当前位置:文档之家› 轴承部件设计

轴承部件设计

轴承部件设计
轴承部件设计

机械设计作业任务书题目:带式运输机

结构简图见下图:

原始数据如下:

机器工作平稳,单向回转,成批生产

一.选择材料,确定许用应力

本题中带式运输机功率属于中小型功率。因此轴所承受的扭矩不大。选择45号钢,并进行调质处理。

二.按扭转强度估算轴径

对于转轴,按扭转强度初算直径:min d ≥其中

2P ——轴传递的功率P =m P 1η=4×0.97=3.88kW m n ——轴的转速,r/min

C ——由许用扭转剪应力确定的系数。查表10.2得C=106~118,因为近似为关于轴承对称,取C=118。

mm 29.2257688.3118n p

C d 33

m

=÷?=≥ 轴端安装大带轮,会有键槽存在,将轴径扩大5%,得d d k 05.1≥=23.40mm ,圆整后取125d mm =

三.设计轴的结构

本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。

轴段1

轴段1安放大带轮,所以其长度由带轮轮毂长度确定,而直径由初算的最小直径得到。

mm 25d 1= 大带轮宽65mm ,但是中间轮毂常50mm ,轴长应略短于轮毂mm 48l 1=

轴段2

由于大带轮右端由轴肩来固定,()5.2~75.11.0~07.012=?=d h ,则

mm h d d 30~5.28212=+=,取为30mm ,由《机械设计课程设计》表14.4,毡圈油封的

轴径d=29mm ;此段2d =30mm

轴段3和轴段7

安装轴承,尺寸由轴承确定。标准直齿圆柱齿轮,没有轴向力,但考虑到有较大的径向力,选用深沟球轴承。应该根据此段轴大致直径范围确定轴承型号,选定轴承,然后进一步修正轴径。由《机械设计课程设计》表12.1,暂取6207,轴承内径35d mm =,外径

72D mm =,宽度17B mm =,轴件定位直径42a d mm =,a D =65mm 。因为轴承的n d 值

小于5(1.5~2)10/min mm r ??,所以选用脂润滑。取mm d d 3573==,mm l l 1773==

轴段4与轴段6

轴段4与轴段6定位固定轴承的轴肩,故()5.3~45.21.0~07.0464===d h h ,

mm d h d d 42~9.392364=+==,取为42mm 。

轴段5

此段为齿轮和轴的连体,最大直径和齿轮大径相同,直径5d =54mm ,此段轴长应与齿厚相同,5l =b=60mm 。

轴承座宽与轴段2、4、6的长度

为补偿机体的铸造误差,轴承应深入轴承座孔内适当距离,以保证轴承在任何时候都能坐落在轴承座孔上,为此取轴承上靠近轴承座内壁的距离mm 10=?;为保证拧紧上下轴承座连接螺栓所需扳手空间,轴承座应有足够的宽度C ,10~521+++=δC C C 可取

mm 50=C ;根据外圈直径,由机械设计手册,轴承盖凸缘厚度10e mm =;为避免齿轮轮

毂端面转动时与不动机座内壁相碰,齿轮轮毂端面与机座内壁之间应有足够的间距H ,对齿轮,可取H=15mm ;为了避免大带轮与轴承盖上螺栓相碰,大带轮端面与轴承盖间应有足够

的距离K=20mm ;则轴段6的长度就确定了,mm H l l 25151064=+=?+==,这样,

mm l 61820101710502=+++--=。

键槽

在轴段1上为了定位大带轮,有一个键槽,由《机械设计课程设计》表11.28,键槽78?=?h b ,A 型键,轴段1上键槽长度40mm 轴上轴槽深4mm 。

带轮,深沟轴承和齿轮受力作用点均为其中心部分。

则mm L 5.932

17

61241=+

+= mm L L 5.635.8253032=++== 四.计算支承反力

传递到轴系部件上的转矩

mm N n P T m ?=??=?=6370057696

.04109550109550616

1η 齿轮圆周力N d T F t 23605463700

2251=?==

齿轮径向力N F F t r 85920tan 2360tan 0=?==α 齿轮轴向力0a F N = 带轮压轴力N Q 9.1072'=1

带初次装在带轮上时,所需初拉力比正常工作时大得多,故计算轴和轴承时,将其扩大50%,N Q Q 4.16095.19.10725.1'=?== 。 在水平面上

()N L L L F L L L Q R r H 8.3223127

5

.638595.2204.16093233211=?+?=++++=

N R Q F R H r H 4.7558.32234.160985912-=-+=-+=

在垂直平面

118002

21==

=t

V V F R R N 轴承1和轴承2的总支承反力

N

R

R R N R R R V

V H H 97.141197.34322

22

2212121=+==+=

五.求弯矩

A-A ,水平面:

()5.479645.638.32231574.16092121=?-?=-+=L R L L Q M H aH

竖直面:

mm 749005.631180032?=?==N L R M V AV

B-B 面,

M mm 9.1504785.934.1609BV 1=?=?=?=N L Q M BH

则mm N A ?=6.88941M mm N B ?=9.150478M 六.校核过程 按弯扭合成强度计算

由于B-B 面弯矩最大,且由转矩,截面面积比A-A 小,则B-B 为最危险面 抗弯剖面模量,由课本附表10.1,3

2

2

5.4287351.01.03mm d W =?==; 抗扭剖面模量,由课本附表10.1,3

2

2

8575352.02.03mm d W t =?==; 根据转矩性质而定的折合系数,对于不变的转矩,3.0=α;

[]b 1-σ——对称循环的叙用弯曲应力,由课本表10.4,[]155b MPa σ-=

由课本式10.3,

[]b T B Mpa W T W M 12

212e 17.358575637003.045.42879.1504784-≤=???

???+??? ??=???

? ??+??? ??=σασ 因此,校核通过。

·轴的安全系数校核计算 弯曲应力:

Mpa W M B B B 1.355

.42878

.150478===

σ M p a

B a 1.35==σσ 0=m σ 扭剪应力:

Mpa W T T T 43.78575

637001===

τ Mpa T

a 715.32

m ==

=τττ

1-σ、1-τ:材料对称循环的弯曲疲劳极限和扭转疲劳极限,由课本表10.1,45号钢调质处

理,11300,155MPa MPa στ--==,650B Mpa σ=;

τσK K 、:弯曲时和扭转时轴的有效应力集中系数,由课本附表10.3、附表10.4,1.89, 1.46K K στ==;

τσεε、:零件的绝对尺寸系数,由课本P207附图10.1,0.8,0.76στεε==;

β:表面质量系数,3

21ββββ=,由课本附图10.1和附表10.2,92.0=β;

τσψψ、:把弯曲时和扭转时轴的平均应力折算为应力幅的等效系数,由课本表10.1,

1.0,

2.0==τσψψ;

[]S :许用疲劳强度安全系数,由课本表10.5,[] 1.8~2.5S =;

1

300

3.331.89

35.10.20

0.920.8

a m S K σσ

σσ

σσψσβε-=

=

=?+?+?

1

155

19.41.46

3.70.1 3.7

0.920.76

a m

S K ττ

ττ

ττψτβε-=

=

=?+?+?

σS :只考虑弯矩时的安全系数; τS :只考虑转矩时的安全系数;

[]3.28 1.8~2.5S S =

=

=≥=

σS :只考虑弯矩时的安全系数; τS :只考虑转矩时的安全系数;

校核通过。

校核键连接的强度 校核公式:

[]p p kld T σσ≤=

1

2

p

σ:工作面的挤压应力,MPa ;

1T :传递的转矩,mm N ?;

d :轴的直径,mm ;

l :键的工作长度,mm ,A 型,l L b =-,b L 、为键的公称长度和键宽;

h :轴段1上键槽深 h=4mm

[]p σ——许用挤压应力,MPa ,由课本表6.1, []120~150p MPa σ=。

对于轴段1上定位大带轮的键

()[]14463700

56.88(120~150)h 440835

p p T MPa MPa ld σσ?=

==≤=?-?; 校核通过;

校核轴承的寿命

轴承不受轴向力,只有径向力,且1122r r F R F R =>=,所以只校核轴承1即左轴承即可。

计算当量动载荷

1113432.97003432.97r a P XF YF N =+=?+?=;

其中:

P 为当量动载荷

22a r F F 、:轴承的径向载荷和轴向载荷,

Y X 、:动载荷径向系数和动载荷轴向系数,由0,1,==≤Y X e F F r

a

校核寿命 由课本式11.1c

3

6

611010 1.02570035976060576 1.53432.97T h P f C L h n f P ε

??????==?= ? ??????

??

式中:

h L :轴承的基本额定寿命,h ;

'h L :轴承的预期寿命,三年三班,每年按300天计,'38300321600h

L h =???=;

C :轴承的基本额定动载荷,由《机械设计课程设计》表12.1,25.7r

C C kN ==;

ε——寿命指数,对于球轴承,3ε=;

T f ——温度系数,由课本表11.9,工作温度150C < ,0.1=T

f ;

P f ——载荷系数,由课本表11.10,中等冲击,8.1~2.1=P f ,取5.1=P

f ;

'h h L L < ,校核不通过。

必须对原有的方案数据做出修改:可以通过修改尺寸或修改轴承材料,在此改变轴承形式,改用圆锥滚子轴承,暂取型号NJ207E (30207),再对照表来对照数据发现在寿命校正之前的数据没有变化,所以轴承寿命校核前的校核没有必要在进行校核。 再次进行轴承寿命校核:

ε——寿命指数,对于球轴承,10/3ε=

C

:轴承的基本额定动载荷,由《机械设计课程设计》表

12.4,54.2r C C kN ==;

10

6

6

3

11010 1.05420073941.26060576 1.53432.97T h P f C L h n f P ε

??????

=

=?= ? ??????

?? 显然'h h L L > 满足了寿命条件

七.轴上其他零件设计

在“设计轴的结构”部分提到,轴上的键槽对应键选择87b h ?=?,A 型键,轴段1上键槽长度40mm 。由于键是标准件,《机械设计课程设计》表11.28,得到键和键槽的各部分尺寸。轴上为84b h ?=?,轮毂上为8 3.3b h ?=?

密封用毛毡圈

毛毡圈所在轴段2的直径为30mm ,查《机械设计课程设计》表14.4,可得毛毡圈的尺寸参数小径1d =29mm ,大径D=42mm ,宽b=5mm 。

轴端挡板

轴段1处,需要安装一个轴端挡板,该零件也属于标准件。查阅《机械设计课程设计》(表11.22,选用螺栓紧固轴端挡圈,公称直径32m ,宽为5mm 。 轴承座

考虑到安装方便,本次设计中选用剖分是轴承座。按照设计方案的要求,轴承座孔中心高H=180mm ,根据《机械设计作业指导》的公式:底座凸缘厚度15~20mm ,取为18mm 地脚螺栓的直径(0.03612)(0.03618312)18.6f d a mm mm =+=?+=。取为20mm 轴承盖连接螺栓的直径1(0.40.5)(0.40.5)18.6(7.49.3)f d d mm ==?= 。 取8mm 轴承旁连接螺栓的直径2(0.75)(0.75)18.613.96f d d mm ==?=。取为16mm 定位销直径320.5d d ==8mm

得到地脚螺栓的直径之后,查表格,可确定螺栓中心线距障碍物的距离126C =mm ,距凸缘边缘的距离224C =mm ,沉头座孔直径D=40mm 。两连接螺栓间的距离取轴承端盖外径。

轴承座腹板壁厚0.025a 18mm δ=+>,取为10mm ,筋厚10m mm =。 轴承端盖

选用凸缘式轴承盖,其中嵌入毛毡圈以密封。由《机械设计课程设计》图号21中的经验公式得到相关尺寸:

31.2 1.289.6e d mm ==?=,

取10e mm =。(此处的3d 是螺栓直径,即设计轴承座时的1d ) ()235.5355~5.5875~79mm D D d ≈+=+?=,取77mm 。 02()/256D D D mm ≈+=。

根据轴、轴承座的设计,应取23m mm =。

轴承套的设计说明书

设计说明书 一零件的分析 (一)零件的作用 此轴承套是机械加工中常见的一种零件,在各类机器中应用很广泛,主要起支撑或导向作用。 (二)零件的工艺分析 此轴承套的主要加工表面为外圆表面和内孔表面,主要的技术要求为:表面粗糙度要求,尺寸精度要求,位置精度要求。具体分析如下: 1.Φ34js7mm的外圆表面。 表面粗糙度Ra=6.3um,尺寸精度为Φ34±0.0125mm,此外圆相对于轴心线的圆跳动公差为0.01mm 2.Φ22H7mm的内孔。 此内孔主要工作表面,粗糙度要求较高为Ra=1.6um,尺寸精度为Φ22 0021 .0 mm。 3.Φ42mm的左端面与轴心线的垂直度公差为0.01mm。 4.Φ4mm孔等次要加工表面及内孔。 工艺规程设计 (一)确定毛坯的制造形式 零件材料为ZQSn6-6-3,因为轴承套在工作时主要起支撑轴承的作用,考虑到机

器工作的连续性要求及零件的粗糙度、尺寸精度要求较高,所以选用热轧圆棒料作为毛坯。 (二) 基准的选择 1. 粗基准的选择 对于这种一般的零件而言,选择毛坯外圆作为粗基准即可。 2. 精基准的选择 精基准的选择是相对于粗基准而言的。对于此轴承套精基准的选择主要考虑到左端面与轴心线的垂直度要求、Φ34js7mm 的外圆与轴心线的圆跳动要求以及外圆和内孔的尺寸精度要求。所以在加工外圆时用左端面和内孔作为精基准,用心轴定位,两顶尖装夹即可。加工内孔时用已加工过的外圆表面作为精基准即可保证内孔的尺寸精度要求。 (三) 制定工艺路线 工序一:按上工艺草图车至尺寸,6个零件同时加工,尺寸均相同; 工序二:用软卡爪夹住Φ42mm 外圆,找正钻孔Φ20.5mm 成单件: 工序三:1.用软卡爪夹住Φ35mm 外圆 2.车左端面,取总长40mm 至尺寸 3.车孔Φ2212 .008.0--mm 4.车内槽Φ24mmx16mm 至尺寸 5.铰孔Φ22H7mm 至尺寸 6.倒角 工序四:1.工件套心轴,装夹于两顶尖之间 2.车Φ34js7mm 至尺寸 3.车阶台平面6至尺寸 4.倒角

轮毂轴承的发展趋势和最新技术样本

轮毂轴承的发展趋势和最新技术( 图) .06.16 关键词:轮毂轴承,发展趋势,最新技术 摘要:为满足汽车零部件减轻重量、减小体积和改进性能的要求, 汽车用轮毂轴承在一体化方面取得了显著进步。讨论了轮毂轴承在改进性能、减轻重量、降低摩擦力矩、降低法兰盘跳动和集成ABS传感器以增强其功能等方面的发展趋势及最新技术。 20世纪80年代以来, 随着前轮驱动汽车的广泛普及, 为满足减轻重量、减小体积和安装方便的要求, 轴承和一些零部件如转向节和轮毂的一体化技术得到了快速发展。近年来, 汽车制造商和相关供应商更加注重产品的安全性和对环境的影响。为满足对轮毂轴承的各种需求, 改进了其原有功能并增加了一些更为先进的功能。本文将讨论轮毂轴承的最新技术、结构和发展趋势。 1、发展历程 NSK轮毂轴承的开发经历了三次重大设计进步, 与周围零部件一体化程度方面取得显著成效( 图1) 。所有大批量生产的三代轮毂轴承( HUBⅠ、 HUB Ⅱ和HUBⅢ) 均满足汽车制造商对产品结构紧凑、轻量化和高可靠性的要求。 为降低油耗及改进行驶的稳定性, 轻质铝制转向节逐渐替代了较重的钢制转向节。另外, 第二代和第三代轮毂轴承由于安装方便越来越广泛地应用于汽车生产中。 1.1 第一代轮毂轴承 第一代轮毂轴承是外圈整体式内圈背对背组合的双列角接触球轴承或双列圆锥滚子轴承。为保证安装后预紧载荷在规定范围内, 预先设定初始轴承游隙, 在汽车组装线上无需使用调整预紧载荷的隔圈。另外, 轮毂轴承自带密封圈, 省去了人工外部安装密封圈的步骤。 1.2 第二代轮毂轴承 与第一代相比外圈带法兰盘的第二代轮毂轴承其特点是装配部件数较少, 重量较轻, 安装方便。第二代轮毂轴承外圈带有法兰盘, 直接经过镙栓连接到悬架上( 内圈旋转型) , 或安装到刹车盘和钢圈上( 外圈旋转型) 。 1.3 第三代轮毂轴承 第三代轮毂轴承由连接到悬架上带法兰盘的外圈和连接到刹车盘和钢圈上带法兰盘的内圈相组成。与第二代不同, 第三代轮毂轴承集成了ABS传感器。 表1列出了NSK各种轮毂轴承的类型和特点。 下一页 2、轮毂轴承技术 2.1 高性能密封圈

转轴设计实例

转轴设计实例 例11.6.1 试设计图11.5.7所示单级斜齿圆柱齿轮减速器的从动轴。已知传递的功率P=10kW ,从动齿轮的转速min 2202 r n =,分度圆直径2356d mm =,齿轮上所受的力22656t F N =,2985r F N =,2522a F N =,齿轮轮毂的长度80L mm =,齿轮单向转动,采用轻窄系列深沟球轴承。 解:(1)选择轴的材料,确定许用应力 选45钢,正火处理,查表11.1.1得到其硬度为 170~217HBS ,抗拉强度 600b Mpa σ=,查表11.5.4得到许用弯曲应力为[]155MPa σ-=。 (2)估算该轴最细段的直径 查表11.5.1得到C=115,因此有 3 31011542.2202P d C mm mm n ≥== 由表11.6.2确定取 45d mm =。 (3)对轴进行结构设计 考虑轴上零件的位置和固定方式,以及结构工艺性,按比例绘制出轴及轴系零件的结构草图(图11.5.8)。 轴的具体结构设计过程及结果如下: 1) 确定轴上零件的位置和定位、固定方式 由于是单级齿轮减速器,应把齿轮布置在箱体内壁的中间,轴承对称布置在齿轮的两边,轴的外伸端安装联轴器。 齿轮靠轴环和套筒实现轴向定位和固定,靠平键和过盈配合实现周向固定。两端轴承分别靠轴肩、套筒实现轴向定位和固定,靠过盈配合实现周向固定。轴通过两端轴承盖实现图 11.5.7 减速器

轴向定位。联轴器靠轴肩、平键和过盈配合分别实现轴向定位和周向固定。 2)确定各轴段的直径 外伸端直径为45㎜。为了使联轴器能轴向定位,在轴的外伸端应设计出一个轴肩。因轴承也要安装在这一轴段上,所以,通过右端轴承盖的这一轴段应取直径55mm 。考虑到便于轴承装拆,与透盖毡圈接触的轴段(公差带取f7)比安装轴承的轴段直径(该处直径的公差带是按轴承的标准选取的,为k6)略小,取为52㎜。按要求,查轴承的标准手册选用两个6211型的深沟球轴承,故安装左端轴承的轴段直径也是55㎜。为了便于齿轮的装配,齿轮处的轴头直径为60㎜。用于齿轮定位的轴环直径为70㎜。查轴承标准得,左端轴承处的轴肩所在轴段的直径为64㎜,轴肩圆角半径取1㎜,齿轮与联轴器处的轴环、轴肩的圆角半径取1.5㎜。 3)确定轴的各段长度 齿轮轮毂的宽度为80㎜,故取齿轮处轴头的长度为78㎜。由轴承的标准手册查得6211型轴承的宽度为21㎜,因此左端轴颈的长度为21㎜。齿轮两端面、轴承端面应与箱体内壁保持一定的距离,分别取为15㎜,和5㎜,右侧穿过透盖的轴段的长度取为68㎜。联轴器处的轴头长度按联轴器的标准长度取70㎜。由图11.5.8可知,轴的支跨距为L=141㎜。 4)校核的强度 (1)绘制轴的计算简图(图11.5.9a ) (2)绘制水平面内弯矩图(图11.5.9b ) 两支承端的约束力为 22656132822t hA hB F F F N N ==== 截面C 处的弯矩为 m N m N L F M hA hc ?=??==62.932 141.013282 3)绘制垂直面内弯矩(图11.5.9c ) 两支承端的约束反力为 N N L d F F F a r vA 48.166)141 23565222985(22222-=??-=-=N N L d F F F a r vB 48.1151)141 23565222985(22222=??+=+= 截面C 左侧的弯矩为 10.141166.48.11.74.22vC vA L M F N m N m ==-?=- m N m N L F M vB vC ?=??==18.812 141.048.115122 4)绘制合成弯矩图(11.5.9d ) 截面C 左侧的合成弯矩为 m N m N M M M vc hc C ?=?-+=+=35.94)74.11(62.93222121 截面C 右侧的合成弯矩为 图11.5.9 轴的计算简图

轴承部件设计

机械设计作业任务书题目:带式运输机 结构简图见下图: 原始数据如下: 机器工作平稳,单向回转,成批生产

一.选择材料,确定许用应力 本题中带式运输机功率属于中小型功率。因此轴所承受的扭矩不大。选择45号钢,并进行调质处理。 二.按扭转强度估算轴径 对于转轴,按扭转强度初算直径:min d ≥其中 2P ——轴传递的功率P =m P 1η=4×0.97=3.88kW m n ——轴的转速,r/min C ——由许用扭转剪应力确定的系数。查表10.2得C=106~118,因为近似为关于轴承对称,取C=118。 mm 29.2257688.3118n p C d 33 m =÷?=≥ 轴端安装大带轮,会有键槽存在,将轴径扩大5%,得d d k 05.1≥=23.40mm ,圆整后取125d mm = 三.设计轴的结构 本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。 轴段1 轴段1安放大带轮,所以其长度由带轮轮毂长度确定,而直径由初算的最小直径得到。 mm 25d 1= 大带轮宽65mm ,但是中间轮毂常50mm ,轴长应略短于轮毂mm 48l 1=

轴段2 由于大带轮右端由轴肩来固定,()5.2~75.11.0~07.012=?=d h ,则 mm h d d 30~5.28212=+=,取为30mm ,由《机械设计课程设计》表14.4,毡圈油封的 轴径d=29mm ;此段2d =30mm 轴段3和轴段7 安装轴承,尺寸由轴承确定。标准直齿圆柱齿轮,没有轴向力,但考虑到有较大的径向力,选用深沟球轴承。应该根据此段轴大致直径范围确定轴承型号,选定轴承,然后进一步修正轴径。由《机械设计课程设计》表12.1,暂取6207,轴承内径35d mm =,外径 72D mm =,宽度17B mm =,轴件定位直径42a d mm =,a D =65mm 。因为轴承的n d 值 小于5(1.5~2)10/min mm r ??,所以选用脂润滑。取mm d d 3573==,mm l l 1773== 轴段4与轴段6 轴段4与轴段6定位固定轴承的轴肩,故()5.3~45.21.0~07.0464===d h h , mm d h d d 42~9.392364=+==,取为42mm 。 轴段5 此段为齿轮和轴的连体,最大直径和齿轮大径相同,直径5d =54mm ,此段轴长应与齿厚相同,5l =b=60mm 。 轴承座宽与轴段2、4、6的长度 为补偿机体的铸造误差,轴承应深入轴承座孔内适当距离,以保证轴承在任何时候都能坐落在轴承座孔上,为此取轴承上靠近轴承座内壁的距离mm 10=?;为保证拧紧上下轴承座连接螺栓所需扳手空间,轴承座应有足够的宽度C ,10~521+++=δC C C 可取 mm 50=C ;根据外圈直径,由机械设计手册,轴承盖凸缘厚度10e mm =;为避免齿轮轮 毂端面转动时与不动机座内壁相碰,齿轮轮毂端面与机座内壁之间应有足够的间距H ,对齿轮,可取H=15mm ;为了避免大带轮与轴承盖上螺栓相碰,大带轮端面与轴承盖间应有足够

含油轴承的设计资料

资料1有关油的选择方法 1.油的分类 矿物油(石蜡系、石油质系) 合成油(脂、聚·烯、热固型醇树脂、双脂、氟素油、矽素) 动植物油(蓖麻子油、菜子油、鲸鱼油) 2.选择油时之注意点 (1)一定明确指出轴承之使用温度范围 (2)确认是否为低摩擦系数之轴承? (3)确认负荷之大小? (4)是否油膜之形成不易? (5)轴承材质中的Zn、Pb与油之反应性如何? (6)含浸油与轴承回转之轴承座材质。 (7)轴转速之大小? 3.上述第二项问题与油性质之关系 关于第2-1项:室外使用的汽车零件以及电气制品,当寒冷时油的流动性,炎热时油粘度下降,寿命以及该温度下,油之线膨涨系数变化。(流动性、粘度指数、线膨涨系数) 关于第2-2项:便如电池之能源时,电流之消耗不同以及音量的问题。(油之摩擦系数、油性之有无)关于第2-3项:高负荷时高粘度,低负荷时为低粘度。(粘度及油膜之强度) 关于第2-4项:不平衡之负荷、断续运转、振动。(极压性、油性、油膜强度) 关于第2-5项:各种基础油以及添加剂和金属之亲和性。(反应性) 关于第2-6项:各种基础油以及添加剂和树脂之亲和性。(反应性) 关于第2-7项:在流体力学上,制品与轴之间的损耗。(粘度、粘着性) 4.油之一般性质(基础油) 矿物油便宜;不易侵犯树脂;对金属安定;多种粘度;低粘度指数;高流动点。 合成油价贵;对於树脂金属要注意;粘度之范围窄;高粘度指数;低流动点。 动植物油强油性;虽有摩擦,同傍晚的腐蚀不适於长寿命用。 5.一般适用的油 关于第2-1项:进行耐热温度与流动点之确认参照PORITE所荐之油一览表。

关于第2-3项:高负荷时用粘度的油MAX.130 CST左右,低负荷用MIM.32CST左右就可以,参考Porite所扒荐之油一览表。 关于第2-4项:PSL-4、PSL-5 关于第2-5项:对Zn、Pb不适合的油腔滑调品(对Zn可抗阴),以Diester系PSL-1、PSL-2、PSL-7、PSL-10。 关于第2-6项:同上记 关于第2-7项:与第2-2项相同,仅於小负荷制品。

深沟球轴承设计方法

深沟球轴承设计方法 1 外形尺寸 1.1 轴承的基本尺寸d 、D 、B 按GB/T 273.3的规定 1.2 装配倒角r 1、r 2按GB/T 274的规定 2 主参数的设计方法 2.1 钢球直径Dw Dw=Kw (D-d ) 取值精度0.001 为保证钢球不超出端面,要考虑轴承宽度B 。 Kw 取值见表1 表1 Kw 值 2.1.1 常见钢球直径可查GB/T 308 2.1.2 计算出Dw 后,应从中选取最接近计算值的标准钢球值,优先选非英制。 2.2 钢球中心圆直径P P=0.5(D+d ) 取值精度0.01 2.3 球数z 式中ψ为填球角,计算时按表2取值 直径系列 公称内径 8、9、1 2 3 4 ≤35 0.24~0.31 0.29~0.31 0.28~0.32 0.25~0.31 超过 35~120 0.25~0.32 0.31~0.32 0.32 0.25~0.32 超过120~120 0.24~0.30 0.26~0.31 0.29~0.31 0.25~0.30

表2 ψ值 2.4额定载荷的计算 2.5最后确定Dw、P、z的原则 2.5.1满足额定载荷的要求。 2.5.2应最大限度的通用化和标准化,对基本尺寸相同或相近的 承应尽可能采用相同的球径、球数。 2.5.3保证保持架不超出端面,对D≤200mm的1、2、3系列轴承要考虑安 防尘盖与密封圈的位置。优化设计时轴承兜孔顶点至端面的距离a b应满足如下要求: D≥52~120 ,a b≥2 ;D≤50 ,a b≥1.50 D>125~200,a b≥2.5。 2.5.4填球角ψ的合理性。大批生产并需自动装球的轴承ψ角宜取 186°左右,为了使z获得整数并控制ψ角,允许钢球中心径适当加大至最大不得大于P+0.03P。 2.6 实取填球角ψψ=2(z-1)sin-1 (Dw/P) 实取填球角ψ下限不得小于180°,上限应满足下列要求: 8、9、1系列ψ≤195°2系列ψ≤194° 3系列ψ≤193°4系列ψ≤192°

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

轴系部件设计

机械设计大作业说明书 题目:轴系部件设计 学院:机电工程与自动化学院 专业:机械类 班级: 姓名: 学号:

目录一.大作业任务书4 二.设计内容4 1. 选择轴的材料4 2. 按扭转强度估算轴径4 3. 轴的结构设计5 3.1轴承机构及轴向固定方式5 3.2选择滚动轴承类型5 3.3键连接设计5 3.4各轴段直径设计5 3.5各轴段长度设计6 4.轴的受力分析6 4.1轴的受力简图7 4.2计算支撑反力7 4.3轴的弯矩图8 4.4轴的转矩图9 5.校核轴的强度9 6. 轴的安全系数校核计算10 7. 校核键连接的强度11

8. 校核轴承寿命11 8.1计算当量动载荷11 8.2轴承寿命校核12 9. 轴上其他零件设计12 9.1轴上键连接的设计12 9.2轴承座结构设计12 9.3轴承端盖设计12 三、参考文献13

一、大作业任务书 带式运输机的传动方案如图1所示,机械工作平稳、单向回转、成批生产,其他数据见表1。 图1 方案电动机 工作功 率P/kW 电动机满 载转速 n m/(r/min) 工作机的转 速 n w/(r/min) 第一级 传动比 i1 轴承座中 心高 H/mm 最短工 作年限 工作 环境 5.1.4 2.2 940 80 2.1 160 5年2班室内、清洁 二、设计内容 1.选择轴的材料 通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中型功率。因此轴所承受的扭矩不大,对质量及结构尺寸无特殊要求。故选用常用材料45号钢,并进行调质处理。 2.按扭转强度估算轴径 对于转轴,扭转强度初算轴径,查参考文献[2]表10.2得C=103~126,考虑轴端弯矩比转矩小,故取C=106,则

分析滚动轴承的设计计算

分析滚动轴承的设计计算 本文通过对深沟球轴承安全接触角和轴向承载能力的设计计算,确认其在轨道车辆门系统驱动机构上的应用可行性。 标签:深沟球轴承;轴向承载;接触角;应力集中 1.概述 深沟球轴承主要用以承受径向载荷,同时也能承载一定的轴向载荷。深沟球轴承在承受轴向载荷时,钢球与内、外圈沟道之间会形成一定的接触角。如载荷过大,则接触椭圆将被挡边截去一部分,因而在钢球与挡边附近产生应力集中,导致轴承早期疲劳失效。本文旨在通过对北京地铁9号线侧门系统的驱动机构力学模型进行分析计算丝杆端支撑座内轴承的受力情况,从而确定将原先方案的一对角接触球轴承更改为一对深沟球轴承后,系统能否满足使用要求、避免门系统驱动机构的丝杆轴承在改用深沟球轴承后出现上述提前失效的现象,进行以下校核计算。[1~6] 2.计算极限轴向载荷 2.1丝杆支撑受力分析: 驱动机构的双头丝杆有三个支撑,分别为靠近电机侧的左支撑、中间支撑和右支撑。其中,丝杆在中间支撑和右支撑位置只受周向固定,轴向没有限位,为自由状态,可适应丝杆热胀冷缩时产生的长度变化。 我们假设丝杆承受的最大开/关门力300N全部作用在左支撑上,通过左支撑内的两只深沟球轴承传递给机构安装底板。丝杆轴向、径向受力分析如示意图(a)所示。由图(a)可知,丝杆的升角为45.52762°,丝杆承受轴向力为300N时,其径向分力约为295N。丝杆及其上零件承受的重力作用在左支撑轴承上的垂向分力约为80N。据此,作用在左支撑深沟球上的轴向载荷为Fa=300N,径向载荷Fr=375N。 2.2轴承的轴向承载能力计算 深沟球轴承6202-2Z 的结构尺寸及相关参数如下:(GB/T 276-1994) 轴承外径D=35mm,轴承内径d=15 mm,轴承宽度B=11 mm;内圈挡边直径d2=21.6 mm,外圈挡边直径D2=29.4 mm,内圈沟道直径di=19.3mm,外圈沟道直径D3=31.3mm,外圈沟道曲率系数fe = 0.525;内圈沟道曲率系数fi = 0.515;径向游隙ur = 0.018;球径Dw=5.953mm,钢球数Z=8;Cr=7.65kN,C0r=3.72kN。相关尺寸关系图,如示意图(b)。其中,α是接触椭圆到达挡圈挡边处的安全接触角(压力角)

深沟球轴承设计

深沟球轴承设计计算 Ⅰ.编制说明: 1.沟道曲率半径必须满足Rimax<,Remax<,且Rimax

9. JB/T 10239-2001 滚动轴承零件冲压保持架技术条件 10. CSBTS 滚动轴承零件深沟和角接触球轴承套圈公差 11. CSBTS 深沟和角接触球轴承套圈沟形公差 12. CSBTS 深沟及角接触球轴承套圈沟道圆形偏差 设计轴承型号:6020 一. 轴承的基本(外形)尺寸的确定 依据型号算d,查GB(GB 276-1994,GB 274-2000) 可知D、B、r 轴承公称内径d=(mm) 轴承公称外径D=(mm) 轴承公称宽度T=(mm) 轴承单向最小倒角rsmin=(mm) 二、滚动体直径的设计 钢球直径Dw按下式计算: Dw=Kw (D-d) Kw分档取值见表1,Dw的取值精度为. 计算出Dw后,应从表2中选取接近计算值的标准钢球尺寸. 表1 Kw值 直径系列 100200300400 d(mm) d≤35~~~~ 35<d≤120~~~~ 20<d≤240~~~~ 标准钢球直径Dw mm 见GB/T 308-2002 滚动轴承钢球钢球与保持架中心圆直径Dwp

轮毂轴承的发展趋势和技术

轮毂轴承的发展趋势和最新技术(图) 摘要:为满足汽车零部件减轻重量、减小体积和改善性能的要求,汽车用轮毂轴承在一体化方面取得了显着进步。讨论了轮毂轴承在改善性能、减轻重量、降低摩擦力矩、降低法兰盘跳动和集成ABS传感器以增强其功能等方面的发展趋势及最新技术。 20世纪80年代以来,随着前轮驱动汽车的广泛普及,为满足减轻重量、减小体积和安装方便的要求,轴承和一些零部件如转向节和轮毂的一体化技术得到了快速发展。近年来,汽车制造商和相关供应商更加注重产品的安全性和对环境的影响。为满足对轮毂轴承的各种需求,改进了其原有功能并增加了一些更为先进的功能。本文将讨论轮毂轴承的最新技术、结构和发展趋势。 1、发展历程 NSK轮毂轴承的开发经历了三次重大设计进步,与周围零部件一体化程度方面取得显着成效(图1)。所有大批量生产的三代轮毂轴承(HUBⅠ、HUBⅡ和HUBⅢ)均满足汽车制造商对产品结构紧凑、轻量化和高可靠性的要求。 为降低油耗及改善行驶的稳定性,轻质铝制转向节逐渐替代了较重的钢制转向节。另外,第二代和第三代轮毂轴承由于安装方便越来越广泛地应用于汽车生产中。 第一代轮毂轴承 第一代轮毂轴承是外圈整体式内圈背对背组合的双列角接触球轴承或双列圆锥滚子轴承。为保证安装后预紧载荷在规定范围内,预先设定初始轴承游隙,在汽车组装线上无需使用调整预紧载荷的隔圈。此外,轮毂轴承自带密封圈,省去了人工外部安装密封圈的步骤。 第二代轮毂轴承 与第一代相比外圈带法兰盘的第二代轮毂轴承其特点是装配部件数较少,重量较轻,安装方便。第二代轮毂轴承外圈带有法兰盘,直接通过镙栓连接到悬架上(内圈旋转型),或安装到刹车盘和钢圈上(外圈旋转型)。 第三代轮毂轴承 第三代轮毂轴承由连接到悬架上带法兰盘的外圈和连接到刹车盘和钢圈上带法兰盘的内圈相组成。与第二代不同,第三代轮毂轴承集成了ABS传感器。 ??? 表1列出了NSK各种轮毂轴承的类型和特点。 下一页 2、轮毂轴承技术 高性能密封圈 由于非常接近地面和高温的刹车盘等零件,轮毂轴承需要适应各种复杂路况及恶劣环境。因此轴承密封圈必须具备良好的耐热、防泥浆和污水的性能。表2列出了具有不同密封性能的密封圈。

轴设计计算和轴承计算模板(实例)

【轴设计计算】 计算项目计算内容及过程计算结果 1. 选择材料该轴没有特殊的要求,因而选用调质处理的45号钢,可以查得 的其强度极限。(表12-1) 45号钢,调质处 理, =650MPa 2. 初估轴径 按扭转强度估算输出端联轴器处的最小直径,根据表12-11, 按45号钢,取C=110; 根据公式(12-2)有: 由于在联轴器处有一个键槽,轴径应增加5%,49.57+49.57 × 5%=52.05(mm);为了使所选轴径与联轴器孔径相适应,需要同 时选取联轴器。 Tc=K·T2=1.3×874.2=1136.46≤Tn查手册(课程 设计P238),选用HL4弹性联轴器J55×84/Y55×112GB5014-85。故 取联轴器联接的轴径为d1=55mm。 d1=55mm HL4弹性联轴器 Tn=1250 N·m [n]=4000r/min l =84mm 3. 结构设计 (1)轴上零件 的轴向定位 (2)轴上零件 的周向定位 根据齿轮减速器的简图确定轴上主要零件的布置图(如图所示) 和轴的初步估算定出轴径进行轴的结构设计。 齿轮的一端靠轴肩定位,另一端靠套筒定位,装拆、传力均较为 方便;两端轴承常用同一尺寸,以便于购买、加工、安装和维修; 为了便于拆装轴承,轴承处轴肩不宜过高(轴肩高h≥0.07d ),故 左端轴承与齿轮间设置两个轴肩,如下页图所示。 齿轮与轴、半联轴器与轴、轴承与轴的周向定位均采用平键联接 及过盈配合。根据设计手册,并考虑便于加工,取在齿轮、半联轴 器处的键剖面尺寸为b×h=18×11,(查表7-3)配合均采用H7/k6; 滚动轴承内圈与轴的配合采用基孔制,轴的尺寸公差为k6,如图所 示。 (3)确定各段 轴径直径和长 度 轴径:从联轴器开始向左取ф55(联轴器轴径)d1; d2 →ф63 (55+2×0.07 d1=62.7;取标准值,表12-10) d3→ф65 (轴颈,查轴承内径)(轴承) d4 →ф75 (取>65的标准值)(齿轮) d5 →ф85 (75+2×0.07 d4=85.5;取整数值) d6→ф74 (查轴承7213C的安装尺寸da) d7→ф65(轴颈,同轴两轴承取同样的型号)d7=d3 轴长:取决于轴上零件的宽度及他们的相对位置。半联轴器与轴配 合长度 =84mm,为使压板压住半联轴器,取其相应的轴长为 l1=82mm;选用7213C轴承,其宽度为B=23mm;齿轮端面至箱体壁间 的距离取a=15mm;考虑到箱体的铸造误差,装配时留有余地,取滚 动轴承与箱体内边距s=5mm;轴承处箱体凸缘宽度,应按箱盖与箱座 联接螺栓尺寸及结构要求确定,暂定:该宽度B3=轴承宽+(0.08~ 0.1)a+(10~20)mm,取为50mm;轴承盖厚度取为20mm;轴承盖 与联轴器之间的距离取为b=16 mm;已知齿轮宽度为 d1=55mm d2=63mm d3=65mm d4=75mm d5=85mm d6=74mm d7=65mm B=23mm a=15mm s=5mm B3=50mm b=16 mm l1=82mm l2 =16+21+(50-5-23) =59mm

机械设计大作业轴承部件的设计doc

机械设计基础设计实践设计计算说明书 题目:轴承部件设计 学院: 班号: 学号: 姓名: 日期:

机械设计基础设计实践任务书 题目:轴承部件设计设计原始数据及要求:

目录 一、估算轴的基本直径 (4) 二、确定轴承的润滑方式和密封方式 (4) 三、轴的结构设计 (4) 1. 初定各轴段直径 (4) 2. 确定各轴段长度(由中间至两边) (5) 3. 传动零件的周向定位 (5) 4. 其他尺寸 (5) 四、轴的受力分析 (6) 1. 求轴传动的转矩 (6) 2. 求轴上传动件作用力 (6) 3. 确定轴的跨距 (6) 4. 按当量弯矩校核轴的强度 (6) 5. 校核轴承寿命 (8) 6. 校核键的连接强度 (8) 参考文献 (8)

一、估算轴的基本直径 选用45钢,正火处理,估计直径100d mm <,由参考文献[1]表11.4查得 600b Mpa σ=。查表取C = 110 d ≥C √P n 3 =110×√2.780 3=35.55mm 所求 d 为受扭部分的最细处,即联轴器处的直径。但因该处有一个键槽,故 轴径应增大3%,即35.55 1.0336.62d mm =?=,查表可知,d 取38mm 。 二、 确定轴承的润滑方式和密封方式 大齿轮d 2=mZ =3×81=243m ,圆周速度 222 1.02/2/60260 d d n n v m s m s ππ=?==< 故采用脂润滑。 多尘环境下,采用橡胶圈密封。 三、 轴的结构设计 1. 初定各轴段直径

2. 确定各轴段长度(由中间至两边) 3. 传动零件的周向定位 齿轮及联轴器处均采用A 型普通平键,其中齿轮处为:键16×50GB1096-1990;联轴器处为:键12×40GB1096-1990。 4. 其他尺寸 为加工方便,并参照6010型轴承的安装尺寸,轴上的过渡圆角半径全部采用r =1mm ;轴端倒角为2×45°。 轴承支座宽度12(5~10)L C C mm δ=+++ 查表得120C =,218C =,箱体壁厚取8mm δ=,则20188854L mm =+++=

JB_T102382001_汽车轮毂轴承单元_介绍

标准介绍与贯彻 8 JB/T10238—2001《汽车轮毂轴承单元》介绍  洛阳轴承研究所□李飞雪 1 概述 轮毂轴承的主要作用是承重和为轮毂的转动提供精确引导,它既承受轴向载荷又承受径向载荷,是一个非常重要的零部件。传统的汽车车轮用轴承是由两套圆锥滚子轴承或球轴承组合而成的,轴承的安装、涂油、密封以及游隙的调整都是在汽车生产线上进行的。这种结构使得其在汽车生产厂装配困难、成本高、可靠性差,而且汽车在维修点维护时,还需要对轴承进行清洗、涂油和调整。轮毂轴承单元是在标准角接触球轴承和圆锥滚子轴承的基础上发展起来的,它将两套轴承做为一体,具有组装性能好、可省略游隙调整、重量轻、结构紧凑、载荷容量大、为密封轴承可事先装入润滑脂、省略外部轮毂密封及免于维修等优点,已广泛用于轿车中 , 在载重汽车中也有逐步扩大应用的趋 势。 随着汽车产量和保有量的增加,轮毂轴 承单元的需求量也在日益增大,许多轴承厂纷纷开始生产轮毂轴承单元。轮毂轴承单元属于技术含量较高的产品,对其设计和生产均有较高要求,可是目前市场上尤其是维修市场上的轮毂轴承单元良莠不齐,产品质量高低不一,因此需要对其制定标准,来规范和指导轮毂轴承单元的生产,以保证产品质量和安全使用性能的要求。JB/T 10238—2001《汽车轮毂轴承单元》就是这样一项标准。 2 JB/T 10238规定的主要内容及说明 (1)结构型式 从基本结构上看,第一代轮毂轴承单元是预调游隙、带或不带密封圈的双列轴承,第二代轮毂轴承单元是外圈带凸缘的双列轴承,第三代轮毂轴承单元的内、外圈均带凸缘,第四代轮毂轴承单元则进一步将双列轴承、连接法兰以及等速万向节的外套集成为一个整体。各代轮毂轴承及单元的基本结构和特征见表1。

轴设计计算和轴承计算实例

【轴设计计算】

的跨度。 L =80+2×15+2×5+2×(23/2)=143mm L1= 58+82/2+23/2=111.5mm =45mm l 4 =80-2=78mm l 5 =10mm l 6 =10mm l 7 =23mm L =143mm L1=111.5mm (4)考虑轴的结构工艺性 4. 强度计算 (略) 考虑轴的结构工艺性,在轴的左端与右端均制成2×45o 倒角;左端支撑轴承的轴径为磨削加工,留有砂轮越程槽;为便于加工,齿轮、半联轴器处的键槽布置在同一母线上,并取同一剖面尺寸。 先作出轴的受力计算图(即力学模型)如图中(a )所示,取集中载荷作用于齿轮及轴承的中点。 【轴承计算】 已知一单级圆柱齿轮减速器中,相互啮合的一对齿轮为渐开线圆柱直齿轮,传动轴轴颈直径为d =55mm ,转速n =1450rpm ,拟采用滚动轴承,轴承所承受的径向载荷Fr =2400N ,外传动零件传递给轴的轴向载荷为 Fa =520N ,载荷平稳,工作温度正常要求预期寿命25000h ,试确定轴承型号。 计算项目 计算过程 计算结果 1.选择轴承类型 依题意,轴承主要承受径向载荷且转速较高,故选用深沟球轴承 深沟球轴承 2.预选型 号、查参数Cr 、C0r 因d =55mm ,预选轴承6211,查轴承手册知:基本额定动载荷Cr = 43.2kN ,基本额定静载荷C0r =29.2kN (P228) 预选轴承6211 Cr =43.2kN C0r = 29.2kN 3.计算当量动载荷P Fa /C0r =0.018,用内插法由表12-16知, 判断系数e =0.20 Fa/Fr =0.22>e ,由表12-16查得X =0.56,Y =2.211,由表12-14知f p =1,由公式 知P =2494N P =2494N 4.计算轴承受命L h 查表12-13取温度系数f t =1,由公式12-12知轴承寿命 且接近于预期寿命,故选用6211轴承合适。 L h =59737h 选用6211轴 承合适 5.说明 也可以用公式12-13计算实际动载荷C’, 故选择6211轴承合适。 C’=32422N 选择6211轴 ) (a r p YF XF f P +=

第三代轮毂轴承设计实例

DACF2126A轮毂单元设计DACF2126A的结构设计属于双列角接触球轴承,第三代轿车轮毂轴承, 配装在吉利GL型轿车上,适用于汽车在恶劣的环境使用。因此,该轴承的设计及检测与常规的双列角接触球轴承大不相同,轴承的设计既要符合常规轴承的设计原理与方法,又要考虑结构的特殊性。本文对DACF2126A轮毂轴承的设计进行分析。简图如下: 1、轴承的结构 外圈带凸缘且有4个安装小孔,可分离式半内圈,另一个半内圈与轴肩、法兰盘连体,其结构紧凑,安装方便。轴向游隙装配时已调好,安装时无需调整 2、轴承主要参数设计 2.1接触角a 角接触球轴承的接触角15°---40°,承受轴向载荷大时,a取大些,根据轴承的载荷特点与装配性能要求,取a=36°。 2.2轴向游隙 根据轴承的安装及所承受的载荷情况,按以往轴承的设计经验,选取游隙0~0.017,检测游隙载荷±200N 2.3钢球直径Dw 根据轴承设计理论,钢球直径大小与所承受的额定载荷成正比关系,一般Dw取大些,根据轴承设计理论公式: 0.3(D-d)≤Dw≤0.33(D-d)

式中D和d,由于外圈和内法兰均选用材料65Mn,热外理采用中频感应淬火,受淬硬层深度的影响取D=?70,取d= ?28,代入公式 0.3(70-28)≤Dw≤0.33(70-28) 12.6≤Dw≤13.86 根据轴承结构除考虑径向尺寸外,还要考虑轴承的轴向尺寸、装配空间、装ABS空间、两列钢球互不干涉、合理放置保持架等因素。取Dw=12.7更为合适。 2.4钢球中心圆直径Dpw的确定 按轴承设计理论公式:0.5(D+d)≤Dpw≤0.515(D+d)代入数据得 49≤Dpw≤50.47取Dpw=49 2.5钢球数量Z的确定 钢球数量由下列条件约束 Z≤(πDpw)/(K 2Dw) 常数K 2 =0.91+1.5/12.7 算得Z≤11.79,取Z=11 2.6径向加载作用中心位置Pi的确定 径向加载作用中心位置的确定通常由整车数据确定或按提供的样件检测得出 按样件检测得出Pi =41.45,同时求得两列钢球中心间距Pi 2 =25.124 3、轴承主要尺寸的设计 3.1内、外沟沟曲率Ri、Re的确定 内沟沟曲率Ri=0.515Dw=0.515*12.7=6.54取Ri=6.57公差为±0.03 外沟沟曲率Re=0.525Dw=0.525*12.7=6.67取Ri=6.7公差为±0.03 3.2内、外沟径di、De 内沟径di=Dpw-2Ri+(2Ri-Dw)COS a =49-2*6.57+(2*6.57-12.7)COS36° =36.216 外沟径di=Dpw+2Re-(2Re-Dw)COS a =49+2*6.7-(2*6.7-12.7)COS36° =61.834 3.3内圈大档边外径d 2、外圈中档边内径D 2 d 2=0.85Dw+di=0.85*12.7+36.216=47.011 取d 2 =47.1 D 2=De-0.85Dw=61.834-0.85*12.7=51.039 取D 2 =51 3.4外圈两滚道的中心距离Pe的确定 Pe= Pi 2 +[Dpw-(De-2Re)]tga =25.124+[49-(61.834-2*6.7)]tg36° =25.535 4、密封结构的设计 根据本公司以往的设计经验,此结构例轴承均采用三唇口接触式密封结

哈工大机械设计大作业 轴承部件的设计

《机械设计基础》 设计实践设计计算说明书题目:轴承部件设计 学院:航天学院 班号:0918401班 学号:1091840118 姓名:胡凯 日期:2011年11月20日

《机械设计基础》 设计实践任务书 题目:直齿圆柱齿轮减速器设计 设计原始数据及要求: 输出轴功率P(kW) 2.7 输出轴转速n(r/min)80 齿轮模数m(mm)3 大齿轮齿数Z81 大齿轮宽B(mm)80 联轴器轮毂宽L(mm)70 机器的工作环境多尘 机器的载荷特性平稳 机器的工作年限班次4年2班(18000h) 斜齿轮减速器额外增加的数据 中心距a(mm)150 小齿轮的齿数18 27

目录 设计实践任务书 (2) 目录 (3) 设计过程 (4) (1)估算轴的基本直径 (4) (2)确定轴承的润滑方式 (4) (3)轴的结构设计 (4) 1)初定各轴段直径 (4) 2)确定各轴段长度(由中间至两边) (4) 3)传动零件的周向定位 (5) 4)其他尺寸 (5) (4)轴的受力分析 (5) 1)求轴传动的转矩 (5) 2)求轴上传动件作用力 (5) 3)确定轴的跨距 (5) (5)按当量弯矩校核轴的强度 (6) (6)校核轴承寿命 (7) (7)校核键的连接强度 (7) 参考文献 (7) 37

设计过程 (1)估算轴的基本直径 选用45钢,正火处理,估计直径d<100mm,由表查得σb=600MPa。查表取C=106 所求d为受扭部分的最细处,即联轴器处的直径。但因该处有一个键槽,故轴径应增大3%,即d=1.03×34.25=35.28mm,所以查表可知,d取38mm。 (2)确定轴承的润滑方式和密封方式 大齿轮d2=mZ=3×81=243m,取d2=243mm转速n=80r/min,圆周速度 故采用脂润滑。 多尘环境下,采用橡胶圈密封 (3)初定各轴段直径 1)轴的结构设计 2)确定各轴段长度(由中间至两边) 47

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析+浪逐风尖 2008-11-05 10:55 滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动

表面是以内部(次表面)为起源产生的疲劳剥落。 2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下: A、制造因素 1、产品结构设计的影响 产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。 2、材料品质的影响

相关主题
文本预览
相关文档 最新文档