密,甚至出现蜂窝等宏观缺陷,不但混凝土强度降低,而且混凝土的耐久性也同时降低。目前减少孔隙率的途径往往是掺入高效减水剂。 3.1掺入高效减水剂 在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝状的絮凝体内的游离水释放出来,因而达到减水的目的。 3.2掺入高效活性矿物掺料 普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料(矿渣、粉煤灰等)中含有大量活性二氧化硅及活性三氧化二铝,它们能和水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反应,生成强度更高,稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的。有些超细矿物掺料,其平均粒径小于水泥粒子的平均粒径,能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的渗透路。 3.3消除混凝土自身的结构破坏因素 除了环境因素引起的混凝土结构破坏以外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。例如,混凝土的化学收缩和干缩过大引起的开裂,水化热过性过高引起的温度裂缝,硫酸铝的延迟生成,以及混凝土的碱集料反应等。因此,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素。限制或消除从原材料引入的碱、硅酸、氯离子等可以引起结构破坏和钢筋蚀物质的含量,加强施工控制环节,避免收缩及温度裂缝产生,提高混凝土的耐久性。 3.4保证混凝土的强度 尽管强度与耐久性是不同概念,但又密切相关,它们之间的本质联系是基于混凝土的内部结构,都与水灰比这个因素直接相关。在混

相关主题
文本预览
相关文档 最新文档