当前位置:文档之家› (完整word版)第五代移动通信的关键技术

(完整word版)第五代移动通信的关键技术

(完整word版)第五代移动通信的关键技术
(完整word版)第五代移动通信的关键技术

第五代移动通信的关键技术

5G 是面向未来的通信发展需求的移动通信系统,第五代移动通信技术兴起的主要驱动力为互联网和物联网,将来人机交互和数据共享是人们日常生活的一部分,在这种交互下,人们的生活将会更加高效舒适。第五代移动通信系统不仅通信容量大,速率高,其可靠性和安全性也比第四代移动通信有了更好的改进,具有很大的发展空间,下面简单介绍几种第五代移动通信的关键技术。

1.Massive MIMO技术

大规模MIMO技术是指基站端采用大规模天线阵列,天线数超过十根甚至上百根,并且在同一时频资源内服务多个用户的多天线技术。大规模MIMO技术将传统的时域、频域、码域三维扩展为了时域、频域、码域、空域四维,新增维度极大的提高了数据传输速率。大规模MIMO天线技术提供了更强的定向能力和赋形能力如图1,大规模MIMO的空间分辨率与现有MIMO相比显著增强,能深度挖掘空间维度资源,使得网络中的多个用户可以在同一时频资源上利用大规模MIMO提供的空间自由度与基站同时进行通信,从而在不需要增加基站密度和带宽的条件下大幅度提高频谱效率。大规模MIMO可将波束集中在很窄的范围内,从而大幅度降低干扰,大幅降低发射功率,从而提高功率效率,减少用户间干扰,显著提高频谱效率。

当基站侧天线数远大于用户天线数时,各个用户的信道将趋于正交,小区内同道干扰及加性噪声趋于消失,系统性能仅受限于邻区导频的复用,这使得系统的很多性能都只与大尺度相关,与小尺度无关。大规模MIMO的无线传输技术将有可能使频谱效率和功率效率在4G 的基础上再提升一个量级。

图1. 大规模MIMO天线技术方向图

2. 非正交多址接入技术(NOMA)

5G的无线接入技术目前还有的观点关注多载波调制,如滤波器组多载波(FBMC,_ lter _bank based multicarrier),其天然的非正交性和不需要先前的分布式发射机同步。一种新的调制方式,被称为通用滤波后的多载波(UMFC)被提出。开始是OFDM信号,通过滤相邻子载波组,以减少时间/频率同步造成的旁瓣水平和载波间干扰。要解决OFDMA正交的时间窗口的缺点,即需要较大的保护带CP,使用多载波滤波器组就可以允许大的传输时延和任意高的频率补偿。日益发展的软件无线电,FFT块的大小,子载波间隔和CP长度可根据信道条件改变。因此,OFDMA允许一些参数可调,可以很好地适应5G的要求。

3. 射束分割多址技术(BDMA)

有限的频谱资源对于移动和无线技术而言是一个重大的挑战,即如何把有限的频率和时间分配给不同用户。由于这个情况,要实现提高系统的容量和质量,目前使用的多址技术包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、正交频分多址(OFDMA)等。然而,现在使用的所有多址技术中,通信系统容量依赖于时间和频率。如何发展多址接入系统,提高有限频率的系统容量是一个新的挑战。

目前发明的BDMA技术,根据MS的位置分配天线波束,实现多址接入,从而显著增加系统的容量。按此观点,MS和基站在视距(LOS)的状态,因此他们明确知道彼此的位置。在此条件下,他们能够将波束直接传送到彼此的位置以通信,而不受移动台在小区边缘的干扰。

为了在5G中适应BDMA,就要发展相位阵列天线,智能天线要能够调整波束。调整波束天线通过收集从基站和MS到达角(AOA)信息设置无线配置。自适应天线阵列的使用,是提高能力的一个可能性。

4. 全频段技术

5G网络通信技术将会以智能化、宽带化和多元化为主要的发展方向。未来网络数据业务的发展方向主要在热点密集地区和室内,而当前网络数据的流量如果在少数人使用状态下不存在延迟、低网速等问题,但一旦放开使用用户数量,网络延迟和网络速度都将会是一个巨大的问题,而物联网和智能终端所依赖的移动通信网络将会处于堵塞状态,很难发挥物联网和智能终端的优势。目前5G移动通信技术所研究的超密集组网,可以针对高度使用移动数据的地区提升流量容量1000倍,很好的解决了网络数据使用密集地区的数据传输和数据容量问题。该技术的发展,虽然在数据流量方面提升率非常高,但是由于其拓扑结构也更加复杂,各网络之间的信号干扰也是一个很大的麻烦,大家都知道一旦同一个区域的无线网络过多,就会相互之间产生干扰,影响网络的传输。因此,该技术还需要进一步的研究以适用

未来对5G 移动通信技术的要求。

5. D2D(Device To Device)通信

5G网络的密集性和异构性带来很多新的网络建模分析设计和优化的挑战对于持续存在致密性小区收缩另一个方法在D2D通信模式中。

所谓D2D通信允许邻近的用户建立直接的通信以一个相对“短直跳”取代两个通过基站无线“长跳”,当无线业务存在较大空间局部性,D2D通信将带来更少的功耗,更高的数据速率以及更短的时延。因此,D2D也必将对5G网络起到重要的作用。

第五代移动通信技术不仅仅是一种单纯的技术革新,也不是几种无线通信接入技术简单相加,而是对多种不同的技术进行整合之后来满足不同层次的客户的通信需求,从这个角度来讲,第五代移动通信技术是一种真正意义上的融合网络。

第三代通信与第二代通信系相比的优势

第三代通信与第二代通信 相比的优势 通信083

第三代移动通信技术,简称3G,全称为3rd Generation,中文含义就是指第三代数字通信。1995年问世的第一代模拟制式手机(1G)只能进行语音通话;1996到1997年出现的第二代GSM、TDMA等数字制式手机(2G)便增加了接收数据的功能,如接受电子邮件或网页;第三代与前两代的主要区别是在传输声音和数据的速度上的提升,它能够要能在全球范围内更好地实现无缝漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务,同时也要考虑与已有第二代系统的良好兼容性。 第三代移动通信系统(IMT-2000),在第二代移动通信技术基础上进一步演进的以宽带CDMA技术为主,并能同时提供话音和数据业务的移动通信系统亦即未来移动通信系统,是一代有能力彻底解决第一、二代移动通信系统主要弊端的最先进的移动通信系统。第三代移动通信系统一个突出特色就是,要在未来移动通信系统中实现个人终端用户能够在全球范围内的任何时间、任何地点,与任何人,用任意方式、高质量地完成任何信息之间的移动通信与传输。可见,第三代移动通信十分重视个人在通信系统中的自主因素,突出了个人在通信系统中的主要地位,所以又叫未来个人通信系统。 第三代移动通信系统将会以宽带CDMA系统为主,所谓CDMA,即码分多址技术。目前已经实用的多址技术有应用于第一代和第二代移动通信中的频分多址(FDMA)、时分多址(TDMA)和窄带码分多址(CDMA)三种。FDMA是不同的移动台占用不同的频率。TDMA是不同的移动台占用同一频率,但占用的时间不同。CDMA是不同的移动台占用同一频率,但各带有不同的随机码序,以示区分布进行扩频,因此同一频率所能服务的移动台数量是由随机码的数量来决定的。宽带CDMA不仅具有CDMA所拥有的一切优点,而且运行带宽要宽得多,抗干扰能力也很强,传递信号功能更趋完善,能实现无线系统大容量和高密度地覆盖漫游,也更容易管理系统。第三代移动通信所采用的宽带CDMA技术完全能够满足现代用户的多种需要,满足大容量的多媒体信息传送,具有更大的灵活性。 1、与第二代通信技术相比,第三代通信技术的特点有: (1)具有全球范围设计的,与固定网络业务及用户互连,无线接口的类型尽可能少和高度兼容性; (2)具有与固定通信网络相比拟的高话音质量和高安全性; (3)具有在本地采用2Mb/s高速率接入和在广域网采用384kb/s接入速率的数据率分段使用功能; (4)具有在2GHz左右的高效频谱利用率,且能最大程度地利用有限带宽; (5)移动终端可连接地面网和卫星网,可移动使用和固定使用,可与卫星业务共存和互连; (6)能够处理包括国际互联网和视频会议、高数据率通信和非对称数据传输的分组和电路交换业务; (7)支持分层小区结构,也支持包括用户向不同地点通信时浏览国际互联网的多种同步连接; (8)语音只占移动通信业务的一部分,大部分业务是非话数据和视频信息;

第三代移动通信TD-SCDMA系统主要技术简介

3. 第三代移动通信TD-SCDMA系统主要设备和技术介绍 .1 TD-SCDMA标准的提出与形成 .2 TD-SCDMA系统概述 .2.1 TD-SCDMA系统主要技术性能 概括地讲,TD-SCDMA系统的主要技术性能有: 1. 工作频率: 2010~2025MHz 2. 载波带宽: 1.6MHz 3. 占用带宽: 5MHz (容纳三个载波,即1.6MHz×3) 4. 每载波码片速率: 1.28Mcps 5. 扩频方式: DS , SF=1/2/4/8/16 6. 调制方式: QPSK 7. 帧结构:超帧720ms, 无线帧10ms 8. 子帧: 5ms 9. 时隙数: 7 10. 支持的业务种类: * 高质量的话音通信 * 电路交换数据 (与当前GSM网络9.6Kbps兼容) * 分组交换数据(9.6~384Kbps,以后达到2Mbps) * 多媒体业务 * 短消息 11. 每载波支持对称业务容量: 每时隙话音信道数:16 (8Kbps话音,双向信道,同时工作;也可以用 两个信道支持13Kbps话音) 每载波话音信道数:16×3=48 (对称业务) 频谱利用率: 25Erl./MHz 12. 每载波支持非对称业务容量: 每时隙总传输速率:281.6Kbps (数据业务) 每载波总传输速率:1.971Mbps 频谱利用率: 1.232Mbps/MHz 13. 基站覆盖范围: 在人口密集市区: 3~5Km (根据电波传播环境条件决定) 在城市郊区;适当调整时隙结构可达到10~20Km (与FDD制式相同) 14. 通信终端移动速度:基于智能天线和联合检测的高性能数字信号处理 技术,经 过仿真,通信终端的移动速度可以达到250km/h。

移动通信原理与系统-教学大纲

《移动通信》课程教学大纲 一、课程名称:(移动通信原理与系统) ( 32学时) 二、先修课程:通信原理、通信网基础 三、适用专业:通信工程专业 四、课程教学目的 本课程是通信工程本科专业课。移动通信是当今通信领域发展最快、应用最广和最前沿的通信技术。移动通信的最终目标是实现任何人可以在任何地点、任何时间与其他任何人进行任何方式的通信。移动通信技术包括了组网技术、多址技术、语音编码技术、抗干扰抗衰落技术、调制解调技术、交换技术以及各种接口协议和网管等等多方面的技术。因此从某种意义上可以说,移动通信系统汇集了当今通信领域内各种先进的技术。通过本课程的学习使学生了解和掌握移动通信的基本理论,了解和掌握移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和抗干扰技术、语音编码技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和3G技术以及未来无线通信的发展等。 五、课程教学基本要求 1.理解和掌握无线信道和传播、传播损耗模型; 2.掌握移动通信中的信源编码的基本概念和调制解调技术; 3.理解和掌握移动通信中的各种抗衰落抗干扰技术; 4.掌握移动通信系统的组网技术; 5.掌握GSM移动通信系统、理解GPRS系统的基本原理以及EDGE的基本原理; 6.掌握基于CDMA20001X系统、WCDMA系统和TD-SCDMA系统的基本原理和应用; 7.了解未来移动通信的发展。 六、教学内容及学时分配(不含实验) 第一章概述 1学时 第二章移动通信电波传播环境与传播预测模型 4学时内容: ●无线传播的特点以及对无线通信的影响; ●无线信道的特性,研究方法 ●无线信道的分析基础(分布,特性参数等) ●简单介绍建模技术和仿真技术基础 ●介绍常见的几种传播预测模型 ●说明应用范围和应用方法

移动通信技术1G~4G发展史

第1章移动通信现状问题与基本解决方法 1.1移动通信1G—4G简述 现在,人们普遍认为1897年是人类移动通信的元年。这一年意大利人.马可尼在相距18海里的固定站与拖船之间完成了一项无线电通信实验,实现了在英吉利海峡行驶的船只之间保持持续的通信,从而标志着移动通信的诞生,也由此揭开了世界移动通信辉煌发展的序幕错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。 现代意义上的移动通信系统起源于20世纪20年代,距今已有90余年的历史。本文主要简述移动通信技术从1G到4G的发展。移动通信大发展的原因,除了用户需求的迅猛增加这一主要推动力外,还有技术进展所提供的条件,如微电子技术的发展、移动通信小区制的形成、大规模集成电路的发展、计算机技术的发展、通信网络技术的发展、通信调制编码技术的发展等。1.1.1第一代移动通信系统(1G) 20世纪70年代中期至80年代中期是第一代蜂窝网络移动通信系统发展阶段。第一代蜂窝网络移动通信系统(1G)是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。1G主要基于蜂窝结构组网,直接使用模拟语音调制技术,传输速率约s错误!未找到引用源。。 1978年底,美国贝尔实验室成功研制了先进移动电话系统(Advanced Mobile Phone System, AMPS),建成了蜂窝状移动通信网,这是第一种真正意义上的具有随时随地通信的大容量的蜂窝状移动通信系统。蜂窝状移动通信系统是基于带宽或干扰受限,它通过小区分裂,有效地控制干扰,在相隔一定距离的基站,重复使用相同的频率,从而实现频率复用,大大提高了频谱的利用率,有效地提高了系统的容量错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。。

吉大19春学期《移动通信原理与应用》在线作业一

(单选题)1: W-CDMA系统采用的多址方式为()。 A: FDMA B: CDMA C: TDMA D: FDMA/ CDMA 正确答案: (单选题)2: GSM1800收发频率间隔为()。 A: 95MHz B: 45MHz C: 35MHz D: 25MHz 正确答案: (单选题)3: 跳频能有效地改善以下()现象。 A: 远近效应 B: 阴影效应 C: 多经效应 D: 码间干扰 正确答案: (单选题)4: 在移动通信系统中,中国的移动国家代码为( )。A: 86 B: 086 C: 460 D: 0086 正确答案: (单选题)5: GPRS系统可以提供高达()的理论数据传输速率。A: 14.4Kb/s B: 115.2Kb/s C: 171.2Kb/s D: 384Kb/s 正确答案: (单选题)6: N-CDMA系统采用的多址方式为( )。 A: FDMA B: CDMA C: TDMA D: FDMA/CDMA 正确答案: (单选题)7: 数字移动通信网的优点是()。 A: 频率利用率低

B: 不能与ISDN兼容 C: 抗干扰能力强 D: 话音质量差 正确答案: (单选题)8: GSM900收发频率间隔为()。 A: 25MHz B: 35MHz C: 45MHz D: 75MHz 正确答案: (单选题)9: 下面说法正确的是()。 A: GSM手机比CDMA手机最低发射功率小 B: 光纤通信使用的光波工作波段是毫米波 C: WCDMA是在GSM网络基础上发展演进的 D: 在通信系统中,电缆比光缆的传输质量好 正确答案: (单选题)10: 开环功率控制的精度()闭环功率控制的精度。 A: 大于 B: 小于 C: 接近 D: 不好说 正确答案: (多选题)11: 相比目前的定向天线而言,智能天线具有以下()优点。A: 降低用户间干扰 B: 增强覆盖 C: 实现结构简单 D: 提高系统容量 正确答案: (多选题)12: GSM支持的基本业务又分为()。 A: 补充业务 B: 电信业务 C: 承载业务 D: 附属业务 正确答案: (多选题)13: 常用的多址技术包括()。 A: 频分多址(FDMA) B: 时分多址(TDMA) C: 码分多址(CDMA)

《移动通信原理与系统》考点

移动通信原理与系统 第1章概论 1.(了解)4G网络应该是一个无缝连接的网络,也就是说各种无线和有线网络都能以IP协议为基础连接到IP核心网。当然为了与传统的网络互连则需要用网关建立网络的互联,所以将来的4G网络将是一个复杂的多协议的网络。 2.所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等。无线通信是移动通信的基础。 3.移动通信主要的干扰有:互调干扰、邻道干扰、同频干扰。(以下为了解) 1)互调干扰。指两个或多个信号作用在通信设备的非线性器件上,产生与有用信号频率相近的组合频率,从而对通信系统构成干扰。 2)邻道干扰。指相邻或邻近的信道(或频道)之间的干扰,是由于一个强信号串扰弱信号而造成的干扰。 3)同频干扰。指相同载频电台之间的干扰。 4.按照通话的状态和频率的使用方法,可以将移动通信的工作方式分成:单工通信、双工通信、半双工通信。 第2章移动通信电波传播与传播预测模型 1.移动通信的信道是基站天线、移动用户天线和两副天线之间的传播路径。 对移动无线电波传播特性的研究就是对移动信道特性的研究。 移动信道的基本特性是衰落特性。 2.阴影衰落:由于传播环境中的地形起伏、建筑物及其他障碍物对电磁波的遮蔽所引起的衰落。 多径衰落:无线电波呢在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播多引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落。 无线信道分为大尺度传播模型和小尺度传播模型。大尺度模型主要是用于描述发射机与接收机之间的长距离(几百或几千米)上信号强度的变化。小尺度衰落模型用于描述短距离(几个波长)或短时间(秒级)内信号强度的快速变化。 3.在自由空间中,设发射点处地发射功率为P t,以球面波辐射;设接收的功率为P r,则 P r=(A r/4πd2)P t G t 式中,A r=λ2G r/4π,λ为工作波长,G t、G r分别表示发射天线和接收天线增益,d为发射天线和接收天线间的距离。 4.极化是指电磁波在传播的过程中,其电场矢量的方向和幅度随时间变化的状态。 电磁波的极化可分为线极化、圆极化和椭圆极化。 线极化存在两种特殊的情况:电场方向平行于地面的水平极化和垂直于地面的垂直极化。在移动通信中常用垂直极化天线。 5.极化失配:接收天线的极化方式只有同被接收的电磁波的极化形式一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号。 6.阴影衰落又称慢衰落,其特点是衰落与无线电传播地形和地理的分布、高度有关。 7.多径衰落属于小尺度衰落,其基本特性表现在信号的幅度衰落和时延扩展。 8.多普勒频移:f d=(v/λ)cosα,式中v为移动速度;λ为波长;α为入射波与移动台方向之间的夹角;v/λ=f m为最大多普勒频移。

第三代移动通信系统概述(一)

第三代移动通信系统概述(一) 摘要:第三代移动通信系统目标主要是全球化、综合化和个人化,其主流制式有三种:欧洲和日本共同提出的WCDMA-FDD/TDD、以美国高通为代表提出的cdma2000和以中国大唐为代表提出的TD-SCDMA。 关键词:第三代移动通信3GIMT-2000WCDMA-FDD/TDDcdma2000TD-SCDMA经过多年的努力,第三代移动通信(3G)的建设已经指日可待,3G也已经从专家口中的一个术语,变为社会大众口中的一个常用词。 第一代移动通信系统{如AMPS和TACS等}是采用FDMA制式的模拟蜂窝系统,其主要缺点是频谱利用率低、系统容量小、业务种类有限,不能满足移动通信飞速发展的需要。 第二代移动通信系统(如采用TDMA制式的欧洲GSM/DCS1800,北美IS-54和采用CDMA制式的美国IS-95等)则是数字蜂窝系统。虽然其容量和功能与第一代相比有了很大的提高,但其业务主要限于话音和低速率数据(9.6kb/s),远不能满足新业务和高传输速率的需要。 第三代移动通信系统简称3G系统,它最早是国际电联(ITU-R)于1985年提出的,当时命名为未来公众陆地移动通信系统(FPLMTS)。由于当时预期该系统在2000年使用,并工作在2000MHZ 频段,故于1996年正式改名为IMT-2000。第三代移动通信系统大致目标是全球化、综合化和个人化。全球化就是提供全球海陆空三维的无缝隙覆盖,支持全球漫游业务;综合化就是提供多种话音和非话音业务,特别是多媒体业务;个人化就是有足够的系统容量、强大的多种用户管理能力、高保密性能和服务质量。 一、IMT-2000的技术要求和提供的业务 1、IMT-2000的要求 为实现上述目标,对其无线传输技术提出了以下要求。 (1)高速传输以支持多媒体业务 ①室内环境至少2Mbit/s; ②室外步行环境至少384kbit/s; ③室外车辆运动中至少144kbit/s。 (2)传输速率能够按需分配 (3)上下行连路能适应不对称需求 移动通信从第二代过渡到第三代的主要特征是网络必须有足够的频率,不仅能提供话音、低速率数据等业务,而且具有提供宽带数据业务的能力。 2、IMT-2000提供的业务 根据ITU的建议,IMT-2000提供的业务类型分为6种类型 (1)话音业务:上下行链路的信息速率都是16kbit/s,属电路交换,对称型业务。 (2)简单消息:是对应于短信息SMS的业务,它的数据速率为14kbit/s,属于分组交换。 (3)交换数据:属于电路交换业务,上下行数据速率都是64kbit/s。 (4)非对称的多媒体业务:包括中速多媒体业务,其下行数据速率为384kbit/s、上行为64kbit/s。 (5)高速多媒体业务:其下行数据速率为2000kbit/s,上行为128kbit/s。 (6)交互式多媒体业务:该业务为电路交换,是一种对称的多媒体业务,应用于高保真音响,可视会议,双向图像传输等。 3G的目标是支持尽可能广泛的业务,理论上,3G可为移动的终端提供384kbit/s或更高的速率,为静止的终端提供2.048Mbit/s的速率。这种宽带容量能够提供现在2G网络不能实现的新型业务。未来也许会出现一些现在无法想像的业务。 二、IMT-2000系统的组成 IMT-2000系统构成如图所示,它主要由四个功能子系统构成,即核心网(CN)、无线接入网(RAN)、移动台(MT)和用户识别模块(UIM)组成。分别对应于GSM系统的交换子系统(NSS)、基站子系

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1移动通信特点简介: 回答:①移动通信使用无线电波进行信息传输;(2)移动通信工作在强干扰环境下;(3)通信能力有限;(4)通信系统复杂; ⑤对移动台要求高 1.2移动台受到什么干扰?哪些干扰是蜂窝系统特有的? 回答:①互调干扰;(2)邻信道干扰;(3)同频干扰;(蜂窝系统特有)④多址干扰 1.3简要描述蜂窝移动通信的发展历史,并解释各代移动通信系统的特点 a:第一代(1G)主要以模拟蜂窝网络为特征,这些网络在20世纪80年代末和80年代初就已在市场上销售其中最具代表性的是北美的AMPS(高级移动电话系统)、欧洲的TACS(全接入通信系统)、北欧的NMT和日本的HCMTS系统等。 从技术特性的角度来看,1G专注于解决两个动态的最基本用户,即双动态,并充分考虑了双通道动态。主要措施是利用FDMA实现用户的动态寻址功能,通过蜂窝网络结构和频率规划实现载频复用,从而扩大服务覆盖范围,满足用户日益增长的需求。在信道动态特性的匹配中,适当采用性能优良的模拟调频方法,并采用基站双空间分集方法来抵抗空间选择性衰落。 第二代(2G)主要以数字化为特征,并构成数字蜂窝移动通信系统,

该系统在XXXX早期正式投入商业使用。其中,最具代表性的是欧洲的时分多址(TDMA)GSM(GSM最初指的是集团专用移动,1989年后改为全球移动通信系统),北美的码分多址(CDMA) IS-95两大系统,以及日本的PDC系统等 在技术特性上以数字化为基础,考虑了频道和用户的双重动态特性以及相应的匹配措施主要实施措施是:采用时分多址(GSM)和码分多址(IS-95)实现用户动态寻址功能,采用数字蜂窝网络结构和频率(相位)规划实现载频(相位)复用,从而扩大覆盖服务范围,满足日益增长的用户需求为匹配信道动态特性,采取了以下一系列措施: (1)采用抗干扰性能优良的数字调制:GMSK(GSM)、QPSK(IS-95)、抗干扰性能优良的纠错码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术来抵抗慢衰落和远近效应,这对于码分多址模式下的IS-95尤为重要;(3)自适应均衡和瑞克接收机用于抵抗频率选择性衰落和多径干扰; (4)采用信道交织编码,如帧间交织和块交织(IS-95)来抵抗时间选择性衰落第三代(3G)的主要特征是多媒体服务。它在本世纪初刚刚投入商业运营。其中最具代表性的是北美的CDMA2000、欧洲和日本的WCDMA和我国提出的TD-SCDMA,此外还有欧洲的DECT和北美的UMC-136。 技术上,3G基于2G系统自适应信道和用户的双重动态特性引入服务动态,即在3G系统中,用户服务可以是单一的语音、数据、图像或多媒体服务,用户选择服务是随机的。这是第三种动态的引入,它

(完整word版)第五代移动通信的关键技术

第五代移动通信的关键技术 5G 是面向未来的通信发展需求的移动通信系统,第五代移动通信技术兴起的主要驱动力为互联网和物联网,将来人机交互和数据共享是人们日常生活的一部分,在这种交互下,人们的生活将会更加高效舒适。第五代移动通信系统不仅通信容量大,速率高,其可靠性和安全性也比第四代移动通信有了更好的改进,具有很大的发展空间,下面简单介绍几种第五代移动通信的关键技术。 1.Massive MIMO技术 大规模MIMO技术是指基站端采用大规模天线阵列,天线数超过十根甚至上百根,并且在同一时频资源内服务多个用户的多天线技术。大规模MIMO技术将传统的时域、频域、码域三维扩展为了时域、频域、码域、空域四维,新增维度极大的提高了数据传输速率。大规模MIMO天线技术提供了更强的定向能力和赋形能力如图1,大规模MIMO的空间分辨率与现有MIMO相比显著增强,能深度挖掘空间维度资源,使得网络中的多个用户可以在同一时频资源上利用大规模MIMO提供的空间自由度与基站同时进行通信,从而在不需要增加基站密度和带宽的条件下大幅度提高频谱效率。大规模MIMO可将波束集中在很窄的范围内,从而大幅度降低干扰,大幅降低发射功率,从而提高功率效率,减少用户间干扰,显著提高频谱效率。 当基站侧天线数远大于用户天线数时,各个用户的信道将趋于正交,小区内同道干扰及加性噪声趋于消失,系统性能仅受限于邻区导频的复用,这使得系统的很多性能都只与大尺度相关,与小尺度无关。大规模MIMO的无线传输技术将有可能使频谱效率和功率效率在4G 的基础上再提升一个量级。 图1. 大规模MIMO天线技术方向图

2. 非正交多址接入技术(NOMA) 5G的无线接入技术目前还有的观点关注多载波调制,如滤波器组多载波(FBMC,_ lter _bank based multicarrier),其天然的非正交性和不需要先前的分布式发射机同步。一种新的调制方式,被称为通用滤波后的多载波(UMFC)被提出。开始是OFDM信号,通过滤相邻子载波组,以减少时间/频率同步造成的旁瓣水平和载波间干扰。要解决OFDMA正交的时间窗口的缺点,即需要较大的保护带CP,使用多载波滤波器组就可以允许大的传输时延和任意高的频率补偿。日益发展的软件无线电,FFT块的大小,子载波间隔和CP长度可根据信道条件改变。因此,OFDMA允许一些参数可调,可以很好地适应5G的要求。 3. 射束分割多址技术(BDMA) 有限的频谱资源对于移动和无线技术而言是一个重大的挑战,即如何把有限的频率和时间分配给不同用户。由于这个情况,要实现提高系统的容量和质量,目前使用的多址技术包括频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、正交频分多址(OFDMA)等。然而,现在使用的所有多址技术中,通信系统容量依赖于时间和频率。如何发展多址接入系统,提高有限频率的系统容量是一个新的挑战。 目前发明的BDMA技术,根据MS的位置分配天线波束,实现多址接入,从而显著增加系统的容量。按此观点,MS和基站在视距(LOS)的状态,因此他们明确知道彼此的位置。在此条件下,他们能够将波束直接传送到彼此的位置以通信,而不受移动台在小区边缘的干扰。 为了在5G中适应BDMA,就要发展相位阵列天线,智能天线要能够调整波束。调整波束天线通过收集从基站和MS到达角(AOA)信息设置无线配置。自适应天线阵列的使用,是提高能力的一个可能性。 4. 全频段技术 5G网络通信技术将会以智能化、宽带化和多元化为主要的发展方向。未来网络数据业务的发展方向主要在热点密集地区和室内,而当前网络数据的流量如果在少数人使用状态下不存在延迟、低网速等问题,但一旦放开使用用户数量,网络延迟和网络速度都将会是一个巨大的问题,而物联网和智能终端所依赖的移动通信网络将会处于堵塞状态,很难发挥物联网和智能终端的优势。目前5G移动通信技术所研究的超密集组网,可以针对高度使用移动数据的地区提升流量容量1000倍,很好的解决了网络数据使用密集地区的数据传输和数据容量问题。该技术的发展,虽然在数据流量方面提升率非常高,但是由于其拓扑结构也更加复杂,各网络之间的信号干扰也是一个很大的麻烦,大家都知道一旦同一个区域的无线网络过多,就会相互之间产生干扰,影响网络的传输。因此,该技术还需要进一步的研究以适用

移动通信原理与系统(北京邮电出版社)课后习题答案

第一章概述 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰;②邻道干扰;③同频干扰(蜂窝系统所特有的);④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码; (5)针对数据业务要求误码率低且实施性要求不高的特点,3G 中对数据业务采用了Turbo 码。

第五代移动通信技术

第五代移动通信技术 第五代移动电话行动通信标准,也称第五代移动通信技术,外语缩写:5G。也就是4G之后的延伸,正在研究中,网速可达5M/S - 6M/S 、 诺基亚与加拿大运营商Bell Canada合作,完成加拿大首次5G网络技术的测试。测试中使用了73GHz范围内频谱,数据传输速率为加拿大现有4G网络的6倍。鉴于两者的合作,外界分析加拿大很有可能将在5年内启动5G网络的全面部署。 由于物联网尤其就是互联网汽车等产业的快速发展,其对网络速度有着更高的要求,这 无疑成为推动5G网络发展的重要因素。因此无论就是加拿大政府还就是全球各地,均在大力推进5G网络,以迎接下一波科技浪潮。不过,从目前情况来瞧5G网络离商用预计还需4到5年时间。 未来5G 网络正朝着网络多元化、宽带化、综合化、智能化的方向发展。随着各种智能终端的普及,面向2020 年及以后,移动数据流量将呈现爆炸式增长。在未来5G 网络中, 减小小区半径, 增加低功率节点数量,就是保证未来5G 网络支持1 000 倍流量增 长的核心技术之一。因此, 超密集异构网络成为未来5G 网络提高数据流量的关键技术[8]。 未来无线网络将部署超过现有站点10 倍以上的各种无线节点,在宏站覆盖区内,站点间距离将保持10 m 以内,并且支持在每1 km2 范围内为25 000个用户提供服务。同时也可能出现活跃用户数与站点数的比例达到1∶1的现象, 即用户与服务节点一一对应。密集部署的网络拉近了终端与节点间的距离,使得网络的功率与频谱效率大幅度提高,同时 也扩大了网络覆盖范围,扩展了系统容量,并且增强了业务在不同接入技术与各覆盖层次间 的灵活性。虽然超密集异构网络架构在5G 中有很大的发展前景,但就是节点间距离的减少,越发密集的网络部署将使得网络拓扑更加复杂, 从而容易出现与现有移动通信系统不兼容 的问题。在5G 移动通信网络中,干扰就是一个必须解决的问题。网络中的干扰主要有:同频干扰, 共享频谱资源干扰, 不同覆盖层次间的干扰等。现有通信系统的干扰协调算法只能解决单个干扰源问题, 而在5G 网络中,相邻节点的传输损耗一般差别不大,这将导致多个干 扰源强度相近,进一步恶化网络性能,使得现有协调算法难以应对。此外, 由于业务与用户对QoS需求的差异性很大,5G 网络需要采用一些列措施来保障系统性能, 主要有: 不同业务在网络中的实现,各种节点间的协调方案,网络的选择, 以及节能配置方法等[8]。 准确有效地感知相邻节点就是实现大规模节点协作的前提条件。在超密集网络中, 密集地部署使得小区边界数量剧增,加之形状的不规则,导致频繁复杂的切换。为了满足移动性需求, 势必出现新的切换算法;另外, 网络动态部署技术也就是研究的重点。由于用户部署的大量节点的开启与关闭具有突发性与随机性, 使得网络拓扑与干扰具有大范围动态变化特性;而各小站中较少的服务用户数也容易导致业务的空间与时间分布出现剧烈的动态变化[8]。 自组织网络 传统移动通信网络中, 主要依靠人工方式完成网络部署及运维,既耗费大量人力资源又增加运行成本,而且网络优化也不理想。在未来5G 网络中,将面临网络的部署、运营及维护的挑战, 这主要就是由于网络存在各种无线接入技术, 且网络节点覆盖能力各不相同,它

第三代移动通信系统

第三代移动通信系统 第三代移动通信系统以强大的通信能力,融合语音、视频和数据,向人们提供丰富的多媒体业务,满足市场日益增长的移动通信需求。 第三代移动通信系统的无线传输速率从最低要求固定2Mb/s,低速384Kb/秒,高速114Kb/s发展到WCDMA高速下行分组接入(HSDPA)的理论值14.2Mb/s和CDMA2000单载频EV-DV的3.09Mb/s,大大增强了3G的无线传输能力,扩展了应用范围。它的核心网络从电路交换和分组交换两个分离的网络发展到基于IP的多媒体的统一网络,3GPP称之为IP多媒体子系统(IMS),3GPP2称之为IP多媒体域(MMD)。其业务平台也从一个"竖井"结构转向一个开放的分布结构,大大增强了业务建立能力,减少了业务开发时间和成本。 第三代移动通信系统的发展越来越体现了一个协调、开放和统一的"家族"概念。第三代移动通信系统可以分为四个层次,即接入层、传输层、控制层和业务应用层。 接入层包括多种无线传输技术,如WCDMA、TD-SCDMA、CDMA2000等,以及对应的无线接入基站和基站控制器。它们构成了无线接入网络,负责无线传输、无线资源管理、移动性管理等功能。第三代移动通信能与无线局域网进行有效地互通,提供统一用户认

证、统一的业务和应用,以及不同接入网络间的漫游和移动能力。 传输层包括了从原有分组交换网络和电路交换网络演进的结构,如电路交换的MSC、分组交换的GPRS,和控制与承载分离结构中的承载部分,如支持IP多媒体的媒体网关和多媒体资源处理器等。本层主要完成基于语音的或基于数据的通信流的交换,不同形式的媒体转换和传输。 控制层是由以IMS为核心的所有控制部分所组成。IMS独立于接入技术,是3G"家族"公用的。IMS基于IP技术,支持语音、视频、文字、数据等业务以及这些业务的组合,支持IPv6和QoS,支持开放的业务接口。该层还包括如MSC服务器,信令网关等设备。 应用业务层由用户数据,业务能力抽象功能,智能业务功能和各类应用服务器所组成。它向运营商、业务和内容提供商及其第三方业务开发者提供统一的,标准化的接口和业务环境,用某些独立于下面的网络和设备的方式提供应用、业务和内容。

《移动通信原理与应用》实验报告

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业12级 学号:631206040218 姓名:柴闯闯 实验所属课程:移动通信原理与应用 实验室(中心):信息技术软件实验室 指导教师:谭晋 2014年11月

一、题目 扩频通信系统仿真实验 二、仿真要求 ①传输的数据随机产生,要求采用频带传输(DPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。 三、仿真方案详细设计 (1)通信系统的总体框图如下: 由上图可以看出,整个设计由发送端、信道和接收机三个部分组成。 ①发射机原理

发送端首先产生三组用户数据和三组不同的m序列,并用三组m序列分别对用户信息进行扩频。再将扩频信号与载波进行DPSK调制,得到高频的已调调信号并将其送入无线的多径信道。 ②无线信道 信道模拟成无线的多径多用户信道,在这个信道中有三个用户进行数据传输,每个用户的数据分别通过三径传输到达接收端。三径会有不同的延时,衰减。最终,还要将三径用户数据增加高斯白噪声。 ③接收机原理 接收端会接收到有燥的三径信息的叠加。首先,要对接收到的三径信息进行解扩,分离出三组用户信息;其次,在将解扩后的信息进行带通滤波去除带外噪声;最后,分别对三组用户信息进行解调得到原始数据,在对接收到的数据进行误码率统计,得出系统的性能指标。 (2)功能模块的详细设计 ①扩频码(m序列)的产生 扩频码为伪随机码,可以m序列、Golden序列。本设计采用自相关特性好,互相关特性较差的m序列,为了节省运算量,我选取了周期为63扩频序列,经过计算易知要产生周期为63的m序列需要长度为6的反馈系数,经过查找资料得出三组反馈系数(八进制)45、67、75,其对应的二进制为1000011、1100111、1101101。并将二进制与移位寄存器级数对应,以1000011为例,设初始化各寄存器单元内容为1,其具体的寄存器结构图如下所示:

移动通信原理与系统习题答案

移动通信原理与系统习题答案 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输; ②移动通信在强干扰环境下工作; ③通信容量有限; ④通信系统复杂; ⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰; ②邻道干扰; ③同频干扰;(蜂窝系统所特有的) ④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的 TACS (Total Access Communication System)两大系统,另外还有北欧的 NMT 及日本的 HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址 FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩

大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的 IS-95 两大系统,另外还有日本的 PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用 TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK (IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA 方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和 Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块

0移动通信系统简介

第一章移动通信实验系统简介 1、1简介 移动通信、光纤通信和卫星通信被称为是当今最为热门的三大通信技术,其中的移动通信技术是当前发展最快应用最广泛的通信领域。移动通信技术现在已经发展到以WCDMA、CDMA2000为代表的第三代技术成熟运用,第四代技术也正悄然来临的时代。天线系统,功率控制,高效调制,高效频谱利用,高性能纠错码技术等使得第三代、第四代移动通信技术的优越性能成为可能。移动通信的快速发展,使这门课程在通信、电子类的本专科专业的教学中,占有越来越重要的作用。同时,由于移动通信中的高速发展,许多新技术在移动通信中使用,使这门课程的教学也越来越困难。 为了更好的使通信、电子类的本专科专业的学生能更好的掌握这么课程的学习,因此,我们开发了这套系统用于辅助教学。本实验系统主要围绕现有移动通信的典型的信号处理过程,以及典型移动通信系统的使用和开发等专业技术来开设实验。希望通过本实验系统的使用,能使学生熟悉典型移动通信系统的信号处理、能分析典型移动通信处理技术的性能、熟悉移动通信系统的开发和应用技术。 本章将对典型移动通信系统的信号处理过程进行描述,并对本通信系统进行简单介绍。 1、2移动通信系统信号处理的过程 一、GSM系统的信号处理过程 如下图所示为GSM移动通信系统的框图,其他移动通信系统也由类似模块组成。 图1-1 GSM系统信号处理框图 模拟语音信号通过RPE-LTP编码后进行相应的编码、交织等信号处理后,经过GMSK调制后无线发

射。接收端通过解调制、解交织、解码后,通过RPE-LTP 解码后电声输出。 二、CDMA 系统的信号处理过程 由上图可以看出CDMA 的信号处理模块主要包含卷积编码器、码元重复单元、分组交织器、扰码、WALSH 码、QPSK 调制等组成。 三、移动通信系统的信号处理框图 由上述图可以看出:在移动通信系统中的基带信号均可以由下图表示,信号比特(语音、控制或数据)通过信道编码器、分组交织后、进行正交码分和PN 扩频后,再通过正交调制模块无线发送。只是在于不同的移动通信系统中采用的具体技术不同。 移动通信系统与其他通信系统的区别还在于其一由于移动通信信道的复杂性,它大量的采用了最新的现代通信技术的最新成果:如语音编码技术、扩频解扩技术、调制解调技术、码分多址技术、信道编解码技术、智能天线技术等;其二它有着与通信系统不同的组网及管理技术。因此要掌握移动通信技术,需要在通信原理的基础上,掌握这两类与其他通信技术不同的技术。为此我们的实验系统也是针对这两个方面开发了一系列相关实验;实验内容以移动通信设计的主要新技术为主,结构以上图结构为主,同时兼顾移动通信的组网技术。为增强学生对移动通信系统的掌握,整个实验系统分为验证和综合设计类实验。 1、3移动通信实验系统的介绍 一、实验箱的特点 1、 包含了大量现有移动通信系统和大多数无线通信系统中的使用的最新技术原理的相关实验。如在GSM 系统中的GMSK 调制解调技术、交织技术、线性分组码技术,及在第三代移动通信中的QPSK 4/ 调制解调技术、卷积码技术和其他无线通信系统中的技术如BCH 编解码技术、QAM 调制解调技术。包含DSP 、FPGA 等最新、最热门的通信系统的开发技术。 2、 射频部分包含了多种射频方案,如现有的CDMA 和GSM 两个频段,并且还包含了自组网的2.4G 频段, 可以实现与任意公众网的通信或者可以通过自组网实现任意两台实验箱的通信。射频部分提供二次开 图1-2 CDMA 系统信号处理框图

移动通信原理与应用(大作业)

一.(30分)分析PSTN用户呼叫GSM系统的MS时,经过GMSC到MSC/VLR的选路过程。回答(1)呼叫过程中涉及哪几个主要号码?(2)GMSC到MSC/VLR的选路过程 答:(1) (1)客户A 要建立一个呼叫,他只要拨被叫B 客户号码 (2)MSC(B客户为移动客户时) (3)(PSTN)的交换机(B客户为固定客户时) (4)B客户漫游号码(MSRN)。 (5)B客户MSISDN号码 (6)客户识别码(IMSI) (7)客户的位置区识别码(LAI) 答:(2)主叫,若一MS处于激活且空闲状态,客户A 要建立一个呼叫,他只要拨被叫B 客户号码,再按“发送”键,MS便开始启动程序。 首先,MS通过随机接入控制信道(RACH)向网络发第一条消息,既接入请求消息,MSC 会分配它一专用信道,查看A客户的类别并标注此客户忙。若网络容许此MS接入网络,则MSC 发证实接入请求消息。接着,MS发呼叫建立消息及B客户号码,MSC根据此号码将主叫与被叫所在MSC连通,并将被叫号码送至被叫所在MSC(B客户为移动客户时)或送入固定网(PSTN)的交换机(B客户为固定客户时)中进行分析。 一旦通往B客户的链路准备好,网络便向MS发呼叫建立证实,并给它分配专用业务信道TCH。至此,呼叫建立过程基本完成,MS等待B客户的证实信号。若MS作被叫,以PSTN的固定客户A呼叫GSM的移动客户B的呼叫建立过程,B客户号码为139HlH2H3ABCD。 A客户拨打B客户,拨MSISDN(0139HlH2H3ABCD)号码。本地交换机根据A客户所拨B客户号码中国内目的地代码(139)可以与GSM网的GMSC(GSM网入口交换机)间建立链路,并将B客户MSISDN号码传送给GMSC。GMSC分析此号码,根据HlH2H3ABCD,应用查询功能向B客户的HLR 发MSISDN号码,询问B客户漫游号码(MSRN)。 HLR将B客户MSISDN号码转换为客户识别码(IMSI),查询B客户目前所在的业务区MSC(如他已漫游到广州),向该区VLR发被叫的IMSI,请求VLR分配给被叫客户一个漫游号码MSRN,VLR 把分配给被叫客户的MSRN号码回送给HLR,由HLR发送给GMSC。GMSC有了MSRN,就可以把入局呼叫接到B客户所在的MSC(郑州-广州)。GMSC与MSC的连接可以是直达链路,也可由汇接

相关主题
文本预览
相关文档 最新文档