当前位置:文档之家› 基于PLC的液位控制系统设计

基于PLC的液位控制系统设计

基于PLC的液位控制系统设计
基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计

姓名:濮孝金

学号:

专业:机械电子工程

年月

摘要

在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用

到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。

为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要

的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽

水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。

关键词:水塔液位控制,水位控制,继电器,PLC

Abstract

In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

complete the performance capability aiming at doing a needs analysis. The main experimental method used is to install an automatic water level measuring device on the tank. The level sensor detecting the water tank to measure the actual water level and the control module to send information to the PLC, via A / D conversion, the data obtained is compared with the set level, the controller processes the data and sends the appropriate commands to control the motor speed change pumping rate, the water level maintained in the proper position. Than Touch screen completes the level display, fault alarm information display, real-time and historical curve curves show. If the water level is lower or higher than the set value, the hazard warning signal will be issued In this paper , PLC automatic water supply system based on good execution process level control .

Keywords: tower water; water level control; relays; PLC

目录

第一章绪论 (1)

§研究背景 (1)

§ PLC的产生与发展 (2)

PLC的产生 (2)

PLC技术的发展 (3)

§设计任务 (5)

第二章液位控制装置硬件设计 (6)

§自动液位控制系统应用简介 (6)

§液位控制装置硬件组成 (6)

§ PLC的基本结构.............. 错误!未定义书签。

中央处理单元(CPU) ........... 错误!未定义书签。

I / O模块................. 错误!未定义书签。

电源模块................... 错误!未定义书签。

§ PLC的工作原理.............. 错误!未定义书签。

公共处理扫描阶段........... 错误!未定义书签。

输入采样扫描阶段........... 错误!未定义书签。

执行用户程序扫描阶段....... 错误!未定义书签。

输出刷新扫描阶段........... 错误!未定义书签。

§水箱液位控制系统组成及工作原理 (8)

液位控制系统结构图: (8)

液位控制系统工作原理 (8)

............................ 错误!未定义书签。

............................ 错误!未定义书签。第三章液位控制系统软件设计 (10)

§ PLC软件程序介绍............ 错误!未定义书签。

梯形图的组成:............. 错误!未定义书签。

梯形图的几个特点........... 错误!未定义书签。

梯形图的格式............... 错误!未定义书签。

§程序设计流程图 (10)

§ PLC中PID控制器的实现 (10)

PID算法 (11)

PLC实现PID控制的方式 (11)

连续调节器FB41的使用 (12)

§系统软件设计 (13)

第四章装置测试与结果分析 (15)

致谢 (16)

参考文献 (17)

第一章绪论

§研究背景

目前,城市液位控制系统主要为水厂、生活区、高层建筑液位控制系统等仍使用较传统的方法液位控制。给水工作人员基于历史数据和工作经验人工调节水泵电机的开停来实现水位的控制。当用水量增加时,水压降低,此时手动增大水泵功率;当用水量减少时,水压变大,此时把水泵电机功率降低或让水泵停机。由于水泵是液位控制工程的通用机械,消耗大量能源。在我国,每年在水泵上的能源消耗占总用电量的21%。为了节约能源,必须采取措施改良泵站,以适应负载的变化来运行。

传统的液位控制方式有很多不足之处,尤其是对多台泵水系统。首先,由于水泵电机工作时只有额定运行和停车两种工作状态,并且系统完全依赖于人工操作进行控制,如此以来就不能提供一个稳定的液位控制压力,而且断水、水管崩裂、管道共振等现象经常出现。其次,由于水泵电机只能工作在工频状态,长期高速运行,电能浪费较大,据统计,在目前传统的供水方式中,电费在水费成本中的比例高达45%以上。再次,由于对电机的人为控制很难保证切换秩序准确性,加大了电机运行故障的可能性,容易造成电机在长远运作过程中不均匀磨损,机械磨损大就会缩短设备寿命且维护量大,设备和劳动力成本较高。最后,目前的城市生活区高层液位控制系统,基本都采用高位水箱或水塔液位控制,这种方式的建设既增加基础设施投资,也造成水资源二次污染。

使用新型基于PLC的控制塔与过去水塔液位控制方式相比,

无论在设备投资方面,还是运行经济性、稳定性、可靠性、自动化程度方面都有着不可比拟的优点,再者还具有显着的节能效果。恒压液位控制系统,引起了国内几乎所有设备制造商的重视并不断投资研发,旨在生产高科技产品。目前,产品正向着高可靠性,全数字微机控制,多品种系列方向发展。追求高度自动化、智能化、标准化是未来液位控制系统着眼于开发城市建设智能楼宇、和液位控制管网的必然趋势。

本文重点介绍基于PID控制的自动液位控制装置的相关内容及设计,使模拟水塔的水箱液位保持动态平衡。通过软件调整PLC控制器内的参数,结合液位变送器反馈的实时液位信号再经PID计算输出控制量控制水泵功率调节进水,如此构成单闭环系统。水箱水位控制系统集PLC控制技术、PID控制技术,电力电子技术,微电子技术、计算机技术和检测技术于一体,该液位控制装置可以提高液位控制的稳定性和可靠性,具有良好的控制水位动态平衡的效果。

§ PLC的产生与发展

PLC的产生

1960年随着小型计算机的产生和大型规模开发生产,人们都试图实现以小型工业控制计算机来代替传统的继电器控制接触器。然而,由于小型工业控制计算机输入、输出电路不通用且编程技术的复杂,因此并没有得到推广和应用。

20世纪60年代后期美国汽车制造业的竞争力日益激烈。为了满足生产工艺的需要,在1968年,通用汽车公司第一次公开招标,对控制系统提出了具体要求:①其基本的继电器控制系统的设计周期短,更换方便,接线简单且成本低;②计算机的功能和和继电器的控制系统可以结合在一起,并且要比计算机编程简单易学,易于使用;③系统的通用性好。

1969年美国数字设备公司按照上述要求,研制出世界上第一台可编程逻辑控制器,并在美国通用公司自动装配生产线上首次成功应用,实现自动化生产控制。随后,日本、德国等相继出台,迅速开发了可编程逻辑控制器。但是,这一次主要用于顺

序控制,虽然类似电脑设计的想法,但它仍然属于逻辑运算,因此它被称为可编程逻辑控制器,即PLC( Programmablc逻辑控制器),后又为了区别改称PLC。

在20世纪70年代末,随着微电子技术和计算机技术的日益发展,具有更高计算功能的可编程逻辑控制器也快速发展,不仅硬盘要更换,逻辑编程取代布线逻辑,还要具备运算功能和数据传输功能,真正成为工业计算机控制设备。不仅如此,该逻辑控制器又具备小型化或超小型化的特点,且该功能采用微电脑技术,工业控制能力范围远远超出了逻辑控制、顺序控制局限,因此叫做可编程逻辑控制器,也称为PC( Programmablc控制器)。然而,由于PC机与PC (个人计算机)相混淆,人们都习惯于缩写成PLC。

PLC技术的发展

世界上公认的第一台PLC是1969年美国数字设备公司(DEC)研制的。美国通用汽车以用户身份提出新一代控制器应具备十大条件,这十大条件是:

1. 编程方便,可在现场修改程序;

2. 维修方便,最好是插件式;

3. 可靠性高于继电器控制柜;

4. 体积小于继电器控制柜;

5. 可将数据直接送入管理计算机;

6. 在成本上可与继电器控制竞争;

7. 输入可以是交流115V;

8. 输出为交流115V/2A以上,能直接驱动电磁阀;

9. 在扩展时,原有系统只要很小变更;

10. 用户程序存储容量至少能扩展到4K字节。

这10项指标其实就是现在PLC的最基本功能,其核心要求可归纳为4点:

1.计算机代替继电器控制盘。

2.用程序代替硬接线。

3.输入/输出电平可与外部装置直接相联。

4.结构易于扩展。

1969年美国数字设备公司成功研制世界第一台可编程序控制器PDP-14,并在GM公司的汽车自动装配线上首次使用并获得成功。它具有继电器控制系统的外部特性,又有计算机的可编程性、通用性和灵活性,开创了PLC的新纪元。

可编程控制器从产生到现在,经历了四次换代,总结如下表:

表1-1可编程控制器的发展代次

§设计任务

基于PLC的自动液位控制控制装置,以西门子S7-300 PLC 为控制器,现场总线(Profibus-PA)仪表为变送装置,采用PID 控制技术控制水泵的开关和转速,实现对水塔的液位、流量进行实时监控并保持水塔液位和流量的在液位控制中的动态平衡。达到的指标:

(1)完成控制系统的硬件组态;

(2)实现液位控制动态平衡,即保证液位误差<2~3mm,流量误差<10mL;

(3)结合S7-300 PLC的硬件组态完成PLC程序设计,达到液位和流量双指标。

第二章液位控制装置硬件设计

§自动液位控制系统应用简介

在实际生活中,液位控制系统是由多台水泵液位控制,比如下图所示的液位控制系统使用了5台水泵,4台工作在工频,1台用于变频工作(备用)。在正常的液位控制情况下,通常是由一定数量(比如3台)水泵轮流处于工频工作状态,这样可以避免因一台水泵故障, 导致整个液位控制系统瘫痪的弊端。另外未按变频运行的水泵也要轮流的处于工频运行, 使得各水泵的运行时间接近, 延长水泵和系统的使用寿命。液位控制系统实物图如下所示:

图2-1 5台水泵液位控制

图2-2 控制面板图2-3 液位控制池抽象出水塔液位控制的基本模型如下图2-4所示:

图2-4 水塔液位控制基本模型

§液位控制装置硬件组成

以上为生活中自动液位控制系统的应用实例,在本次毕业设计中,结合实验室具备的实验条件,采用西门子S7-300系统和水箱来模拟水塔液位控制系统,设计出基于PLC的自动液位控制控制装置,装置的硬件组成如下:硬件?

触触触触触触TP 177B mono

触触触触触Profibus-

DP 触触触触PC 触触触触触触

(PC Adapter 触

触触触触触触触触触触触

触触触MM440

S7-300触触触

PLC 触PLC 触触触触触触IP 触触

LED 触触触PLC I/O 触触触触触

触触触触触触触触触触

触触触触

触触

触触触

24V 触触图

2-5 实验室硬件平台

其中基于模块化设计的S7-300 PLC 系统由导轨和各种模块组成,需要一个主机架和一个或多个扩展机架。

图2-6 单机架S7-300模块

硬件组态时,必须保证所组态的虚拟硬件系统与已安装的实际硬件系统相匹配,包括:虚拟系统中模块的组态顺序与实际机架上模块的安装顺序一致;虚拟系统中每个模块的订货号应

与实际硬件模块相匹配,同时应注意有时订货号版本相近也可以兼容的情况。

电路图?

§水箱液位控制系统组成及工作原理

传感器?

液位控制系统结构图:

由水泵、比例阀、单容水箱、液位测量及放水开关,所组成的单回路液位控制系统如图2-11所示。

图2-11 液位控制系统结构图

液位控制系统工作原理

在本毕设使用水箱中,水泵和比例阀共同作用来调节进水速率;液位测量装置包括一个压力传感器和变送器,将液位转化为0~10V模拟电压信号;放水开关用来调节放水速率。

工作过程:首先调节手动阀到一定开度并保持不变,使进水速率只与水泵的工作状态有关;然后将放水开关调节到一定开度,再按图2-12的方式将液位系统与PLC系统连接,如此便构成进水由水泵调节的简单液位控制系统;再通过采集液位测量装置的液位反馈信号,并将该信号作为PID控制的反馈值,

通过PLC内部的PID控制计算;最后输出一个控制信号通过D/A 转化成电压信号来调节水泵功率,使液位值迅速变化到设定值。

图2-12 水箱硬件连接图示说明

首先调节手动阀到一定开度并保持不变,使进水速率只与水泵的工作状态有关;然后将放水开关调节到一定开度,再按上图2-12的方式将液位系统与PLC系统连接,如此便构成进水由水泵调节的简单液位控制系统;再通过采集液位测量装置的液位反馈信号,并将该信号作为PID控制的反馈值,通过PLC 内部的PID控制计算;最后输出一个控制信号通过D/A转化成电压信号来调节水泵功率,使液位值迅速变化到设定值,具体流程图如下2-13。

图2-13液位控制系统工作过程流程图

在水箱系统上,先用手动阀屏蔽掉比例阀,并关闭放水开关。然后从PLC的AO通道送出一个模拟电压到水泵信号输入端,将水箱注满足够清水(约270mm液位),停止进水,将此时液位测量模块的输出值送入到PLC的AI通道,并在程序中通过模拟量输入输出地址PIW288读出液位对应的数字量的数值。接着,将放水开关打开一个小开度,液位下降后关闭放水开关,在程序中读入更新后的PIW288值,按照这个步骤,连续、均匀的记

录一组数据,如下表2-1所示所示。

图2-14 实测数据在excel中拟合出的曲线及公式

将获得的数据,在excel中拟合出曲线及公式,如图2-14所示。可以看出测量装置的线性度还比较好,计算出一次函数关系为 y=*,近似为:y=*,那么得到:实际液位=*PIW数值,整合对应关系完毕。

第三章液位控制系统软件设计

§程序设计流程图

根据实验室水箱的硬件组成,设计水箱水位控制系统的

PLC控制流程图如下图3-1所示:

图3-1 液位控制系统液位控制流程图

其中,出水口阀门可开大开小,但最大不能大于进水量

最大值,否则水箱的液位无法保持稳定(一直下降),这种情

况在实际水塔液位控制过程中表现在用户用水量过大时水塔中

的水量持续下降,此时会启动备用水泵加大液位控制力度,由

于本闭合硬件有限,此处不做讨论。

§ PLC中PID控制器的实现

PID(ProPortiona1IntegralDerivative)是工业控制常用的控制算法,无论在温度、流量等慢变化过程,还是速度、位置等快速变化的过程,都可以得到很好的控制效果。PID控制算法一般由

【比例项+积分项+微分项】组成,它们的作用分别是:比例用于达到控制器设定值;积分项的作用是消除系统静差;微分项则改善系统的动态响应速度。

PID算法

PLC技术不断增强,运行速度不断提高;不但可以完成顺序控制的功能,还可以完成复杂的闭环控制。如图3-2是常见闭环控制系统的构成。

图3-2 闭环控制系统

在自动控制系统中,用来对误差进行放大、积分、微分等处理的装置称为“调节器”,当调节器具有“放大”、“积分”、“微分”功能时,即成为PID调节器。

在变频恒压供水自动控制系统的产品开发和应用实践中,经常采用PID控制器、软件PID以及变频器内置PID来实现系统的PID调节功能,三种方法各具优缺点,本设计选用PID算法的PLC实现方法。

PLC实现PID控制的方式

用PLC对模拟量进行PID控制时,可以采用以下几种方法:

(1)使用PID过程控制模块。

这种模块的PID控制程序是PLC生产厂家设计的,并存放在模块中,用户在使用时只需设置一些参数,使用起来非常方便,一块模块可以控制几路甚至几十路闭环回路,但是这种模块的价格较高,一般在大型控制系统中使用。

(2)使用PID功能指令。

现在很多PLC都有供PID控制用的功能指令,如S7-300的PID 指令。它们实际上是用于PID控制的子程序,与模拟量的输入/输出模块一起使用,可以得到类似于是用PID过程控制模块的效果,但是价格便宜得多。

(3)用自编的程序实现PID闭环控制。

有的PLC没有PID过程控制模块和PID控制用的功能指令,有时虽然可以使用PID控制指令,但希望采用某种改进的PID控制算法。在上述情况下都需要用户编制PID控制程序。

连续调节器FB41的使用

本设计采用西门子PLC的库功能块FB41作为系统的PID调节器。

连续调节器FB41用于在SIMATIC S7可编程控制器上,控制带有连续输入和输出变量的工艺过程。

从“库”或是“别的项目”中找到功能块FB41,并将其复制到本项目的blocks文件夹下,如图3-3和图3-4所示为本次实验所需的各种块。功能块(FB)通常要配合背景数据块(DB)使用,创建数据块DB1并使其为FB41的背景数据块,即一个存储FB41子程序中各种变量的地址空间。

图3-3 背景数据块DB1的创建图3-4本次实验所需“块”

从“库”中找到FB41和SFB41两个功能块,并为其创建背景数据块DB1和DB2,从OB1的调用中可以看出,这个SFB41是针对集成式CPU 314使用的,在本系统中调用它CPU会报错。所以本设计调用FB41并配合DB1使用。

图3-5 在OB1中调用FB41和SFB41比较

功能块FB41实质为一个子程序,在组织块(OB1或OB35)中调用,为实现内部功能和外部信息交互,它必然包含一些变量,按图3-6方式生成的背景数据块便是这些变量的一个集合。

图3-6 FB41的背景数据块DB1中部分变量

功能块FB41为系统提供,一般不能打开来查看其程序结构,但在使用手册中给出了其内部功能实现结构。

图3-7 FB41的内部结构

本设计中需要用到FB41的以下变量:

控制位:COM_RST(置1功能块重启)、MAN_ON(置0)、PVPER_ON(置0)、

P_SEL(比例作用选择)、 I_SEL(积分作用选择)、D_SEL(微分作用选择)

参数:GAIN(比例增益)、TI(积分时间)、TD(微分时间)、CYCLE(采样周期与0B35周期一致)

变量:控制量给定值、控制量反馈值、控制作用输出。

§系统软件设计

基于保持液位控制系统液位动态稳定的目的,并结合PLC内部设定规则,设计出系统的软件

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

水塔水位控制系统课程设计报告

北京理工大学珠海学院 课程设计 课程设计(C) 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 201 年月日 北京理工大学珠海学院

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第 1 学期 学生姓名:专业班级:自动化 指导教师:工作部门:信息学院 一、课程设计题目水塔水位控制系统 二、课程设计内容: 1、硬件设计 (1)用80C51设计一个单片机最小控制系统。其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。 (2)用塑料尺、导线等设计一个水塔水位传感器。其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。 (3)设计一个单片机至水泵的控制电路。要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。 2、软件设计 (1)根据功能要求画出控制程序流程图。 (2)根据控制程序流程图编写80C51汇编语言或C51程序。 三、功能要求: 1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。 2、水塔水位在上、下限水位之间时,水泵保持原状态。 3、供水系统出现故障时,自动报警。 四、调试 1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。 2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。 3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。 撰搞人教研室主任院长 签名 日期2010.10.6

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

电气综合控制系统课程设计

成都理工大学工程技术学院电气综合控制系统课程设计 院系:自动化工程系 专业:建筑电气与智能化 班级:2013建电1班 学号: 姓名: 同组成员: 指导老师:

完成时间:2015年12月25日

目录 概述 (1) 一、PLC的分类及特点 (1) 二、PLC的结构与工作原理 (1) 三、S7-200 PLC的硬件组成及指令系统 (2) 四、常用低压电器介绍 (3) 第一部分 (6) 课题一电动机带延时正反转控制实操模拟 (6) 课题二天塔之光控制模拟 (10) 课题三机械手控制模拟 (15) 第二部分 (20) 课题一电动机点动控制 (20) 课题二电动机自锁控制 (22) 课题三两台电动机顺序起、停控制 (24) 课题四三台电动机顺序起动控制 (26) 总结 (28)

概 述 一、PLC 的分类及特点 可编程控制器简称PLC (Programmable Logic Controller ),在1987年国际电工委员会(International Electrical Committee )颁布的PLC 标准草案中对PLC 做了如下定义:PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 PLC 的分类:按产地分,可分为日系、欧美、韩台、大陆等;按点数分,可分为大型机、中型机及小型机等;按结构分,可分为整体式和模块式;按功能分,可分为低档、中档、高档三类。 PLC 的特点:1.可靠性高,抗干扰能力强2.配套齐全,功能完善,适用性强3.易学易用,深受工程技术人员欢迎3.系统的设计、建造工作量小,维护方便,容易改造4.体积小,重量轻,能耗低 二、PLC 的结构与工作原理 PLC 的结构:PLC 的类型繁多,功能和指令系统也不尽相同,但结构与工作原理则大同小异,通常由主机、输入/输出接口、电源、编程器扩展器接口和外部设备接口等几个主要部分组成。其组成框图如图1所示。 图1 整体式PLC 的组成框图 PLC 的工作原理:PLC 是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC 运行时,CPU 根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令,开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。 接触器电磁阀指示灯电源 电源 限位开关选择开关按钮

单片机水位控制系统课程设计

课程设计(论文) 题目名称: 课程名称: 学生姓名: 学号: 学院: 指导教师:

课程设计任务书

目录 摘要 (4) 引言 (5) 1几种方案的比较 (6) 1.1 简单的机械式控制方式 (6) 1.2 复杂控制器控制方案 (6) 1.3通过水位变化上下限的控制方式 (6) 2水塔水位控制原理 (8) 3电路设计 (9) 3.1原件的介绍 (9) 3.2引脚功能 (10) 3.3 水位检测接口电路 (13) 3.4报警接口电路 (14) 3.5 存储器扩展接口电路.................. .. (14) 4系统软件设计 (15) 4.1 流程图 (15) 4.2程序 (16) 5实验仿真 (18) 6结语 (19)

7参考文献 (19) 摘要 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,水位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。设计一种基于单片机水塔水位检测控制系统。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和汇编程序,并用Proteus软件仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性强。 关键词:单片机;水位检测;控制系统;仿真

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

南理工控制系统综合课程设计-随机切换系统

随机切换系统的仿真

目录 摘要 (3) 1 引言 (4) 1.1 切换系统概述 (4) 1.1.1 切换系统工程背景 (4) 1.1.2 切换系统研究现状 (4) 1.1.3 切换系统的特点 (4) 1.2 问题描述与准备 (5) 2 一般随机线性切换系统 (5) 2.1 切换系统模型 (5) 2.1.1 模型形式 (5) 2.1.2 反馈控制律 (6) 2.2 仿真实例 (7) 3 对随机切换系统性能的研究 (8) 3.1 线性切换系统的能控性和能观性 (8) 3.2 线性切换系统的稳定性 (9) 4 随机切换系统的有趣现象探索 (10) 4.1 切换函数的选取 (10) 4.1.1 切换函数依赖状态变量 (10) 4.1.2 切换函数为随机数 (11) 4.2 系统结构的选取 (12) 4.3 时延函数的选取 (12) 4.4 多个子系统切换探究 (13) 4.2.1 改变初值 (14) 4.2.2 改变切换函数 (15) 5 总结和展望 (16) 参考文献 (17)

摘要 本文研究了随机切换控制系统的分析和仿真问题。首先介绍切换系统的发展背景、特点、研究内容、研究现状以及本文要讨论的问题;第二部分介绍随机切换系统的一般模型,用实例分析了切换系统的运动特性;第三部分简析了切换系统性能,并结合实例说明切换函数的存在对于稳定性的影响;第四部分通过改变系统参数、不同切换函数等情况,利用MATLAB/Simulink软件对系统进行仿真,给出了仿真程序、系统状态曲线,试图从各个系统状态曲线的不同现象的特点和系统性能中发现一些有趣的现象并进行分析;第五部分对全文作了总结并对随机切换系统进行展望。 关键词:随机切换系统simulink仿真状态响应曲线分析有趣现象探索

电子课程设计-水位测量电路设计要点

郑州轻工业学院 课程设计说明书题目:水位检测电路设计 姓名: 院(系): 专业班级: 学号: 指导教师: 成绩: 时间:2013年06 月03 日至2013 年06 月17 日

郑州轻工业学院 课程设计任务书 题目:水位检测电路设计 专业班级:电子科学与技术10-1班姓名: 学号: 主要内容、基本要求、主要参考资料等: 报警电路在人们的生产生活中有着重要作用。水位检测是自然界和一般工业界不可缺少的一种检测系统。本设计主要实现以下功能。 1.利用LED指示灯显示水位(最低水位、1/4、1/2、3/4、最高水位)。 2.达到最高水位时,自动报警。 参考文献: [1] 张毅.自动检测技术及仪表控制系统. 北京: 化学工业出 社,2004.11 [2] 金伟. 现代检测技术. 北京: 北京邮电大学出版社, 2006.2 [3] 王兆安. 电力电子技术.北京: 机械工业出版社, 2006.5 完成期限:2013.06.03-2013.06.17_ 指导教师签名:张晓冬 课程负责人签名:杨坤 2013年06月01日

目录 1概述 (2) 1.1检测技术 (2) 1.2水位检测技术的应用与发展 (2) 1.3水位检测系统设计的意义 (3) 2系统方案设计 (3) 2.1设计方案 (3) 2.1.1硬件电路图 (3) 2.1.2硬件设计原理 (4) 2.2整流电路的设计 (4) 3元器件的介绍与参数计算 (5) 3.1发光二极管 (5) 3.2电阻 (7) 3.3三极管 (7) 3.4蜂鸣报警器 (7) 3.5整流二极管 (8) 3.6变压器 (8) 4 硬件焊接 (9) 5 AltiumDesigner电路设计 (12) 6结论 (13) 参考文献 (14) 附录元器件清单 (15)

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

自动控制综合课程设计报告

题目:根据线性系统的频域分析法和串联校正方法的原理,编写MATLAB程序,要求针对被校正系统的特点以及校正目 标,实现串联校正装置结构的选择以及相应参数的计 算 1)在频域内进行系统设计,是一种间接设计方法,因为设计结果满足的是一些频域指标,而不是时域指标。然而,在频域内进行设计是一种简便的方法,在伯德图上虽不能严格地定量给出系统的动态性能。但却能方便地根据频域指标校正装置的参数。 2)频域设计的这种简便性,是由于开环系统的频率特性与闭环系统的时间响应有关。开环频域特性的低频段表征了闭环系统的稳态性能;中频段表征了闭环系统的动态性能;高频段表征了闭环系统的复杂性和噪声抑制性能。 3)因此,用频域法设计控制系统的实质,就是在系统中加入频率特性形状合适的校正装置,使开环系统频率特性形状变为所期望的形状:低频段增益充分大,以保证稳态误差要求;中频段对数幅频特性斜率一般为-20db/dec,并占据充分的频带,以保证具备适当的相角裕度;高频段增益尽快减小,以消弱噪声影响。 4)串联校正就是将校正装置G(s)与待校正系统在主调节回路里串联连接。控制环节的设计的实质就是,当系统的静态、动态性能指标偏离要求时,在系统的适当位置加入适宜的特殊机构,通过调节它们的参数,从而使系统的整体特性发生改变,最终达到符合要求的性能指标。

1 算法实现流程图

2 伯德图超前校正的设计 2.1 伯德图超前校正设计的方法 1)超前校正环节的两个转折频率应分别设在系统截止频率的两侧。因为超 前校正环节相频特性曲线具有正相移,幅频特性曲线具有正斜率,所以校正后系统伯德图的低频段不变,而其截止频率和相角裕度比原系统的大,这说明校正后系统的快速性和稳定性得到提高。 2)然而,这两者是一对矛盾,不可能同时达到最大,总是顾此失彼。一般, 我们在选用超前校正时,以提高截止频率为主要目的。 3)利用系统频率响应性能可以试凑地解决超前滞后类校正器的设计问题, 但这样很耗时,有时还不能得出期望的结果。本次本人用基于校正后系统剪切频率和相位裕度设定的算法来设计超前校正。 2.2 超前校正设计的步骤 1)根据稳态误差要求,确定开环增益k 。 2)利用已确定的开环增益,计算待校正系统的相角裕度。 调用伯德函数可以轻松求出。 3) 根据幅值关系计算出α。 由超前校正系统的伯德图可知,在最大相角处,幅值增益为10lg α由此 可算出α。 4)计算零、极点z 、p 的值 由 c m ωω=== 得p ω=、/z p α= 5)得出校正网络传递函数、并作校正后系统的伯德图,得相角裕度。 2.3 超前校正设计的程序 [mag,phase,w]=bode(sys0); m1=spline(w,mag,wc);

基于单片机的水位控制系统设计

单片机原理及系统课程设计 专业:自动化 班级:自动化1201 姓名: 王文玉 学号:201209005 指导教师:苟军年 兰州交通大学自动化与电气工程学院 2014年12月12日

基于单片机的水位控制系统设计 1 引言 单片机课程的学习,不仅要在课本上学到知识,更要在实际中得到锻炼。我认为要学好单片机这门课程,更重要的是要学会通过实践巩固学到的知识,只有把学到的知识通过实践不断体会理解,才能更好的掌握这门课程。本次课程设计我选择制作的题目是基于单片机的水位控制系统的设计,在此次课程设计中主要以水塔供水为例,进行设计介绍。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和C语言程序,并用Proteus软件仿真。 1.1 设计背景 水位控制系统是现今生活和工业一种比较实用的系统,其应用范围广泛,主要涉及水塔、水库和锅炉水位的控制等领域。以水塔供水为例,供水的主要问题是塔内水位应始终保持在一定范围,避免“空塔”、“溢塔”现象发生。目前,控制水塔水位方法较多,其中较为常用的是由单片机控制实现自动运行,使水塔内水位保持恒定,以保证连续正常地供水。实际供水过程中要确保水位在允许的范围内浮动,应采用电压控制水位,通过实时检测电压,测量水位变化,从而控制电动机工作状态,保证水位在正常范围内。 2 设计方案及原理 2.1通过水位变化上下限的控制方式 这种控制方式通过在水塔的不同高度固定不动的3根金属棒ABC,以感知水位的变化情况。A棒接+5V电源,B棒﹑C棒各通过一个电阻与地相连。利用51单片机为控制核心,设计成一个对供水箱水位能自动进行检测控制的系统。如果水塔水位处于警界低水位状态时,启动水泵,水泵开始正转,开始向水塔供水;如果水塔水位处于正常水位状态时,水泵停止工作,水泵停转;如果水塔水位处于警界高水位状态时,启动水泵,水泵开始反转,开始从水塔排水;供水系统出现故障时,自动报警;故障解除时,水泵恢复正常工作。 2.2水塔水位控制原理 在水塔内的不同高度处,安装固定不变的3根金属棒A、B、C,用以反映水

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

《自动控制系统》课程设计任务书1201.1202

《电力拖动自动控制系统》课程设计 计划、任务与指导书 一、课程设计的目的 通过电力拖动自动控制系统的设计,了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。为今后从事相关技术工作打下必要的基础。 二、课程设计的要求 1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。 2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。 3、学会收集、分析、运用自动控制系统设计的有关资料和数据。 4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。 三、课程设计的内容 完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。四、进度安排:共1.5周 本课程设计时间共1.5周,进度安排如下: 1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。(1.5天) 2、分析控制要求、控制原理,设计控制方案。(1.5天) 3、绘制控制原理图、控制流程图、端子接线图。(2天) 4、编制程序、梯形图设计、程序调试说明。(1.5天) 5、整理图纸、写课程设计报告。(1.5天) 五、课程设计报告内容 完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供) 1.退火炉温度控制系统 2.变频液位自动控制系统设计 3.变频流量自动控制系统设计 4.变频供水系统设计 5.变频调速恒张力控制系统设计 6.变频器在印染机械多电机同步调速系统中应用 7.线缆设备恒张力变频器控制设计 8.空气压缩机变频调速的设计 六、参考书 1.陈伯时主编电力拖动自动控制系统(第二版), 机械工业出版社1992 2.陈伯时, 陈敏逊. 交流调速系统. 机械工业出版社1998 3.张燕宾著SPWM变频调速应用技术机械工业出版社1997 4.王兆义主编2《可编程控制器教程》主编 5.徐世许主编2《可编程控制器教程原理、应用、网络》主编 6.《工厂常用电气设备手册》(第2版)上、下册中国电力出版社

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

水塔自动上水课程设计

目录 一、设计目的 (1) 二、设计要求 (1) 三、设计方案 (1) 四、设计组成及原理分析 (4) 五、元器件的选用及其参数 (12) 六、设计总结 (12) 七、参考文献 (14)

一、设计目的 本课程设计是在前导验证性认知实验基础上,进行更高层次的命题设计实验,要求学生在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。培养学生利用模拟、数字电路知识,解决电子线路中常见实际问题的能力,使学生积累实际电子制作经验,目的在于巩固基础、注重设计、培养技能、追求创新、走向实用。 二、设计要求 1)设计制作一个带保护装置的水塔自动进水逻辑电路。 2)要求有水满、进水、水量不足指示,当水位低时要自动进水,满时要及时断电停水,水位过低时能停止出水。 三、设计方案 1.设计方案分析 每部分电路都有其相应功能:首先有信号产生部分产生整个电路的输入信号,该信号经过信号处理之后,输出其他电路的控制信号,控制其他电路工作,电机控制电路部分接收到有信号处理电路输出的有效控制信号后正常工作驱动电机转动抽水,使水位上升,而水位的变化又直接关系到信号的产生,因此有个循环的过程,即使水位保持在一定范围内,水位显示电路接收到有效信号后驱动显示器工作,使其显示该时刻的水位;水位超限时输出为电机停止的有效控制信号使

上水电路停止工作。由“信号产生→信号处理→电机控制→水位变化→信号产生”这个循环就能使水塔具有自动控制水位的能力。 方案一、 通过NE555接成施密特触发电路,利用v1-v0电压传输特性就可以达到水塔自动进水,不会产生水满而溢出的目的。 自动进水:当水位下降低于A点时,A点悬空。IC的2脚低于1/3Vcc,其3脚输出高电平,水塔被启动,水位逐渐上升。 中间保持:当水位上升到A点到B点之间时,此时P点电位控制在1/2Vcc左右,触发器保持原来的状态不变。因为此时电路不工作,所以水位一直保持在A点与C点之间,不再上升。 停止进水:当水位达到C时,此时输出信号V0变为低电平,致使后续电机上水电路不工作。 以上过程形成循环,在正常情况下一直保持水塔水位大于下限水位。

计算机控制系统课程设计

《计算机控制》课程设计报告 题目: 超前滞后矫正控制器设计 姓名: 学号: 10级自动化 2013年12月2日

《计算机控制》课程设计任务书 指导教师签字:系(教研室)主任签字: 2013年11 月25 日

1.控制系统分析和设计 1.1实验要求 设单位反馈系统的开环传递函数为) 101.0)(11.0(100 )(++= s s s s G ,采用模拟设 计法设计数字控制器,使校正后的系统满足:速度误差系数不小于100,相角裕度不小于40度,截止角频率不小于20。 1.2系统分析 (1)使系统满足速度误差系数的要求: ()() s 0 s 0100 lim ()lim 100 0.1s 10.011V K s G s s →→=?==++ (2)用MATLAB 画出100 ()(0.11)(0.011) G s s s s = ++的Bode 图为: -150-100-50050 100M a g n i t u d e (d B )10 -1 10 10 1 10 2 10 3 10 4 P h a s e (d e g ) Bode Diagram Gm = 0.828 dB (at 31.6 rad/s) , P m = 1.58 deg (at 30.1 rad/s) Frequency (rad/s) 由图可以得到未校正系统的性能参数为: 相角裕度0 1.58γ=?, 幅值裕度00.828g K dB dB =, 剪切频率为:030.1/c rad s ω=, 截止频率为031.6/g rad s ω=

(3)未校正系统的阶跃响应曲线 024******** 0.20.40.60.811.2 1.41.61.8 2Step Response Time (seconds) A m p l i t u d e 可以看出系统产生衰减震荡。 (4)性能分析及方法选择 系统的幅值裕度和相角裕度都很小,很容易不稳定。在剪切频率处对数幅值特性以-40dB/dec 穿过0dB 线。如果只加入一个超前校正网络来校正其相角,超前量不足以满足相位裕度的要求,可以先缴入滞后,使中频段衰减,再用超前校正发挥作用,则有可能满足要求。故使用超前滞后校正。 1.3模拟控制器设计 (1)确定剪切频率c ω c ω过大会增加超前校正的负担,过小会使带宽过窄,影响响应的快速性。 首先求出幅值裕度为零时对应的频率,约为30/g ra d s ω=,令 30/c g rad s ωω==。 (2)确定滞后校正的参数 2211 3/10 c ra d s T ωω= ==, 20.33T s =,并且取得10β=

水位自动控制电路

**大学信息学院 数字电路课程设计报告 题目:水位自动控制电路 专业、班级:电子信息科学与技术 学生姓名: 学号: 指导教师:

指导教师评语: 成绩: 教师签名:

一.任务书 二.目录 目录 1 设计目的 (4) 2 设计目的要求 (4) 3 设计方案选取与论证 (4) 4 仿真过程及结果 (5) 1 设计思路 (6) 2 现有设计方案 (6) 3 总体设计框图 (7) 5 结论故障分析及解决 (14) 6 参考文献 (15) 附录 (16)

三.内容 1. 设计目的 通过这次设计熟练对电子设计的动手技能,,提高电子设计的能力,同时也培养学生收集、整理、分析和刷选利用资料及各类信息的能力,也使得学生通过这次的设计对所学的数电和模电知识及各种电路、电路元件的功能更好的理解和运用。 2. 设计任务要求 功能:1、当水位低于最低点时,电路能自动加水。 2、当高于最高点时,电路能自动停水。 3、该电路的直流电源自行设计。(可采用W78××系列) 要求:1、选择适当的元器件,设计该电路。以实现上述功能。 2、利用Proteus绘制其电路原理图并进行仿真。 3. 设计方案选取与论证 3.1设计方案的选取: (1)继电器式自动上水控制装置 继电器式水位控制装置工作原理是通过接入220V继电器控制电路的3个探测电极来检测水位高低,使继电器闭合或开启,控制水泵电动机的开停,达到控制水位的目的,控制电路较简单,但要注意以下几点: 1)在维修水塔中的水位探测电极时,须断开主回路和控制回路电源开 来使N线带电,造成维修人员的触电危险。 2)在水塔的低水位探测电极C的引线端,必须进行N线的重复接地。接地电阻要求小于4Ω,使C点水位探测电极保持良好的零电位,以利于继电器的可靠吸合,使自控电路运行稳定。 3)在水泵向水塔供水时,由于水流的冲击,使水塔内的水位波动起伏,容易导致继电器吸合、断开的频繁跳动,影响自控电路的正常稳定运行。

自动控制系统课设

唐山学院 自动控制系统课程设计 题目基于MATLAB的按转子磁链定向的异步电动机仿真系 (部) 智能与信息工程学院 班级 12电本1班 姓名董智博 学号 4120208102 指导教师吕宏丽吴铮 2016 年 1 月 18 日至 1 月 22 日共 1 周 2016年 1 月 22 日

《自动控制系统》课程设计任务书

目录 1引言 (1) 2异步电动机的三相数学模型 (2) 2.1异步电动机动态数学模型的性质 (2) 2.2异步电机三相数学模型的建立过程 (2) 2.2.1磁链方程 (3) 2.2.2电压方程 (5) 2.2.3转矩方程 (6) 2.2.4运动方程 (7) 3坐标变换和状态方程 (9) 3.1坐标变换的基本思路 (9) 3.2三相--两相变换(3/2变换和2/3变换) (10) 3.3静止两相坐标系状态方程的建立 (11) 4系统模型生成及仿真............................... 错误!未定义书签。 4.1各模型实现 (14) 4.1.1 3/2变换模型 (14) 4.1.2异步电动机模型 (15) 4.2整体模型 (16) 4.3仿真参数设置 (17) 4.4仿真结果 (17) 5总结 (20) 参考文献 (21)

1引言 异步电动机具有非线性、强耦合性、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制系统和直接转矩控制系统是已经获得成熟应用的两种基于动态模型的高性能交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电机模型,然后模仿直流电机控制策略设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的正、负符号,根据当前定子磁链矢量所在位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足。但是无论是哪种控制方法都必须经过仿真设计后才可以进一步搭建电路实现异步电动机的调速。 本设计是基于MATLAB的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式经行仿真,模拟将要实施的转子磁链设计,查看设计后的转矩、磁链、电流、电压波形,对比观察空载起动和加载过程的转速仿真波形,观察异步电动机稳态电流波形,观察转子磁链波形。

控制系统综合课程设计—切换系统的仿真

目录 题目:切换系统的仿真 (2) 摘要 (3) 1 引言 (4) 2 一般控制系统 (4) 2.1 控制器的设计 (4) 2.2 仿真实例 (5) 2.3 改变参数对系统性能的影响 (6) 2.3.1 时滞环节对系统性能的影响 (7) 2.3.2 切换函数对系统性能的影响 (8) 2.4 状态观测器的设计 (10) 2.4.1 仿真实例 (10) 3 非线性系统 (12) 3.1 非线性切换系统的稳定性 (12) 3.2 改变参数对非线性系统性能的影响 (16) 3.2.1 时滞环节对系统性能的影响 (16) 3.2.2 切换函数对系统性能的影响 (17) 3.3 非线性系统的控制器设计 (18) 3.3.1 仿真实例 (18) 4 结论 (21) 参考文献 (23)

题目:切换系统的仿真 问题描述:利用Matlab 软件仿真如下随机切换系统 1、一般控制系统:)())(()()(t u D t t x B t x A t x σσσστ+-+= 其中x 为状态,u 为控制。 2、非线性系统:)))((())(()()(t d t x g W t x g B t x A t x -++=σσσ 要求: (1)给出仿真程序,系统的状态曲线; (2)改变参数,探索控制算法的设计及其性能。

课程设计报告摘要

1 引言 切换系统是一个由一个系列的连续或离散的子系统以及协调这些子系统之间起切换的规则组成的混合系统。关于切换系统最重要的研究是关于其稳定性能的研究,切换系统的稳定性具有三个基本问题:对于任意切换序列系统的稳定性;对给定的某类切换序列系统的稳定性;构造使系统能够稳定的切换序列,即镇定问题。切换系统的稳定性有一个显著的特点是,其子系统的稳定性不等于整个系统的稳定性,即可能存在这样的情形,切换系统的每个子系统的是稳定的,但是在按照规则进行切换时,会导致整个系统不稳定,与此相对,也可能存在这样的情形,尽管每个子系统是不稳定的,但是可以通过某种切换规则使整个系统稳定。切换系统是非线性系统,即使每个子系统都是线性定常系统。 2 一般控制系统 给定一般线性切换系统模型如下: )())(()()(t u D t t x B t x A t x σσσστ+-+= (1) 其中,i A 、i B 、i D 分别是第i 个子系统的适当维数的矩阵,x ∈n R 、u ∈r R 分别为系统的状态和控制输入,σ:[0,+∞] → k ={1,2,…,m }是切换函数[1],τ(t )是一个延时环节。本文研究的是一个基于二维状态变量共两个切换模式的线性切换系统。 2.1 控制器的设计 切换系统是一个由一个系列的连续或离散的子系统以及协调这些子系统之间起切换的规则组成的混合系统。切换系统的稳定性是切换系统分析研究的重点问题。对于切换系统稳定性方面的研究,目前使用最广泛的一种方法是李雅普诺夫函数法。其主要思想为:对于切换系统,如果所含各子系统存在统一李雅普诺夫函数,那么系统对于任意的切换规则都是稳定的[2]。徐启程[1]等人通过构造Lyapunov 函数,设计出鲁棒状态反馈控制器u =i K x ,确保闭环系统在任意切换策略下是随机渐进稳定性。 对系统(1)设状态反馈控制律为:u =i K x ,则???=+-+=)()())(()()(t x K u t u D t t x B t x A t x σσσσστ , 通过状态反馈形成的闭环系统如下: ))(()()()(t t x B t x K D A t x τσσσσ-++= ,)0()(0x t x = (2)

相关主题
文本预览
相关文档 最新文档