当前位置:文档之家› 摩擦式提升机选型方法

摩擦式提升机选型方法

摩擦式提升机选型方法
摩擦式提升机选型方法

摩擦式提升机选型方法

1.提升容器的选择

1)小时提升量:

t

b CA A r f N h ?=

式中 C -----不均衡系数。《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20; f ?----提升能力富裕系数。 2)提升速度: t m H V 4.0=

式中 t H ---提升距离,罐笼提升时:s t H H =;箕斗提升时:z s x t H H H H ++=。

3)一次提升时间估算:

θ++++?=

u v H

v T m t m q 1

式中 1?---提升正常加速度,通常2

1/1s m ≤?;

u ---容器启动初加速及爬行段延续的时间,取5~10s ;

θ---提升容器在每次提升终了后的休止时间,s 。 4)一次提升量'

Q 的确定:t b CT A Q r f q N 3600'

'?=

2.钢丝绳的选择

1)钢丝绳的端部荷重:c d Q Q Q +=

式中 Q ---容器的载重量,即实际一次提升量,kg ; c Q ---容器(包括连接装置)的重量,kg 。

2)提升钢丝绳的单重: c

B

d

k H m Q P -=

σ1.1'

式中

B σ---钢丝绳的公称抗拉强度,一般选B σ=155~1702/mm kg ;

m----钢丝绳的静力安全系数; c H ---钢丝绳的最大悬垂长度,m 。

k t h c H H H H '

++=

式中 h H ---尾环绳的高度,m 。

S H H g h 25.0++=

式中 S---两提升容器的中心距,m ;对于单容器带平衡锤的提升系统,则为提升容器与平

衡锤的中心距,m ; g H ---过卷高度, m ;t H ---提升高度 , m 。

p x s z t h H H H H +++=

式中 z H ---井底车场运输水平至在装载位置的提升容器底部的距离,在未最后确定前,一

般按18~25m 计算; s H ---矿井深度;

x H ---井口至卸载煤仓的高度,在未最后确定前,一般可取13.5~14.5m ; p h --- 箕斗在卸载位置时,底部高出煤仓的高度,一般取0.3~0.5m 。

3)尾绳单位长度重量计算: k k P n n q 21

'=

式中 2n ---尾绳设置的数量 3.提升机的选择

1)滚筒直径: d D g 80'

≥ ;

c g D δ1200'≥ 式中:g D '

---滚筒的计算直径,mm ; d ---已选定的钢丝绳直径,mm ;

c δ---已选定的钢丝绳中最粗钢丝的直径,mm 。

2)提升钢丝绳作用在主导轮上的最大静张力和最大静拉力差: 最大静张力1S 的计算内容见下表所示,即重载侧的静拉力;

最大静张力差211'

S S S -=式中:2S 为轻载侧的静拉力,其计算内容见下表。

4.提升系统的确定 1)井架高度的确定: (1)箕斗提升:

a) 无导向轮的提升系统:g g r p x k R h H H h H H 75.01+++++= 式中:1h ---过卷距离的终点与g R 75.0点的高度,与井塔布置有关。 b) 有导向轮的提升系统: i.

导向轮布置穿过该楼层地板时:zx e g r p x k H H H H h H H +++++=

式中: e H ---导向轮中心距楼层地板面的高度,m 。 ii.

导向轮布置在该楼层地板面以上时:zx e g r p x k H H h H H h H H ++?++++=

式中:h ?---导向轮楼层地板的厚度,m 。 (2)罐笼提升:参考箕斗提升,其中0=+p x h H 2)主导轮与导向轮相对位置的确定:

主导轮与导向轮中心水平距离的确定:g d R R S L -+=0

主导轮与导向轮中心垂直距离的确定:

5.075)(+-=?

tg S D H g zx 主导轮与导向轮相对位置:

2

2

)(g d zx R R S H b -++=

围抱角:πθ??+=?180)180(,其中

zx d

g H L tg b R R 011sin ---+=θ 5.提升容器的最小自重

1)按静防滑条件双容器提升时的容器最小自重:

箕斗:c k c H P n Q D Q 11-≥ ; 罐笼:z c k c Q H P n Q D Q --≥12'

其中:z Q ---罐笼内装载的矿车总重量,kg ;

1W ---箕斗提升的阻力系数,取0.075; 2W ---罐笼提升的阻力系数,取0.10; 1D 、2D 的数值计算结果列于下表:

2)按静防滑条件单容器提升时的容器最小自重:

箕斗:c k c

H P n Q D Q 13-≥ ; 罐笼:c k z c H P n Q D Q D Q 154'-+≥

其中:3D 、4D 、5D 的数值计算结果列于下表:

3)按动防滑条件双容器提升时的容器最小自重:

箕斗:c k d c H P n G C Q A Q 111-+≥ ; 罐笼:c k z d c H P n Q G C Q A Q 112'--+≥

其中:1A 、2A 、1C 的数值计算结果列于下表:

4)按动防滑条件双容器提升时的容器最小自重:

箕斗:c k d c H P n G C Q A Q 123-+≥ ; 罐笼:c k z d c H P n EQ G C Q A Q 114'

-++≥

其中:3A 、4A 、2C 、E 的数值计算结果列于下表:

6.钢丝绳与提升机的校验

1)提升钢丝绳的安全系数校验:

对于等重平衡尾绳及轻尾绳(k k q n q n 12<)的提升系统 :c k d q H P n Q Q n m 11+=

对于重尾绳(k k q n q n 12>)的提升系统 :

c k

d q H P n Q Q n m 21+=

升降人员和物料用的:H m 0005.02.8-≥;专为升降物料用的:H m 0005.02.7-≥ 2)最大静拉力和拉力差的校验:根据静、动防滑条件分别校验计算。

7.衬垫材料的压强验算

d D n S S P g 121+=

8.电动机的预选

1)立井提升机的估算电动机容量: max 1QV K N s =

式中: ---1K 系数,箕斗提升时取17,罐笼提升时取19。 斜井提升机的估算电动机容量:

单钩提升:

η

102max 1V F K N j s =

; 双钩提升:

η102max

1V F K N c s =

式中:---1K 备用系数,单钩提升时取1.1~1.15; 双钩提升时取1.05~1.1。 2)提升机的最大速度 :

i n D v d

g 60max π=

9.提升系统运动部分变位质量的计算:g G M ∑∑

=

式中:g---重力加速度,9.812

/s m ;

∑G ---提升系统的运动部分变位重量总和,kg

e

d

dm

G G G S S G ++++=∑2

1

式中:dm G ---提升机的主导轮(包括减速器)旋转部分的变位重量,kg ;

e G ---电动机的变位重量 2

2

2)(g e D i GD G =

式中:i ---减速器的速比 ;)(2GD ---从电动机产品样本上查到的回转力矩,2

m kg ?

10.提升系统运动部分的运动学和动力学计算 1)立井提升系统运动部分速度图参数的选取

对于箕斗提升,采用五阶段或六阶段的提升速度图;对于罐笼采用五阶段提升速度图。

(1)初加速度0α的选定 :

020

02h v =

α 式中: s m v /5.10= ; 0h 一般取0.35~0.52

/s m

(2)正常加速度1α的选定:

c) 《规程》规定:罐笼升降人员的加速度和减速度不得超过0.752

/s m ;

d) 按减速度器输出轴端允许的最大力矩: ∑-≤

'

'1max 1M R R S M g g α

式中: max M ---减速器轴输出端允许的最大力矩;

∑'

M

---不包括电动机变位质量的提升系统的变位质量,

∑∑-

=g G M M d '

e) 按电动机运行方式的加速度:

∑-≤

M

S F p '

11α

式中:P F ---起动阶段电动机产生的平均力,当采用金属电阻分级起动时,P F 可按

e p F F λ)8.0~75.0(=;当采用液体电阻时,P F 可按e p F F λ)9.0~85.0(=。

式中:λ---选顶的电动机最大转矩与额定转矩之比值;e F ---电动机额定力:max 102v N F e e η=

式中:e N ---电动机额定功率。 (3)正常减速度的确定: 1. 自由滑行的减速度:

双容器提升: ∑?-≤

M H KQ t 3α ; 单箕斗提升:∑?-+≤

M H Q W t

)25.0(13α; 单罐笼提升: ∑?-++≤

M H Q Q W t

z 5.0)25.0(13α

式中:K---矿井阻力系数。箕斗提升时,取K=1.15 ; 罐笼提升时,取K=1.2; ?---提升钢丝绳与平衡尾绳的总单重之差,即k k q n P n 21-=?。

2. 机械制动的减速度:

双容器提升: ∑+?-≤M Q H KQ t 3.03α; 单箕斗提升:∑+?++≤

M Q H Q W t 3.0)25.0(13α;

单罐笼提升: ∑+?+++≤

M Q H Q Q W t z 3.05.0)25.0(13α

3. 电动机运行方式的减速度:

双容器提升:∑-?-≤

M F H KQ e t 35.03α;单箕斗提升:∑-?-+≤

M F H Q W e

t 35.0)25.0(13α; 单罐笼提升: ∑-?-++≤

M F H Q Q W e

t z 35.05.0)25.0(13α

2)提升系统运动部分速度图参数的计算

五阶段速度图的计算: 1. 加速阶段:

加速度:1α; 加速时间:1max

1a v t =; 加速阶段运行距离:t

v h max 121=

2.

爬行阶段:

爬行速度4v ,其数值可根据提升机型号查出,如果没有微拖动装置,可采用00.4~0.5m/s ;

爬行时间:

44

4v h t =

3. 正常减速阶段: 减速度:3α;减速时间: 3

4

max 3αv v t -=

; 减速阶段运行距离:

3

max 32t v v h t

+=

4. 制动停车阶段:

末减速度:5α,一般取0.3~0.5 ; 末减速时间:

54

5αv t =

;运行距离:

54521t v h =

5. 等速阶段:

运行距离:)(54322h h h h H h t +++-=; 等速阶段运行时间:

max 2

2v h t =

六阶段速度图的计算:(基本于五阶段速度图相同,只是将加速度阶段分为两个阶段) 1. 初加速度阶段: 初加速度:0α采用0.3~0.5 m/s 2 ; 箕斗滑轮脱离卸载曲轨时的速度:s m v /5.10=

初加速阶段运行时间:00

0αv t =

; 运行距离: 0

0021

t v h =

2. 正常加速度阶段:

正常加速度:1α;加速阶段运行时间:

1

max 1αv v t -=

;运行距离:

1

max 12t v v h +=

3)提升系统运动部分的运动力计算 六阶段速度图的运动力计算:

提升开始时:∑+?+=00αM H KQ F t ; 初加速终了时:00'

02h F F ?+=;

加速开始时:∑-+=)(01'

01ααM F F ; 加速终了时:1122h F F ?+= ;

等速开始时:∑-=1

23α

M F F ; 等速终了时:2342h F F ?+=; 减速开始时:∑-=345αM F F ; 减速终了时:3562h F F ?+=; 爬行开始时:∑+=3

6

M F F ; 爬行终了时:4782h F F ?+=;

上述计算式依据的基本公式:∑±-?-=αM h H KQ F t )2( 对于单容器提升:∑±-?---=αM h H Q Q KQ F t c p )2()(

11.电动机容量校验

1)等效力计算:

d

d T t

F

F ∑=

2

式中: d T ---等效时间 ;t F ∑2---各个运行阶段力的平方与该段时间乘积的总和。 2)等效功率计算: K

v

F N d d η102max =

3)电动机过载系数校验 :

85.0~8.0max

'≤=

e

F F λλ

式中: max F ---在力图上的最大运动力,kg ;通常是出现在加速阶段开始时; λ---电动机的过载能力,其数值可从电动机产品样本中查到 12.提升能力计算

1)提升设备实际的最大提升能力为:

g

r N T Q tb A 3600'=

2)每小时的最大提升能力为:

g h T Q A 3600=

3)实际提升能力的富裕系数:

N N

f A A a '=

13.提升设备电耗及效率计算

一次提升的实际电耗:d v

Ft E ηη3600*102max

∑?=

; 吨煤电耗:

αk T nQ E

E =

提升一次的有效电耗:

3600*1021QH

E =

; 提升机效率 : E E T 1=η

斗式提升机刮板输送机的如何正确选型

刮板输送机的如何正确选型 埋刮板输送机是一种在封闭的矩形断面的壳体内,借助于运动着的刮板链条连续输送散壮物料的运输设备。因为在输送过程中,刮板链条埋于被输送的物料之中,故而称"埋刮板输送机"。 埋刮板输送机在水平输送时,物料受到刮板链条在运动方向的压力及物料自身重量的作用,在物料间产生了内摩擦力。这种摩擦力保证了料层之间的稳定状态,并足以克服物料在机槽中移动而产生的外摩擦力,使物料形成连续整体的料流而被输送。 在垂直提升时,物料受到刮板链条在运动方向的压力,在物料中产生了横方向的侧面压力,形成了物料的内摩擦力。同时由于下水平段的不断给料,下部物料相继对上部物料产生推移力。这种摩擦力和推移力足以克服物料在机槽中移动而产生的外摩擦阻力和物料自身的重量,使物料形成了连续整体的料流而被提升。 埋刮板输送机机构简单、重量轻、体积小、密封性强、安装维修比较方便。它不但能水平输送,也能倾斜或垂直提升输送;能多点加料,也能多点卸料,输送机工艺布置较为灵活。由于壳体是封闭的,这在输送易飞扬的、有毒的、易爆的、高温的物料时,对改善工人的操作条件和防止环境污染等方面都有较突出的优点。 根据多年从事输送设备设计配套工作的经验,认为在通用型埋刮板输送机设计中有一些问题必须引起注意,以下从设计的过程来简述应该注意的问题。 1. 埋刮板输送原理及特点的认知 散状物料具有内摩擦力和侧压力等特性。在水平输送时,物料受到刮板链条在运动方向的推力及物料自身重力的作用,物料层之间产生了内摩擦力,当料层间的内摩擦力大于物料与槽壁间的外摩擦力时,物料就随同刮板链条形成连续整体的物料流而被输送。在料层高度与机槽宽度之比值一定的条件时,料流是稳定的。垂直输送时,主要依赖于物料所具有的起拱特性,封闭的机槽内的物料在受到刮板链条在运动方向上的推力时,产生横向侧压力,当横向侧压力而产生的内摩擦力及下部不断给料所产生的对上部物料的推移力大于物料与槽壁间的外摩擦力 和物料自身的重力时,物料就随同刮板链条向上输送。由于刮板链条在运动中有振动,有些物料的料拱遭到破坏,形成物料相对刮板链条的滞后现象,因而物料速度低于链条速度。 埋刮板输送机主要由封闭的壳体(机槽)、刮板链条、驱动装置及张紧装置等部件构成。具有结构简单、体积小、密闭性好、安装维修比较方便;工艺布置较为灵活,既可水平输送,又能倾斜或垂直输送,可以多点加料,也可以多点卸料;由于壳体是密闭的,因此在输送易扬尘、有毒、易燃易爆、高温的物料时,对改善工作条件,防止环境污染有突出的优点。 2.选型、基本设计和计算

多绳摩擦式提升机防滑系数验算

多绳摩擦式提升机防滑系数安全验算说明主要检验计算公式: 主绳每米重量,9.56kg/m×1m×10m/N×4=382.4N/m; 尾绳每米重量,19.12 kg/m×1m×10m/N×2=382.5N/m 系统为等重尾绳提升。 l、提升系统总变位质量Σm计算 Σm=(Q+2Q Z+n1pL p+n2qL q+G t+G j+G d) =32000+2×48000+4×9.56×720+2×19.12×560+2× 12000+30000+1451.8=232399kg 式中Q一一次提升载荷重量,N=32t; Qz_ 提升容器自重,N=48t; n1—主绳根数,n1=4; p—主绳每米重量,9.56kg; L P—每根提升主绳实际全长,720m; n2—尾绳根数;n2=2 q—尾绳每米重量,19.12 kg; L q—尾绳实际全长,560m; G t—天轮的变位重量,12000kg(查天轮规格表); G j-提升机的变位重量,30000kg(查提升机的规格表); G d——电动机转子的变位重量, G d=4J d*i2/D2=4×7350×12/4.52=1451.8。 J d——电动机转子的转动惯量:J d=1/12*mR2=7350 m——电动机转子的重量29830kg R——电动机转子的半径1.72m i——减速箱减速比,取1

D——滚筒直径,4.5m 2、提升机强度验算 2.l最大静张力验算 (1)根据矿井实际提升情况计算最大静张力F jm F jm= (Q+Qz) +( n1pL p+n2qL q)/1000 =320+480+(382.4×500+382.4×50)/1000 =1010KN (2)验算F jm≤[F jm] 其中[F jm]----提升机设计许用最大静张力(查提升机规格 表),980kN。 F jm = 1010KN>[F jm]=980KN 不合格。 2.2最大静张力差验算 (1)根据矿井实际提升情况计算最大静张力差 F jc F jm1 = 1010KN F jm2 = 690KN F jc= F jm1 -F jm2 = 320KN (2)验算 Fjc=320KN <[Fjc]=340KN 其中[Fjc]---提升机设计许用最大静张力差(查提升机规格表), 340KN。 4、提升速度图的测试、绘制与验算 4.l提升速度图的测试与绘制 最大运行速度:v m=10.5m/s 4.2最大提升速度的验算 v m=πDn/60i=10.5 m/s 式中n——电动机实际转速;r/min

摩擦式提升机选型方法

摩擦式提升机选型方法 1.提升容器的选择 1)小时提升量: t b CA A r f N h ?= 式中 C -----不均衡系数。《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20; f ?----提升能力富裕系数。 2)提升速度: t m H V 4.0= 式中 t H ---提升距离,罐笼提升时:s t H H =;箕斗提升时:z s x t H H H H ++=。 3)一次提升时间估算: θ++++?= u v H v T m t m q 1 式中 1?---提升正常加速度,通常2 1/1s m ≤?; u ---容器启动初加速及爬行段延续的时间,取5~10s ; θ---提升容器在每次提升终了后的休止时间,s 。 4)一次提升量' Q 的确定:t b CT A Q r f q N 3600' '?= 2.钢丝绳的选择 1)钢丝绳的端部荷重:c d Q Q Q += 式中 Q ---容器的载重量,即实际一次提升量,kg ; c Q ---容器(包括连接装置)的重量,kg 。 2)提升钢丝绳的单重: c B d k H m Q P -= σ1.1' 式中 B σ---钢丝绳的公称抗拉强度,一般选B σ=155~1702/mm kg ; m----钢丝绳的静力安全系数; c H ---钢丝绳的最大悬垂长度,m 。 k t h c H H H H ' ++= 式中 h H ---尾环绳的高度,m 。 S H H g h 25.0++= 式中 S---两提升容器的中心距,m ;对于单容器带平衡锤的提升系统,则为提升容器与平 衡锤的中心距,m ; g H ---过卷高度, m ;t H ---提升高度 , m 。 p x s z t h H H H H +++= 式中 z H ---井底车场运输水平至在装载位置的提升容器底部的距离,在未最后确定前,一 般按18~25m 计算; s H ---矿井深度; x H ---井口至卸载煤仓的高度,在未最后确定前,一般可取13.5~14.5m ; p h --- 箕斗在卸载位置时,底部高出煤仓的高度,一般取0.3~0.5m 。

斗式提升机样本及选型共11页文档

斗式提升机样本及选型 概述: TD系列斗式提升机严格按照JB3926-85《垂直斗式提升机》标准设计制造。TD系列斗式提升机适用于垂直输送粉状、粒状、及小块状的磨吸性较小的散状物料,如粮食、煤、水泥、碎矿石等,提升高度最高40m。型号的分类: 斗式提升机作为一种常用的提升设备,在得到广泛的应用的同时,根据不同行业的要求不同也有着非常清楚的分类,其按照传动结构可以分为:(1).TD系列斗式提升机 TD系列斗式提升机是一种国家标准的斗式提升机,该系列斗式提升机和D系列斗式提升机都是采用的胶带传动来提升物料,两者没有本质的区别,D系列斗式提升机产品型号较老且型号规格少。TD系列斗式提升机是在D系列斗式提升机的基础上经过产品改良而来,其规格有TD100、TD160、TD250、TD315、TD400、TD500、TD630、TD800、TD1000等型号,其中TD160、TD250、TD315等型号为普遍采用型号. (2).TH系列斗式提升机 TH系列斗式提升机是一种常用的提升设备,该系列斗式提升机采用锻造环链作为传动部分,具有很强的机械强度,主要用于提升机粉体和小颗粒及小块状物料,区别于TD系列斗式提升机,其提升量更大、运转效率更高。其常用于较大比重的物料的提升。 (3).NE系列斗式提升机

NE系列斗式提升机是一种新型的斗式提升机,其采用板链传动,区别于老型号TB系列板链斗式提升机,其命名方式采用提升量而命名而非斗宽。如NE150指的是提升量为150吨一小时而不是斗宽150。NE系列斗式提升机有着很高的提升机效率,根据提升速度不同还分有NSE型号及高速板链斗式提升机。 (4).TB系列斗式提升机 TB系列斗式提升机是一种较老型号的斗式提升机,其传动部分采用板链传动,现已经被相应NE系列斗式提升机产品替代。 (5).TG系列斗式提升机 TG系列斗式提升机是一种加强型胶带斗式提升机,其区别于TD系列斗式提升机,TG系列斗式提升机采用钢丝胶带作为传动带,其具有更强的传动能力。该系列斗式提升机多被应用于粮食输送上,又被长称呼为粮食专用斗式提升机。 (6).其它型号斗式提升机 常见的斗式提升机型号还有HL系列斗式提升机、GTD系列斗式提升机、GTH系列斗式提升机等,其均为上型号的不同叫法和演变形式。 型号的选用: 作为常用的提升设备,斗式提升机的选用受很多方面因素的制约,选错型号会给使用方带来不尽的麻烦。一般决定斗式提升机选型取决于以下几个要素: 1.物料的形态:物料是粉状还是颗粒状还是小块状。

主立井多绳摩擦提升计算

主立井多绳摩擦提升计算 计算依据 1、最大班提升量50吨 2、最大班上下井人数60人 3、矿车型号YFCO.75-6,自重G0=750kg,容积0.75m3,最大载荷1875kg,有效载荷1800kg。 4、提升容器采用3#单层罐笼,(2200x1350),承人15人,自重Q z=4.2吨,最大载荷2.6吨。 5、井深550m 一、终端载荷 (一)提升物料 Q1=Q+Q Z+G0=1875+2600+1800=6275kg (二)提升人员,每人按70kg计算 Q2=Q r+Q Z=1050+2600=3650kg 二、选择钢丝绳 (一)选择主钢丝绳 由于终端载荷重6275kg,估计应选JKM-1.85×4(I)E型多绳缠绕式提升机。其摩擦轮直径D=1850mm。依据摩擦轮式提升机无导向轮时主导轮直径大于钢丝绳直径80倍且同时大于钢丝绳最粗丝直径1200倍的要求,钢丝绳最大直径为: d=1850/80=23mm。

首绳选取4根,其中半数左捻,半数右捻,选用6V×19(a)+Fc-φ18-1570型(镀锌三角形股),直径18mm,单重P=1.21kg/m,钢丝绳最小破断拉力Qs=168KN,钢丝绳公称抗拉强度σ=1570MPa。(二)选择尾绳 尾绳选取2根,选用6×19+Fc-φ24-1570型普通圆股钢丝绳,直径24mm,单重P=2.12kg/m,钢丝绳最小破断拉力Qs=298KN,钢丝绳公称抗拉强度σ=1570MPa。同时用圆尾绳旋转连接器做悬挂装置,克服圆股钢丝绳在使用过程中旋转的问题。 三、选择提升机 (一)摩擦轮直径D已预选,D=1850mm。 (二)最大静张力F j计算 以重车、罐笼在井口位置计算 F j=Q1+4pH j+2q(H+H h) =6275+4×1.21×20+2×2.12(550+20) =8788.6(kg) 8788.6×9.8/1000=86kN 式中: F j 最大静张力 Q1 终端载荷6275kg p 主绳每米重量1.21kg/m q 尾绳每米重量2.12kg/m H j 井塔高度

矿井提升机的选型原则

矿井提升机的选型原则 对于年产量大于600kt的大、中型矿井,由于提升煤炭及辅助工作最均较大,一般均设主、副井2套提升设备。主井采用箕斗提升煤炭,副井采用罐笼完成辅助提升任务,如提升矸石、升降入员和下放材料、设备等。矿山机械设备对于年产量小于300kt 的小型矿井,如果仅用1套罐笼提升设备就可以完成全部主、副井的提升仟务时,则采用丨套提升设备是经济的。对于年产量大于1800kt的大型矿井,主井往往需要2套箕斗提升设备,副井除配备1套罐笼提升设备外,多数尚需要设置1套单容器平衡锤系统专门提升矸石。(2) 一般情况下,主井均采用箕斗提升方式。但在特殊条件下,例如矿井生产的煤质品种多,且需分别运送,或是保证煤炭有足够的块度,只好采用罐笼作为主井的提升设备。(3) 为了提高生产率,中型以上的矿井原则上都要采用双钩提升。矿山机械设备如果矿井同时开采水平数过多,采用平衡锤单容器提升方式也是比较方便的。(4) 根据我国H前的实际情况,对于小型矿并,以采用单绳缠绕式提升系统为宜。对于年产量9001ct以上的大甩矿井,以采用多绳摩擦提升系统为宜。矿山机械设备对于中型矿并,如井较浅,可采用单绳缠绕系统;井较深时,也可采用多绳摩擦提升系统,或主井采用单绳箕斗,副井采用多绳摩擦罐笼提升。(5)

矿井若有2个水平,且分前、后期开采时,提升机、井架或井塔等大型固定设备要按最终水平选择。提升容器、钢丝绳和提升电动机根据实际情况也可按第一水平选择,待井筒延伸到第二水平时,另行更换,但电动机以换装一次为宜。(6) 对于斜井,目前应采用单绳缠绕式提升机。(7) 地面生产系统靠近井口时,采用箕斗提升可以简化煤的生产流程;若远离井口,地面尚需一段窄轨铁路运输,应采用罐笼提升。以上所述,仅提出了决定提升方式的一般原则。矿山机械设备在具体的设计工作中,要根据矿井的具体条件,提出若干可行的方案,然后对基建投资、运转费用、技术的先进性诸方面进行技术经济比较,同时还要考虑到我国提升设备的生产和供应情况,才能决定合理的方案。矿山机械设备特别是计算机技术在煤矿的日益广泛应用,为矿井设计和优化设计提供了更为有利的条件。

斗式提升机设计说明书

课程设计 字第 院(系) 专业 班级 姓名 x x x x x 年月日

课程设计任务书 材料科学与工程学院材料科学与工程专业 学生学号 课程设计题目: 斗式提升机的选型设计 课程设计容与要求: 1. 设计基本参数 1)输送物料:输送粘土熟料,粒度<40mm,密度ρB=1.4g/cm3 2)布置要求:垂直输送,提升高度42m 3)输送量:45 m3/h;料仓为3×3m 4)下料溜管横截面为圆形 2.设计要求 1)对斗式提升机进行选型计算 2)溜管与方圆接头设计 下料速度:1.8m/s;下料量:Q=3600Fv m3/h;溜管的直径 ≮200mm;方圆接头角度<15° 3)料仓设计 4)绘制立面图,平面图,设备订货单,预留孔,基础图,进出口图;撰写设计说明书 3.绘图要求

按土建制图标准进行 4.参考资料 水泥工厂设计手册,粉体工程及设备 5.绘图工具 计算机(AutoCAD)绘图 目录 1 前言 (2) 1.1 斗式提升机的简介 (2) 1.2 斗式提升机的特点(优缺点) (4) 1.3 斗式提升机的应用 (5) 2 选型计算与校核及各种系数的确定 (5) 2.1 斗式提升机输送能力的计算 (5) 2.2 电机功率大小的计算选择 (6) 3 斗式提升机的布置与确定 (8) 3.1 检视门 (8) 3.2 进料口... ... (8) 3.3 卸料口... ...... (8) 3.4 传动装置置法... ... (8)

4 基础尺寸的确定 (8) 地脚孔尺寸的确定... ... (8) 5 设备的运行与维修 (9) 5.1斗式提升机的安全操作规程 (9) 5.2斗式提升机的维护保养 (9) 6 参考资料 (10) 致...... (11) 1 前言 1.1 斗式提升机的简介 斗式提升机作为一种应用极为广泛的垂直输送设备[1],已经广泛应用于粮食、饲料及种子加工业。斗式提升机具有输送量大,提升高度高,运行平稳可靠,寿命长显著优点,其主要性能及参数符合JB3926----85《垂直斗式提升机》(该标准等效参照了国际标准和国外先进标准),牵引圆环链符合MT36----80《矿用高强度圆环链》,本提升机适于输送粉状,粒状及小块状的无磨琢性及磨琢性小的物

矿井提升机的选型原则

矿井提升机的选型原则 在选择提升设备之前,首先应确定合理的提升方式,它对提升设备的选型,矿山机械设备对矿山的基本建设投资、生产能力、生产效率及吨煤成本都有直接的影响。 当矿井的年产量、井深及开采水平确定之后,就要决定合理的提升方式。提升方式与井简的开拓、井上井下运输等环节有着密切的关系,原则上应考虑下列几个因素: (1)对于年产量大于600kt的大、中型矿井,由于提升煤炭及辅助工作最均较大,一般均设主、副井2套提升设备。主井采用箕斗提升煤炭,副井采用罐笼完成辅助提升任务,如提升矸石、升降入员和下放材料、设备等。矿山机械设备对于年产量小于300kt的小型矿井,如果仅用1套罐笼提升设备就可以完成全部主、副井的提升仟务时,则采用丨套提升设备是经济的。对于年产量大于1800kt的大型矿井,主井往往需要2套箕斗提升设备,副井除配备1套罐笼提升设备外,多数尚需要设置1套单容器平衡锤系统专门提升矸石。 (2)一般情况下,主井均采用箕斗提升方式。但在特殊条件下,例如矿井生产的煤质品种多,且需分别运送,或是保证煤炭有足够的块度,只好采用罐笼作为主井的提升设备。 (3)为了提高生产率,中型以上的矿井原则上都要采用双钩提升。矿山机械设备如果矿井同时开采水平数过多,采用平衡锤单容器提升方式也是比较方便的。 (4)根据我国H前的实际情况,对于小型矿并,以采用单绳缠绕式提升系统为宜。对于年产量9001ct以上的大甩矿井,以采用多绳摩擦提升系统为宜。矿山机械设备对于中型矿并,如井较浅,可采用单绳缠绕系统;井较深时,也可采用多绳摩擦提升系统,或主井采用单绳箕斗,副井采用多绳摩擦罐笼提升。 (5)矿井若有2个水平,且分前、后期开采时,提升机、井架或井塔等大型固定设备要按最终水平选择。提升容器、钢丝绳和提升电动机根据实际情况也可按第一水平选择,待井筒延伸到第二水平时,另行更换,但电动机以换装一次为宜。 (6)对于斜井,目前应采用单绳缠绕式提升机。 (7)地面生产系统靠近井口时,采用箕斗提升可以简化煤的生产流程;若远离井口,地面尚需一段窄轨铁路运输,应采用罐笼提升。 以上所述,仅提出了决定提升方式的一般原则。矿山机械设备在具体的设计工作中,要根据矿井的具体条件,提出若干可行的方案,然后对基建投资、运转费用、技术的先进性诸方面进行技术经济比较,同时还要考虑到我国提升设备的生产和供应情况,才能决定合理的方案。矿山机械设备特别是计算机技术在煤矿的日益广泛应用,为矿井设计和优化设计提供了更为有利的条件。

2JK-3×1.5提升机选型计算

官庄河煤业 副斜井提升绞车能力核算说明书 一、设备参数: 1.提升机型号: 2JK-3×1.5 2.卷筒直径: 3 m 3.卷筒宽度: 1.5m 4.钢丝绳直径: 6×19+FC(36mm) 5. 卷筒数量: 2个 6. 减速器型号 ZKL3 7. 减速比 31.5 8. 最大静张力: 135kN 9. 最大静张力差: 90kN 10. 提升长度: 525m 11.提升斜角 21度 12. 钢丝绳重: 4.78Kg/m×525=2510kg≈25.1 kN 13. 大件重: 185 kN 14. 平板车重: 15 kN 15.电机 YTS400L3-10 功率400KW 电压660V 转速594r/min 二、牵引力校核: 实际载荷校核计算 对于斜井 F= G·sinθ+G钢·sinθ+0.015 G·cosθ+0.175 G钢cosθ

G钢—钢丝绳总重: 25.1 kN G—最大件重(含平板车): 185+15=200 kN θ—提升倾角: 21° F—实际静张力差: kN 所以 F=200×sin21°+25.1× sin21°+0.015×200cos21° +0.175×25.1 cos21° =87.6kN 5.2JK-3×1.5矿井提升机最大静张力差为90 kN,满足使用。 三、制动力矩校核计算: 安全系数na≥3.25 闸瓦摩擦系数μ=0.35 制动头数量n=16 摩擦中心直径Dm=3270mm 制动器最大正压力 N=(F×D×na)/(n×μ×Dm) =(87.6×3000×3.25)/(16×0.35×3270) ≈46.6 kN 50kN正压力的制动器可满足使用。 选用50kN正压力的制动器。 四、电机校核 1.电机转速计算 n= 60Vi/Dπ 式中n—电机转速 r/min V—最大提升速度3.11m/s i—减速器传动比 31.5

斗式提升机设计说明书样本

课程设计 字第 院( 系) 专业 班级 姓名 x x x x x 年月日

课程设计任务书 材料科学与工程学院材料科学与工程专业 学生姓名学号 课程设计题目: 斗式提升机的选型设计 课程设计内容与要求: 1. 设计基本参数 1) 输送物料: 输送粘土熟料, 粒度<40mm, 密度ρB=1.4g/cm3 2) 布置要求: 垂直输送, 提升高度42m 3) 输送量: 45 m3/h; 料仓为3×3m 4) 下料溜管横截面为圆形 2.设计要求 1) 对斗式提升机进行选型计算 2) 溜管与方圆接头设计 下料速度: 1.8m/s; 下料量: Q=3600Fv m3/h; 溜管的直径≮200mm; 方圆接头角度<15° 3) 料仓设计

4) 绘制立面图, 平面图, 设备订货单, 预留孔, 基础图, 进出口图; 撰写设计说明书 3.绘图要求 按土建制图标准进行 4.参考资料 水泥工厂设计手册, 粉体工程及设备 5.绘图工具 计算机( AutoCAD) 绘图 目录 1 前言 (2) 1.1 斗式提升机的简介 (2) 1.2 斗式提升机的特点( 优缺点) (4)

1.3 斗式提升机的应用 (5) 2 选型计算与校核及各种系数的确定 (5) 2.1 斗式提升机输送能力的计算 (5) 2.2 电机功率大小的计算选择 (6) 3 斗式提升机的布置与确定 (8) 3.1 检视门 (8) 3.2 进料口... ... (8) 3.3 卸料口... ...... (8) 3.4 传动装置置法... ... (8) 4 基础尺寸的确定 (8) 地脚孔尺寸的确定... ... (8)

矿井提升机的提升方式的选择

矿井提升机的提升方式的选择 斜井提升在我国矿井应用极其广泛,它包括斜井串车、斜井箕斗及斜井带式输送机三种提升方式。采用斜井开拓具有初期投资少、建井快、地面布置简单等优点。但一般斜井提升能力小,钢丝绳磨损快,井筒维护费用高。 (1)斜井矿井提升机可分为单钩与双钩串车两种。其中,单钩串车提升井筒断面小,投资小,生产能力小,耗电量大,但可以用于多水平提升。双钩串车提升生产能力较大,但只能用于单水平提升。一般年产量在21万吨以下的小型矿井多采用单钩,年产量在30万吨左右的矿井多采用双钩,两者均适用于倾角在25°以下。 (2)斜井箕斗提升与串车提升相比,具有提升速度大,生产能力高,容器自重小及装卸载易实现自动化等优点。但需设置装卸载设备、建造煤仓,基建投资大。此外,为了提升矸石、下放材料、升降人员,需要外设置一套副井提升设备。箕斗提升一般采用双钩,适用于井筒倾角为25°~30°,年产量在30万t~60万t的矿井中。 (3)带式输送机提升这种提升方式具有安全可靠、运输量大,且易实现自动化,但初期投资较大,设备安装时间较长,并需要安装卸载煤仓等设备,一般用于年产量在60万吨以上,倾角小于18°的斜井中。《煤炭工业设计规定》规定:大型矿井的主斜井宜采用带式输送机提升。 注:矿井提升机按车场形式不同,又可以分为平车场和甩车场两种方式。甩车场提升方式的优点:地面车场及井口设备简单、布置紧凑、井架低、摘挂钩安全方便;缺点是提升循环时间长、提升能力小、每次提升电动机换向次数多、操纵复杂。矿井提升机平车场没有上述缺点,车场通过能力大,提升操作简单方便。但是,平车场需设置阻车器等辅助设备,故一般情况下甩车场多用于单钩提升,平车场多用于双钩提升。在串车提升中,为在车场内调车和组车方便,应注意一次升降的矿车数尽可能与电机车一次牵引的矿车数成倍数关系。

提升机技术参数及设备选型过程

矿井提升机技术参数介绍及设备选型过程 目录 一、提升机相关参数 二、选型过程 三、MA标志查询办法 四、提升系统设计内容与步骤。 五、电机功率选择与校核 一、技术参数 1、卷筒宽度和直径 2、两卷筒中心距 3、最大静张力、最大静张力差 4、钢丝绳直径、绳速 5、提升高度、容绳量 6、减速器速比 7、电机功率、极数、电机型号简介 8、变位质量 JK-2/2JK-2提升机技术参数表 1、卷筒宽度和直径 卷筒直径:提升机卷筒上第一层钢丝绳中心到卷筒中心距离的2倍。 绞车卷筒的直径为:卷筒缠绳表面到卷筒中心距离的2倍。 二者概念有差别,相差1根钢丝绳的直径。 卷筒宽度:卷筒两个挡绳板内侧直间的距离。 卷筒直径和宽度决定了卷筒使用钢丝绳的最大直径和容绳量 2、最大静张力和最大静张力差 JK-2型提升机的最大静张力161KN,2JK-2型绞车的最大静张力和最大静张力差分别为61KN、40KN。 钢丝绳的张力,也就是钢丝绳的拉力。在单钩提升时,滚筒上只有一根钢丝绳,其拉力主要由提升容器、钢丝绳、提升载荷的重力构成。拉力最大值在天轮的切点处,载荷越大、井筒越深、容器重量越大钢丝绳的拉力就越大。最大静张力是针对提升机而言的,是强度允许的,滚筒上最大的拉力值 双钩提升时,滚筒上有两条钢丝绳,重载钢丝绳的拉力大,轻载钢丝绳的拉力小,两根钢丝绳拉力的差值就是静张力差。最大静张力差就是静张力差的最大值,是绞车强度所允许的,滚筒上两根钢丝绳拉力差的最大值。 通过以上分析,我们可以这样来理解二者。 对于单滚筒绞车,只有最大静张力,没有最大静张力差。最大静张力就是绞车强度所允许的容器、钢丝绳、提升载荷自重的总和。单位为重力单位:KN,最

提升机选型计算

绞车提升能力计算 已知:α=25o L=960M f1= f2= n=7 每米钢丝绳mP= ,车皮重600kg, 煤重850kg, 矸石重1600kg(1350KG)已知:电动机型号JR127-6型,电机额定功率Ne 185KW,滚筒直径2m,二级传动系数y=,过负荷系数∮,提升机最大提升速度V=*2(滚筒直径)*979(转速)÷(60*30传动比)=s。 一、绳端负荷: 求 Qj(提6个煤车) Qj=n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =6*(850+600)+*+960**+* =37190 + 12093 =49283N 提4个矸石车时: Qj = n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =4*(1600+600)**(+*)+960***( + * )=37617 + 12093 =49710 N 提5个矸石车时: Qj = n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =5*(1600+600)**(+*)+960***( + * )=47022 + 12093 =59115 N 钢丝绳安全系数校验:

1、提6个煤车时,查表得出6*7FC ,公称强度1700Mpa钢丝 绳破断拉力总和为,所以钢丝绳安全系数:÷ = >符合《煤矿安全规程》要求。 2、提4个矸石车时,查表得出6*7FC ,公称强度1700Mpa钢 丝绳破断拉力总和为,所以钢丝绳安全系数:÷ = >符合《煤矿安全规程》要求。 3、提5个矸石车时,查表得出6*7FC ,公称强度1700Mpa钢 丝绳破断拉力总和为, ,所以钢丝绳安全系数:÷ = <,不符合《煤矿安全规程》要求。 一、电动机初选(按4个矸石车): Ns =Fc * Vmax / (1000 * Y) = 49710* /(1000 * ) =204KW 选JR127-6型电动机 P=185KW, Ie=350A , Y= ,cos∮=, λ=, U2e=254V, I2e=462A, GD2=49kg/m2,Nd =980r/min, 所以Vmax = ∏D. Nd / 60t =*2*980/60*30=s 二、提升电动机变位质量 1、电动机 Gd =(Gd2)2、Dg2 = 49 *302/22=11025 2、天轮取Gt = 200KG 3、提升机变位质量Gj = 8200KG 4、钢丝绳变位质量Pk .Lk = *960 = 2043kg ∑G = Qj + Gt +Gd + Gj = +200 +11025 +8200=

矿井提升机选型及控制设计——毕业设计

矿井提升机选型及控制设计——毕业设计

矿井提升机选型及控制设计 摘要 矿井提升机是矿井运输的重要设备,是沟通矿井上下的纽带的,其任务是沿井筒提煤、矿石、矸石,下放材料,升降人员和设备。矿井提升机是煤矿、铁矿、有色金属矿生产过程中的重要设备,它的可靠运行直接关系到煤矿生产的安全,矿井提升机信号系统的可靠性和准确性是矿井提升和安全运输的重要保证。 本设计主要对矿井生产所用的提升机械设备选型及控制进行的一次合理选择,了解了煤矿生产矿井的提升系统的基构造和原理,对提升设备的选型和设计有了初步的了解,而且对井下大巷和采区的机械有了进一步的深入了解,对提升机,皮带,以及绞车的设计和选择有了更深一步的认识。设计中运用PLC控制技术,PLC系统采用三菱公司的FX2N系列作为主控制器,对井口、井底、机房信号台进行信号联络。组态设计使用WINCC完成,能够实现上位监控功能。使用编程软件实现信号的联络。 采用PLC控制不但提高了信号传输的可靠性和准确性,而且具有极大的灵活性和扩展性。在不改变系统硬件的前提下,仅靠改变PLC内部的程序就可满足用户要求。有效地解决了信号系统中的远距离传输和可靠性问题。 关键词:矿井提升机信号系统;提升机;钢丝绳;电

动机PLC;上位监控; WINCC 前言 毕业设计是培训学生综合运用本专业所学的理论知识和专业知识来分析,解决实际问题的能力的重要教学环节,是对三年所学知识的复习与巩固,同样,也促使了同学们之间的互相探讨,互相学习。因此,我们必须认真、谨慎、塌实、一步一步的完成设计,给我们三年的学习生涯画上一个圆满的句号。 毕业设计是一个重要的教学环节,通过毕业实习使我们了解到一些实际与理 论之间的差异。通过毕业设计不仅可以巩固专业知识,为以后的工作打下坚实的基础 ,而且还可以培养和熟练使用资料,运用工具书的能力.在各位老师及有关技术人 员的指导下锻炼自己独立思考、分析、解决的能力,把我们所学的课本知识与实

【斗式提升机】各种型号提升机

简介:新乡市三星机械有限公司(网址:https://www.doczj.com/doc/1c12073819.html,)是专业生产、销售、研发振动筛分设备及输送机设备、提升机设备、给料机设备等振动设备的专业厂家。 TB系列斗式提升机产品概述: TB型式斗式提升机(以下简称斗提机)系采用板式套筒滚子链为牵引构件,料斗固定在链板上并连续布置,用流入式装载,低速重载卸料的斗提机。本机适用于输送中等及大块状的、易碎的和磨琢性的堆积密度小于2t/m3的物料,物料温度不超过2500C,如块煤、矿石、卵石、焦碳等。 TB型斗式提升机用途及特点: TB型垂直斗式提升机广泛用于矿山、冶金、建材、煤炭、水电等部门垂直提升块状、粒状、粉状漫压不超过250℃的物料,如矿石、煤炭、焦炭、水泥、石砂等。是一种新型节能、高效的提升设备,在老厂进行技术改造时,可用其取代,近似规格的HL、PL型垂直斗式提升机。本机具有结构简单,占地面积小,技术指标先进,工作可靠,使用维修方便等特点。 TB型斗式提升机选择须知: TB型垂直斗式提升机的结构形式繁多,请按《TH、TB型垂直斗式提升机选用与使用说明书》进行选型设计,提供订货总图或委托制造单位选型设计,但需提供所必需的原始资料。安装基础螺栓由用户自备。 斗式提升机的型号选用须知: 作为常用的提升设备,斗式提升机的选用受很多方面因素的制约,选错型号会给使用方带来不尽的麻烦。一般决定斗式提升机选型取决于以下几个要素:1.物料的形态:物料是粉状还是颗粒状还是小块状。2.物料的物理性质:物料有没有吸附性或者粘稠度,是否含水。3.物料的比重:一般斗式提升机参数都是针对堆积比重在1.6以下的物料设计和计算的,太大的物料比重需要进行牵引力和传动部分抗拉强度的计算。4.单位时间内

提升机的选型方法及步骤

| | | 1.提升容器的选择 1)小时提升量: 式中-----不均衡系数。《规范》规定:有井底煤仓时为~;无井底煤仓时为; ----提升能力富裕系数。 2)提升速度: 式中---提升距离,罐笼提升时:;箕斗提升时:。 3)一次提升时间估算: 式中---提升正常加速度,通常; ---容器启动初加速及爬行段延续的时间,取5~10s; ---提升容器在每次提升终了后的休止时间,s。 4)一次提升量的确定: 2.钢丝绳的选择 1)钢丝绳的端部荷重: 式中---容器的载重量,即实际一次提升量,kg;---容器(包括连接装置)的重量,kg。 2)提升钢丝绳的单重: 式中---钢丝绳的公称抗拉强度,一般选=155~170; m----钢丝绳的静力安全系数;---钢丝绳的最大悬垂长度,m。

式中---尾环绳的高度,m。 式中S---两提升容器的中心距,m;对于单容器带平衡锤的提升系统,则为提升容器与平衡锤的中心距,m;---过卷高度, m;---提升高度, m。 式中---井底车场运输水平至在装载位置的提升容器底部的距离,在未最后确定前,一般按18~25m计算;---矿井深度; ---井口至卸载煤仓的高度,在未最后确定前,一般可取~ ; ---箕斗在卸载位置时,底部高出煤仓的高度,一般取~。 3)尾绳单位长度重量计算: 式中---尾绳设置的数量 3.提升机的选择 1)滚筒直径:; 式中:---滚筒的计算直径,mm;---已选定的钢丝绳直径,mm; ---已选定的钢丝绳中最粗钢丝的直径,mm。 2)提升钢丝绳作用在主导轮上的最大静张力和最大静拉力差: 最大静张力的计算内容见下表所示,即重载侧的静拉力; 最大静张力差式中:为轻载侧的静拉力,其计算内容见下表。

提升机选型计算

绞车提升能力计算 已知:α=25oL=960M f1=0.015 f2=0.2n=7 每米钢丝绳m P=2.129 ,车皮重600kg, 煤重850kg, 矸石重1600kg (1350KG) 已知:电动机型号JR127-6型,电机额定功率Ne 185KW,滚筒直径2m,二级传动系数y=0.85,过负荷系数∮1.9,提升机最大提升速度V=3.14*2(滚筒直径)*979(转速)÷(60*30传动比)=3.42m/s。 一、绳端负荷: 求Q j(提6个煤车) Qj=n .g(Sin25o+f1COS25o)+L.m P .g (Sin25o+f2 COS25o) =6*9.8(850+600)(0.423+0.015*0.906)+960*2.129*9.8(0.42 3+0.2*0.906) =37190 + 12093 =49283N 提4个矸石车时: Q j = n .g(Sin25o+f1COS25o)+L.m P .g (Sin25o+f2 COS25o) =4*(1600+600)*9.8*(0.423+0.015*0.906)+960*2.129*9.8*(0.423 + 0.2 * 0.906)=37617 + 12093 =49710 N 提5个矸石车时:

Q j = n .g(Sin25o+f1COS25o)+L.m P .g (Sin25o+f2 COS25o) =5*(1600+600)*9.8*(0.423+0.015*0.906)+960*2.129*9.8*(0.423 + 0.2 * 0.906)=47022 + 12093 =59115 N 钢丝绳安全系数校验: 1、提6个煤车时,查表得出6*7FC 24.5mm,公称强度1700Mpa 钢丝绳破断拉力总和为378.5KN,所以钢丝绳安全系数:378.5KN ÷49.28KN = 7.68> 6.5 符合《煤矿安全规程》要求。 2、提4个矸石车时,查表得出6*7FC 24.5mm,公称强度 1700Mpa钢丝绳破断拉力总和为378.5KN,所以钢丝绳安全系数:378.5KN ÷49.71KN = 7.6> 6.5 符合《煤矿安全规程》要求。 3、提5个矸石车时,查表得出6*7FC 24.5mm,公称强度 1700Mpa钢丝绳破断拉力总和为378.5KN, ,所以钢丝绳安全系数:378.5KN ÷59.115KN = 6.4< 6.5 ,不符合《煤矿安全规程》要求。 一、电动机初选(按4个矸石车): Ns =Fc * Vmax / (1000 * Y) = 49710*3.5 /(1000 * 0.85)=204KW 选JR127-6型电动机

多绳摩擦提升机选型设计计算

目录 目录 (1) 第一章前言 (2) 第二章矿井提升机设备选型设计 (4) 一、计算条件 (4) 二、提升容器的确定 (4) 三、钢丝绳的选择 (8) 四、提升机的选择 (10) 五、提升系统的确定 (11) 六、提升容器的最小自重 (15) 七、钢丝绳与提升机的校验 (16) 八、衬垫材料单位压力 (17) 九、预选电动机 (17) 十、提升系统变位质量 (18) 十一、提升速度图 (18) 十二、提升能力 (23) 十三、电动机等效功率计算 (23) 十四、电耗计算 (26) 十五、提升机的防滑验算 (27) 十六、微拖电机的选择 (29) 小结 (30) 参考文献 (31)

第一章前言 随着煤炭开采的机械化程度的提高,矿井提升工作是重要环节,从井下采出的煤炭及矸石的提升,材料的下放,人员和设备的升降,都是由提升设备来完成的,所以提升有着咽喉部位的重要性。如果提升部位发生了故障,轻者造成工作停止和设备损坏,重者造成人身安全和重大经济损失,因此提升系统的确定有着非常重要的意义。 矿井提升设备的选择计算是否经济合理,对矿山的基本建设投资、生产能力、生产效率及吨煤成本都有直接的影响。因此,在进行提升设备选择计算时,首先确定提升方式,在确定提升方式时要考虑下列各点: 1、对于180万吨的大型矿井,有时主井需要采用两套箕斗同时工作才能完成生产任务。副井除配备一套罐笼设备外,多数尚需设置一套单容器平衡锤提升方式,提升矸石。 2、对于同时开采煤的品种在两种及以上并要求不同品种的煤分别外运的大、中型矿井,则应考虑采用罐笼提升方式作为主井提升。 对煤的块度要求较高的大、中型矿井,由于箕斗提升对煤的破碎较大,也要考虑采用罐笼作为主井提升。 当地面生产系统距离井口较远,尚需一段窄轨铁路运输时,采用罐笼提升地面生产系统较为简单。 3、对于年产量大于90万吨的大型矿井,主井容器一般可采用箕斗提升,主井提升系统一般采用多绳摩擦提升系统, 4、矿井若有两个水平,且分前后期开采时,提升机、井架等大型固定设备要按照最终水平选择。提升容器、钢丝绳和提升电动机根据实际情况也可以按照第一水平选择,待井筒延深至第二水平时,再更换。 对于新矿井如没有什么特殊要求,可参照《定型成套设备》的规定确定提升方式,并尽量选用定型设备。但因各个矿井具体情况不同,副井提升量

2020无破碎提升机及Z型提升机选型标准

Q/CH 衡水昌弘矿山机械有限公司企业标准 Q/CH01—2017 Z型(垂旋斗)提升机 2017-11-01发布2017-12-01实施衡水昌弘矿山机械有限公司发布

目次 前言.......................................................................................................................................................................II 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4结构、型号、型式与基本参数 (2) 5要求 (3) 6试验方法 (9) 7检验规则 (10) 8标志、包装、运输与贮存 (11) 附录A料斗参数尺寸 (13) A.1CH3-10型料斗参数尺寸 (13) A.2CH15-35型料斗参数尺寸 (13) 图1Z型提升机链轮安装图 (6) 图2Z型提升机机壳 (6) 图 A.1CH3-10型料斗 (13) 图 A.2CH15-35型料斗 (13)

前言 本标准按照GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》给出的规则起草。本标准由衡水昌弘矿山机械有限公司提出。 本标准由衡水昌弘矿山机械有限公司、河北省机械科学研究设计院共同起草。 本标准主要起草人:吴海霞、李建军、庞桂连、庞吉宇、周雷、许志义、葛新生。 本标准自发布之日起有效期限3年,到期复审。

Z型(垂旋斗)提升机 1范围 本标准规定了Z型(垂旋斗)提升机(以下简称“Z型提升机”)的型式、术语和定义、型号与基本参数、技术要求、试验方法、检验规则、标志、包装、运输与贮存。 本标准适用于单一水平、水平+垂直+水平或在一条直线可任意拐弯组合形式输送块状、颗粒状、粉状等松散物料的提升机,尤其适用于需要单机多点入料、多点卸料输送物料的提升机。 有特殊要求的C型、一型、混合型的提升机,通用部分亦可参照适用。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T191包装储运图示标志 GB/T985.1气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口 GB/T985.2埋弧焊的推荐坡口 GB/T1184—1996形状和位置公差未注公差值 GB/T1348球墨铸铁件 GB2894安全标志及其使用导则 GB5226.1-2008机械电气安全机械电气通用技术条件第1部分:通用技术条件 GB/T5269-2008/ISO1275:2006传动与输送用双节距精密滚子链、附件和链轮 GB/T6402钢锻件超声检测方法 GB/T8923.1-2011涂覆涂料前钢材表面处理表面清洁度的目视评定第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材表面的锈蚀等级和处理等级 GB/T9286-1998色漆和清漆漆膜的划格试验 GB/T9439灰铸铁件 GB/T13306标牌 GB/T13384机电产品包装通用技术条件 GB/T16288-2008塑料制品的标志 GB/T18593-2001熔融结合环氧粉末涂料的防腐蚀涂装 GB19891机械安全机械设计的卫生要求 JB/T10841-2008输送用单节距和双节距空心销链及附件 3术语和定义 下列术语和定义适用于本文件。 3.1垂旋斗 通常,不论水平还是垂直位置,料斗始终在重力作用自然下垂,入料口朝上;只有卸料时,通过卸料装置诱导使料斗旋转卸料,卸料后复原。 3.2Z型(垂旋斗)提升机 Z型(垂旋斗)提升机是在封闭的壳体内,物料沿着Z字形的物料输送方向,实现水平+垂直+水平输送物料的(垂旋斗)提升机。

相关主题
文本预览
相关文档 最新文档