当前位置:文档之家› PVC增韧剂全解

PVC增韧剂全解

PVC增韧剂全解
PVC增韧剂全解

PVC增韧剂

一、PVC

1.简介

PVC是一种综合性能优良、价格低廉和原料来源广泛的通用塑料,其产量仅次于聚乙烯而居世界树脂产量第二位。具有阻燃、耐磨、耐酸碱、绝缘等优良的综合性能和价格低廉、原料来源广泛的优点,被广泛应用于农业、化工、建筑等各个部门。

2.优缺PVC制品用作结构材料,强度和韧性是两个重要的力学性能,但是PVC玻璃化温度高,通常呈脆性,存在着抗冲击强度低,加工性能差等缺点,这些缺点大大限制了在生产中的使用。PVC具有韧性差、缺口冲击强度低、耐热性差、增塑作用不稳定等缺点,这严重制约了PVC 在性能要求较高领域的应用。

3.改性方法

通过化学改性和物理改性两种方式可以改善PVC的上述缺点。化学改性是在PvC链段上引人柔性链节单元,以提高其韧性,但化学改性由于经济和技术的限制,研究成果不多。物理改性是改性剂与VPC共混,起到增韧的作用,是一种简单易行、经济实用的方法。我们主要讨论增韧剂与PVC物理共混改性PVC。

二、PVC增韧剂

1.增韧剂

2.弹性体增韧剂:

2.1NBR是增韧PvC最早商品化的改性剂,因其耐油、耐老化、耐腐蚀且与VPC相性好等优点而倍受青睐。Man。等[川发现Pve与NBR在一50℃下进行机械共混时,两相之间具有较好的相容性,体系交联结构的存在使体系具有良好的综合力学性能。随着NBR含量的增大,体系的断裂伸长率迅速增大,但拉伸强度有所下降。

2.2CPE是通过在在聚乙烯分子链上引入氯原子得到的一种韧性高分子聚合物。Whittle A J 等研究了不同含量的CPE对PVC的韧性影响,在他们的测试范围内,复合材料的韧性与CPE 几乎成线性关系。

2.3EvA是乙烯与醋酸乙烯醋共聚而成的一种橡胶弹性体。TPU是一种新型的热塑性树脂,具有较高的力学性能,弹性好,耐油、耐磨、介电性能好等优点,但价格较高。

2.4ABS与PVC溶解度参数相近,经SEM分析发现二者有良好的相容性。若在VPC与ABS 的共混体系中加入CPE,体系的冲击强度和断裂伸长率大幅度提高,而拉伸强度随CPE用量的增加而下降。

3.与刚性粒子共混增韧改性:

由于弹性体在增韧聚合物的同时,却使聚合物的强度等大幅度下降,人们开始研究刚性粒子增韧聚合物的可能性。自Kuaruchi和ohta提出脆性塑料分散于具有一定韧性的基体中能进一步提高混合体系的冲击强度后,国内学者纷纷对此进行了研究。

3.1无机刚性粒子共混增韧改性无机刚性粒子,如CaCO,在过去很长一段时间内一直作为降低

PVC生产成本的填料。近年研究发现,当刚性粒子的粒径小于某一数值之后,材料在受冲击时刚性粒子能引发基体产生银纹并吸收能量,提高体系的韧性。纳米CaCO3是最早开发的无机纳米刚性粒子之一。

3.2有机刚性粒子共混增韧改性

PVC共混增韧改性中常用的有机刚性粒子为PMMA、MMAS、SAN,但是只用有机刚性粒子增韧,效果不如无机刚性粒子增韧显著,一般先用弹性体对PVC进行预增韧,然后再共混增韧。不同粒子对Pvc的改性效果不同,PS的增韧效果最好,但若同时考虑增韧增强效

果,则以PMMA为佳。

三、PVC增韧机理

3.1弹性体增韧PVC的机理

弹性体增韧机理有许多,其中主要有以下两种理论:

(1)弹性体粒子应力集中诱发大量银纹或剪切带,从而吸收能量,同时弹性体粒子及剪切带均

可终止银纹,阻止其扩展成裂纹。

(2)弹性体通过自身破裂、延伸或形成空穴作用吸收能量,离散型核-壳结构聚合物就可以桥

连裂纹阻止裂纹增长,高延伸性可使界面不易完全断裂,空穴作用导致应力集中能够引发剪切带。

3.2刚性粒子增韧机理

3.1.1刚性有机粒子增韧

多数学者认为是由于应力集中效应,使基体作用在分散粒子上的压力增加,导致微粒发生脆

韧转变产生冷拉现象,从而吸收大量变形能,使体系韧性提高。

3.1.2刚性无机粒子增韧机理

刚性无机粒子与基体粘合良好,促进基体在断裂过程中发生剪切屈服,吸收大量塑性变形能, 从而提高韧性。

3.3纳米材料增韧机理

(1)纳米材料均匀分布在基体之中,当基体受到冲击时,粒子与基体间产生微裂纹即银纹,同时粒子之间基体产生塑性形变,吸收冲击能,从而达到增韧效果。

(2)随着粒度变细,粒子的比表面积增大,粒子与基体之间接触面增大,受冲击时,产生更多微裂纹和塑性形变,吸收更多的冲击能,增韧效果提高。

(3)当填料加入量达到临界值时,粒子之间过于接近,材料受冲击时,产生微裂纹和塑性形变太大,几乎成宏观应力开裂,从而使冲击性能下降。

四、增韧剂对PVC增韧后的性能

4.1.1CPE用量对共混体系冲击性能的影响

从图1中可以看出,随CPE用量的增加,PVC/CPE共混体系的缺口冲击强度逐渐增加,冲击性能曲线呈“S”型。当CPE用量小于10份时,体系的冲击强度随CPE用量增加而缓慢增加,当CPE含量为15份时,体系冲击强度突然增加,由10份时的21 kJ/m2突增至40 kJ/m2,18份时达70 kJ/m2,当CPE用量超过20份时,冲击强度趋于平衡,不再随CPE用量发生明显变化。

4.1.2CPE增韧机理

CPE是线形分子,以网络形式分散在PVC基体中,在拉伸力作用下,这种网络容易变形,引发共混体在与拉伸方向成30°~45°方向上发生剪切滑移,形成剪切带,吸收大量的变形能,使共混体系的韧性提高

4.2纳米级CaCO3粒子对PVC增韧增强

4.2.1CaCO3粒子对PVC力学性能的影响

图1是两种不同粒径CaCO3填充PVC拉伸强度与断裂伸长率随CaCO3含量变化曲线。从图中可以看出,随着纳米级CaCO3用量的增加,体系的拉伸强度增大,当纳米CaCO3用量为10%时出现最大值(58MPa),为纯PVC(47 MPa)的123%,再增加其用量体系拉伸强度下降。而粒径为1μmCaCO3则无明显增强效果。同时,两种填充体系断裂伸长率都呈下降趋势,但纳米级CaCO3体系下降更快。

图2是两种不同粒径CaCO3填充PVC缺口冲击强度随CaCO3含量变化的曲线。

可以看出,随着CaCO3用量的增大,两体系缺口冲击强度均有不同程度的增加。当纳米CaCO3用量为10%时缺口冲击强度达到最大值(16.3 kJ·m-2),为纯PVC(5.2 kJ·m-2)的313%;而微米CaCO3用量为20%时缺口冲击强度为最大(12.5 kJ·m-2)为纯PVC的238%。

纳米级CaCO3由于粒子的细微化,体积减少,比表面增大,因而与基体树脂接触面积增大。材料受到外力作用时,刚性纳米级CaCO3粒子引起基体树脂银纹化吸收能量。对于微米粒子,由于其体积相对增大,容易引起基体树脂裂纹化(微小裂纹),不利于大幅度提高体系力学强度。从图1、2中可以看出,当CaCO3用量超过20%时,纳米级Ca-CO3填充材料的拉伸强和缺口冲击强度均低于微米级CaCO3填充体系,这种现象可以从两个方面理解:①纳米级粒子用量增大,粒子过于接近,银纹组合成大的裂纹。②纳米级粒子增多后,分散更加困难,易产生粒子“聚团”现象。由于“团聚”粒子的表面缺陷,一则容易引起基体树脂损伤而产生应力集中,二则在外力作用时,团聚粒子产生相互滑移,使体系性能变劣。

从试样拉伸及冲击断口的SEM照片(见图3)可以看出,30%的纳米级CaCO3复合体系中CaCO3粒子聚集成团,在拉伸方向,纳米级CaCO3粒子被拉成条状分布,且在基体中分布欠佳。而填充量10%的纳米级Ca-CO3SEM照片中,纳米级CaCO3颗粒细小,在基体中成点阵分布,粒子与基体界面间无明显间隙象粘在基体上,基体在冲击方向则存在一定的网丝状屈服。说明纳米级CaCO3的加入量、分散状况和团聚状态,对复合材料的力学性能影响强烈。

4.2.2CaCO3粒子对PVC/ACR体系力学性能影响

为了考察刚性无机粒子对基体树脂韧性的依赖性,在PVC树脂中加入质量份数8%的ACR。图4为不同粒径CaCO3对PVC/ACR体系拉伸强度与断裂伸长率随CaCO3用量的变化曲线。可以看出,随着两种CaCO3用量的增加,纳米级CaCO3用量10%时,体系拉伸强度达最大值(48 MPa),是PVC/ACR(26 MPa)的184%;纳米级CaCO3在15%时达最大值(34MPa),为PVC/ACR 的130%。纳米级CaCO3用量也是在10%时断裂伸长率出现一峰值,纳米级CaCO3则未发现这种效果。

图5为不同粒径CaCO3填充PVC/ACR的缺口冲击强度曲线。可以看出,纳米级CaCO3用量5%时体系冲击强度达最大值(24 kJ·m-2),为PVC/ACR(13 kJ·m-2)的185%,而纳米级CaCO3用量15%时出现最大值(19 kJ·m-2)为PVC/ACR的146%。上述现象,非弹性体增韧改性观点认为,基体树脂除有一定的刚性外,应有一定的韧性。ACR的加入则起到了调节PVC韧性的作用。使填充体系达到一定的脆-韧比,这样刚性无机粒子引发基体更多的银纹,吸收更多的能量。体系综合性能变优。

4.2.3纳米级CaCO3复合体系加工性能

图6为30 nmCaCO3填充PVC、PVC/ACR的扭矩流变曲线,从图中可以看出,ACR的加入,平衡扭矩降低,塑化时间变短、体系流动性能变好,有利于成型加工。

4.2.4结论

(1)无机粒子微细化后,可以提高填充体系力学性能,大的无机粒子改性不明显。

(2)无机粒子的分散状况直接影响材料力学性能,点阵状分布最好。

(3)基体树脂有一定的韧性,即合理的脆韧比有利于提高无机粒子的利用率。纳米级CaCO3用量在5%~10%为宜,ACR的加入,材料加工性能变好。

五、PVC增韧剂国内研究现状

PVC增韧改性面前仍是较活跃的研究领域,弹性体增韧VPC已经从使用一种改性剂到使用两种或更多种改性剂,即从二元体系向多元体系发展。由于刚性粒子具有增韧增强的双重效应,大部分研究者已经从采用弹性体作为PvC的增韧剂转变到刚性粒子作为PVC的增韧剂,尤其是纳米刚性粒子的增韧研究。

六、PVC增韧剂PVC增韧剂展望

目前我国对于PvC增韧技术的研究正处于高速发展时期,特别是纳米改性技术,不仅提高了PvC的韧性和强度,还赋予材料一些特殊性能,如高导电性、高阻燃、优良的光学性能等,大大拓宽了PvC的应用领域。随着人们的进一步研究,PVC的共混增韧改性将会取得蓬勃发展。

PVC热稳定剂的种类划分及作用机理

PVC热稳定剂的种类划分及作用机理 2009/1/8/09:24 来源:太原市塑料研究所作者:白启荣 慧聪塑料网讯:1塑料热稳定剂种类划分 热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。常用的稳定剂按照主要成分分类可分为盐基类、脂肪酸皂类、有机锡化合物、复合型热稳定剂及纯有机化合物类。 1)盐基类热稳定剂:盐基类稳定剂是指结合有“盐基”的无机和有机酸铅盐,这类稳定剂具有优良的耐热性、耐候性和电绝缘性,成本低,透明性差,有一定毒性,用量一般在0.5%~5.0%。(文章来源环球聚氨酯网) 2)脂肪酸类热稳定剂:该类热稳定剂是指由脂肪酸根与金属离子组成的化合物,也称金属皂类热稳定剂,其性能与酸根及金属离子的种类有关,一般用量为0.1%~3.0%。 3)有机锡类热稳定剂:该类热稳定剂可与聚氯乙烯分子中的不稳定氯原子形成配位体,而且在配位体中有机锡的羧酸酯基与不稳定的氯原子置换。这类热稳定剂的特点是稳定性高、透明性好、耐热性优异,不足之处是价格较贵。 4)复合型热稳定剂:该类热稳定剂是以盐基类或金属皂类为基础的液体或固体复合物以及有机锡为基础的复合物,其中金属盐类有钙—镁—锌、钡—钙—锌、钡—锌和钡—镉等;常用的有机酸如有机脂肪酸、环烷酸、油酸、苯甲酸和水杨酸等。 5)有机化合物热稳定剂:该类热稳定剂除少数可单独使用的主稳定剂(主要是含氮的有机化合物)外,还包括高沸点的多元醇及亚磷酸酯,亚磷酸酯常与金属稳定剂并用,能提高复合材料的耐候性、透明性,改善制品的表面色泽。 2PVC热稳定剂的作用机理 1)吸收中和HCL,抑制其自动催化作用。这类稳定剂包括铅盐类、有机酸金属皂类、有机锡化合物、环氧化合物、酚盐及金属硫醇盐等。它们可与HCL反应,抑制PVC脱HCL的反应。 2)置换PVC分子中不稳定的烯丙基氯原子抑制脱PVC。如有机锡稳定剂与PVC 分子的不稳定氯原子发生配位结合,在配位体中,有机锡与不稳定氯原子置换。 3)与多烯结构发生加成反应,破坏大共轭体系的形成,减少着色。不饱和酸的盐或酯含有双键,与PVC分子中共轭双键发生双烯加成反应,从而破坏其共轭结构,抑制变色。

PVC稳定剂的作用机理及用途

PVC稳定剂的作用机理及用途 热稳定剂是PVC加工不可缺少的主要助剂之一,PVC热稳定剂使用的份数不多,但其作用是巨大的。在PVC加工中使用热稳定剂可以保证PVC不容易降解,比较稳定。PVC加工中常用的热稳定剂有碱式铅盐类稳定剂、金属皂类稳定剂、有机锡稳定剂、稀土稳定剂、环氧化合物等。PVC降解机制复杂, 不同稳定剂的作用机制也不相同,所达到的稳定效果也有所区别。 1. PVC的热降解机理 PVC在100~150℃明显分解,紫外光、机械力、氧、臭氧、氯化氢以及一些活性金属盐和金属氧化物等都会大大加速PVC的分解。PVC的热氧老化较复杂,一些文献报道将PVC的热降解过程分为两步。(一)脱氯化氢:PVC聚合物分子链上脱去活泼的氯原子产生氯化氢,同时生成共轭多烯烃;(二)更长链的多烯烃和芳环的形成:随着降解的进一步进行,烯丙基上的氯原子极不稳定易脱去,生成更长链的共轭多烯烃,即所谓的“拉链式”脱氢,同时有少量的C-C键的断裂、环化,产生少量的芳香类化合物。其中分解脱氯化氢是导致PVC老化的主要原因。关于PVC的降解机理比较复杂,没有统一的定论,研究者提出的主要有[4]自由基机理、离子机理和单分子机理。 2. PVC的热稳定机理 在加工过程中,PVC的热分解对于其他的性质改变不大,主要是影响了成品的颜色,加入热稳定剂可以抑制产品的初期着色性。当脱去的HCl质量分数达到0.1%,PVC的颜色就开始改变。根据形成的共轭双键数目的不同,PVC会呈现不同种颜色(黄、橙、红、棕、黑)。如果PVC热分解过程中有氧气存在的话,则将会有胶态炭、过氧化物、羰基和酯基化合物的生成。但是在产品使用的长时间内,PVC的热降解对材料的性能影响很大,加入热稳定剂可以延迟PVC降解的时间或者降低PVC降解的程度。 在PVC加工的过程中加入热稳定剂可以抑制PVC的降解,那么热稳定剂的起到的主要作用有:通过取代不稳定的氯原子、吸收氯化氢、与不饱和部位发生加成反应等方式抑制PVC分子的降解。理想的热稳定剂应该具有多种功能:(1)置换活泼、不稳定的取代基,如连接在叔碳原子上的氯原子或烯丙基氯,生成稳定的结构;(2)吸收并中和PVC加工过程中放出的HCl,消除HCl的自动催化降解作用;(3)中和或钝化对降解起催化作用的金属离子及其它有害杂质; (4)通过多种形式的化学反应可阻断不饱和键的继续增长,抑制降解着色;(5) 最好对紫外光有防护屏蔽作用。 3. PVC稳定剂、作用机理及用途 3.1 铅盐稳定剂 铅盐稳定剂[7]可分为3类:(1)单纯的铅盐稳定剂,多半是含有PbO的盐基性盐;(2)具有润滑作用的热稳定剂,主要是脂肪酸的中性和盐基性盐;(3)复合铅盐稳定剂,以及含有铅盐和其它稳定剂与组分的协同混合物的固体和液体复合稳定剂。 铅盐稳定剂的热稳定作用较强,具有良好的介电性能,且价格低廉,与润滑剂合理配比可使PVC树脂加工温度范围变宽,加工及后加工的产品质量稳定,是目前最常用的稳定剂。铅盐稳定剂主要用在硬制品中。铅盐类稳定剂具有热稳定剂好、电性能优异,价廉等特点。但是铅盐有毒,不能用于接触食品的制品, 也不能制得透明的制品, 而且易被硫化物污染生成黑色的硫化铅。 3.2 金属皂类稳定剂 硬脂酸皂类热稳定剂一般是碱土金属(钙、镉、锌、钡等)与硬脂酸、月桂酸等皂化制取。产品种类较多,各有其特点。一般来说润滑性硬脂酸优于月桂酸,而与PVC相容性月桂酸优于硬脂酸。 金属皂由于能吸收HCl,某些品种还能通过其金属离子的催化作用以脂肪酸根取代活性部位的Cl原子,因此可以对PVC起到不同程度的热稳定作用。PVC工业中极少是有单一的金属

PVC热稳定性的研究

PVC热稳定剂的研究 摘要:聚氯乙烯(PVC)是产量仅次于聚乙烯(PE)的第二大通用塑料,具有强度高且可增塑、耐腐蚀、难燃、绝缘性好、透明性高等优点,通过加入适当的添加剂和使用适当的工艺和设备可生产出各式各样的塑料制品,包括板材、管材、管件、异型材等硬制品和膜、管、鞋、玩具、电缆料、人造革等软制品,广泛应用于工业建筑、农业、日用品、包装、电力、公用事业等领域。但是聚氯乙烯及氯化石蜡等有机卤代物,由于其本身的结构缺陷,在受热使用过程中,会发生分解反应,产生卤化氢,导致卤代物的破坏和加工设备的损坏等严重后果,因此卤代物在受热使用过程中必须添加热稳定剂,以防止卤化氢及进一步的不利结果产生。因此,热稳定剂是PVC加工的必须添加剂。 关键词:热稳定剂;聚氯乙烯(PVC);钙锌热稳定剂;稀土热稳定剂;有机热稳定剂 Abstract:Polyvinyl chloride (PVC) is output second only to polyethylene (PE) of the second general plastics and has the advantages of high strength and plasticizing and corrosion resistant, flame retardant, good insulation, high transparency and advantages, by adding proper additive and using appropriate technology and equipment can produce various kinds of plastic products, including rigid sheet, pipe, pipe, profile, etc. products and films, tubes, shoes, toys, cable materials, artificial leather, soft - ware, widely used in industrial construction, agriculture, daily necessities, packaging, electric power, public utilities and other fields. But polyvinyl chloride and chlorinated paraffin, organic halogen substitute, because of its own

PVC热稳定剂

纯PVC树脂对热极为敏感,当加热温度达到900C以上时,就会发生轻微的热分解;当温度达到1200C后,即发生明显的热分解反应,使PVC树脂颜色逐渐加深,PVC的热降解机理十分复杂,但PVC的热分解反应的实质是由于脱HCl反应引起的一系列反应,最后导致大分子链断裂。 虽然PVC的热分解机理还不十分成熟,但防止PVC热分解的热稳定机理则比较成熟,它是通过如下几个方面来实现热稳定目的的。 1.捕捉PVC热分解产生的HCl,从而防止HCl的催化降解作用。铅类稳定剂主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸酯类及环氧类等按此机理作用。 2. 置换活泼的烯丙基氯原子。金属皂类、亚磷酸酯类和有机锡类可按此机理作用。 3. 与自由基反应,中止自由基的传递。有机锡类和亚磷酸酯类按此机理作用。 4. 与共轭双键加成作用,抑制共轭链的增长。有机锡类和环氧类按此机理作用。 5. 分解氢过氧化物,减少自由基的数目。有机锡和亚磷酸酯类按此机理作用。 6. 钝化有催化脱HCl作用的金属离子。 同一种稳定剂可按几种不同的机理实现热稳定目的。 实践证明,添加热稳定剂是提高PVC热稳定性的有效方法。PVC热稳定剂种类较多。按其化学成分有盐基性铅盐、金属皂(高级脂肪酸钡、铅、隔、钙、锌、镁、钾、锶等)、有机锡、环氧化合物、亚磷酸酯、稀土化合物及硫醇锑等。配方设计时,通常将不同种类或同一种类的几种稳定剂并用,产生协同、加合或互补效果。因单一成分的热稳定剂难以满足热稳定性和综合性能要求,复合型(液体、膏状、片状)热稳定剂的开发应用得到迅速发展。 常用的主热稳定剂品种。 铅盐类铅盐类是PVC最常用的热稳定剂,其用量可占PVC热稳定剂的一半以上。铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好。 铅盐类稳定剂的缺点:分散性差,毒性大,有初期着色性,难以得到透明制品,也难以得到鲜艳色彩的制品,缺乏润滑性,以产生硫、隔污染。 常用的铅盐类稳定剂有 三碱式硫酸铅,分子式为:3PbO·PbSO 4·H 2 O,代号TLS,白色粉末,密度6.4g/cm3。 三碱式硫酸铅是常用的稳定剂品种,一般与二碱式亚磷酸铅一起并用,因无润滑性而需配入润滑剂。主要用于PVC硬质不透明制品中,用量一般为2~7份。

PVC热稳定剂常用测试方法解析

PVC热稳定剂常用测试方法解析 PVC最终制品用于不同的行业。性能不同,PVC热稳定剂的评价和测试就需要不同的方法。总的来说,有静态和动态两大种方法,其中静态的有刚果红试纸法、老化烘箱试验和电势法,动态的有转矩流变仪实验和动态双辊实验。 1、刚果红试纸法 根据国标GB2917.1–2002,刚果红实验法作为测试PVC热稳定剂的一种主要测试方法,其实验装置如图1所示。 使用油浴锅,内置甘油,将要测试的PVC同热稳定剂混合均匀后的物料装入小试管之中,轻微震荡使物料变的结实,然后放入油浴锅之中,油浴锅中甘油提前设定温度约170℃,使小试管内PVC物料的上表面与甘油的上表面相平,小试管上方,塞入一个带有细玻璃管的塞子,玻璃管上下通透,在玻璃管的下方将刚果红试纸打卷插入,使刚果红试纸的下边缘与PVC物料的上边缘相距约2 cm。实验开始后,记录下从放入试管至试管内刚果红试纸开始变为蓝色的时间,即为热稳定时间。这个实验的基本理论是当PVC在约170℃下的温度时,会急剧分解,但由于添加了热稳定剂,抑制了其分解,随着时间的延长,热稳定剂发生消耗,当消耗完成时,PVC会急剧分解释放出HCl气体,此时,试管内的刚果红试剂由于极易与HCl 发生反应而变色,会立刻显现出来,记录下此时的时间,通过时间的长短来判断热稳定剂效果的优劣。 2、静态烘箱试验 制备除热稳定剂之外PVC粉与其它加工助剂(如润滑剂、抗冲改性剂、填充剂等)的高速混合试样。取一定上述试样,按一定比例添加不同的热稳定剂,混合均匀后,加至双棍混

炼机上进行试片制备,一般在不添加增塑剂的情况下,双辊温度设定在160~180℃,在添加增塑剂时,辊温一般在140℃左右。利用双棍反复压片得到均匀的片后下片,然后剪片,得到一定尺寸的含不同热稳定剂的PVC样片。将不同PVC试片放置于一个固定装置上,然后放置到恒温(一般为180℃)的烘箱内,每隔一段时间(如10 min或15 min),来记录试片的颜色变化,直到变黑为止。 通过烘箱老化试验,可以判断热稳定剂对于PVC热稳定效果的优劣,尤其是对颜色变化的抑制能力,一般认为,PVC受热时,颜色会发生白–黄–褐–棕–黑一系列由浅至深的变化,通过一定的时间下PVC的颜色即可判断降解情况。 3、电势法(电导法) 电势法测定PVC热稳定效果的实验装置如图2所示: 实验装置主要有四部分组成,最右侧为惰性气体装置,一般使用氮气,但有时也使用空气,区别在于当使用氮气保护时,可以避免空气中的氧气氧化PVC母链而产生的降解。实验加热装置一般为180℃左右的油浴锅,油浴锅内部放入带有PVC和热稳定剂的混合料,当有HCl气体产生后,就会随着惰性气体一起进入左侧的NaOH溶液中,NaOH迅速吸收HCl,导致溶液的pH值发生变化,通过记录pH计随时间的变化,可以判断不同的热稳定剂的效果。实验结果中,处理得到的pH–t曲线分为诱导期和增长期,诱导期的长短随着热稳定剂效果的优劣而不同。 4、转矩流变仪

PVC热稳定剂

聚氯乙烯稳定剂的研究进展 前言 聚氯乙烯(PVC)是产量仅次于聚乙烯(PE)的第二大通用塑料,具有优良的机械性能、绝缘性能、难燃性以及优越的价格性能比.应用十分广泛。目前中国PVC 生产企业有100家左右,数量众多。聚氯乙烯表观消费量近年呈现快速增长的趋势脚.随着全球经济的复苏.我国聚氯乙烯产业必定会得到进一步的发展。 但是PVC存在热稳定性差(在通常的加工温度下发生严重降解),光稳定性差(在太阳光、热、氧、臭氧和水等的作用下,这些PVC制品会发生严重的降解,导致表观颜色变深、力学性能降低等,最终丧失使用价值)因此在PVC的加工过程中必须添加热稳定剂和光稳定剂来改善性能,提高利用率。 1.PVC结构的不稳定性缺陷 现象:在PVC的加工过程中,只有在160℃以上才能加工成型,可它在120~130 ℃时就开始热分解,释放出氯化氢气体。这就是说,PVC的加工温度高于其热分解温度 原因:PVC是由氯乙烯单体经自由基引发聚合而成的。在反应中,分子链在增长过程中,会发生链转移反应而生成叔碳原子,与叔碳原子相连的氯原子与氢原子,因电子云分布密度小而键能低,成为活泼原子,很容易与相邻的H和Cl脱去一份HCl。 PVC是有氯乙烯单体经自由基引发聚合而成的,在反应中,分子链增长过程中,会发生链转移反应而生成叔碳原子,与叔碳原子相连的氯原子与氢原子,因电子云分布密度小而键能低,成为活泼原子,很容易与相邻的H和Cl脱去一份HCl。PVC的分子结构是按下式所示的首尾相连而排列的: 理想的PVC的结构是稳定的,氯乙烯的聚合是自由基的无规聚合,它除了有规则的稳定的首-尾结构外还有: 首-首结构尾-尾结构

2021年PVC稳定剂简介

PVC稳定剂简介 欧阳光明(2021.03.07) 英文化工术语:Stabilizer, Inhibiter. 什么是稳定剂? 1、广义地讲,能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂。它可以减慢反应,保持化学平衡,降低表面张力,防止光、热分解或氧化分解等作用。广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以达到产品品质稳定的目的. 2、狭义地讲,主要是指保持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂。 纯的PVC树脂对热极为敏感,当加热温度达到90Y:以上时,就会发生轻微的热分解反应,当温度升到120C后分解反应加剧,在150C,10分钟,PVC树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。防止PVC热分解的热稳定机理是通过如下几方面来实现的。 通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。 铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。

?置换活泼的烯丙基氯原子。金属皂类、亚磷酸脂类和有机锡类可按此机理作用。 ?与自由基反应,终止自由基的反应。有机锡类和亚磷酸脂按此机理作用。 ?与共扼双键加成作用,抑制共扼链的增长。 有机锡类与环氧类按此机理作用。 ?分解过氧化物,减少自由基的数目。有机锡和亚磷酸脂按此机理作用。 ?钝化有催化脱HCl作用的金属离子。 同一种稳定剂可按几种不同的机理实现热稳定目的。 铅盐类 铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC热稳定剂的70%以上。 铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。 铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。 常用的铅盐类稳定剂有: (1)三盐基硫酸铅 分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’。三盐基硫酸铅是最常用的稳定剂品

PVC稳定剂简介

PVC稳定剂简介 英文化工术语:Stabilizer, Inhibiter. 什么是稳定剂? 1、广义地讲,能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂。它可以减慢反应,保持化学平衡,降低表面张力,防止光、热分解或氧化分解等作用。广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以达到产品品质稳定的目的. 2、狭义地讲,主要是指保持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂。 纯的PVC树脂对热极为敏感,当加热温度达到90Y:以上时,就会发生轻微的热分解反应,当温度升到120C后分解反应加剧,在150C,10分钟,PVC树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。防止PVC热分解的热稳定机理是通过如下几方面来实现的。 通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。 铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。 ?置换活泼的烯丙基氯原子。金属皂类、亚磷酸脂类和有机锡类可按此机理作用。 ?与自由基反应,终止自由基的反应。有机锡类和亚磷酸脂按此机理作用。 ?与共扼双键加成作用,抑制共扼链的增长。 有机锡类与环氧类按此机理作用。 ?分解过氧化物,减少自由基的数目。有机锡和亚磷酸脂按此机理作用。 ?钝化有催化脱HCl作用的金属离子。 同一种稳定剂可按几种不同的机理实现热稳定目的。 铅盐类 铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC 热稳定剂的70%以上。 铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。 铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。 常用的铅盐类稳定剂有: (1)三盐基硫酸铅

聚氯乙烯热稳定剂的几个理论问题

聚氯乙烯热稳定剂的几个理论问题 刘芳,李杰,夏菲 Ξ (北京加成助剂研究所,北京100078) [关键词]热稳定剂;着色剂;透明度;原子结构理论 [摘 要]试图从原子结构理论说明硫醇有机锡比羧酸有机锡有更优异的热稳定性、金属皂初期着色性差异及 有机锡长期热稳定性、纯稀土热稳定剂性能及特点,并归纳了热稳定剂影响PVC 透明性的因素。 [中图分类号]TQ325.3 [文献标识码]A [文章编号]1009-7937(2003)02-0042-03 Some theoretical problems about the heat stabilizer for PVC L IU Fang ,L I Jie ,X IA Fei (Beijing Jiacheng Additive Research Institute ,Beijing 100078,China ) K ey w ords :heat stabilizer ;colorant ;transparency ;atomic structure theory Abstract :This paper attempts to explain in the theory of atomic structure that the better heat sta 2 bility of mercaptan organotin than that of carboxyl organotin ,the difference in initial coloration among metallic soaps ,long -term heat stability of organotin compounds ,the properties and characteristics of rare earth heat stabilizer.Factors influencing the transparency of PVC by heat stabilizer are also intro 2duced. 热稳定剂是使PVC 树脂能变成有实用价值的塑料不可缺少的助剂,几十年来,对PVC 热分解机理及热稳定剂作用的研究均有很大的发展,但热稳定剂的一些理论问题却很少见报道,如常用的金属皂类热稳定剂,为何锌、镉、铝的皂类在PVC 里初期着色性很小,而钡、钙、锶的皂类初期着色性就较大?同为Sn 、Sb 热稳定剂,为何有机羧酸盐热稳定剂初期着色性就大,而其相应硫醇盐类的初期着色性就小?笔者试着用原子结构理论对一些问题进行理论分析,希望对从事生产和应用热稳定剂的同仁有所裨益。 1 硫醇有机锡比羧酸有机锡有更优良的热 稳定性 同样的烷基,硫醇锡比羧酸锡初期热稳定性更优异。其原因是由于与锡相连的硫和氧的原子结构不同所造成的。氧和硫元素在元素周期中同为第Ⅵ族元素,其区别在于电子结构不同(见表1)。 表1 氧和硫原子的电子结构及原子特性[1] 元素电子结构共价半径/! 电离势/eV 电负性 氧1s 22s 22p 4 0.07413.6 3.4硫1s 22s 22p 63s 23p 4 0.104 10.357 2.5 由表1可以看出:硫原子比氧原子多一层电子, 因而电子的屏蔽作用较大,使硫原子核原子共价半径较大,电离势及电负性比氧小。电负性是综合考察元素的电子亲和势、电离势的一个相对数值,表示元素吸引电子(不是获得电子)倾向性的大小。总之,原子结构决定了硫原子对外层电子吸引力较氧小。在外因作用下(如热、光及极性分子的诱导效应等),硫醇中的硫原子(S )较羧基中与锡相连的氧原子(O )更容易与PVC 中不稳定氯原子相对应的碳原子(C )形成配位键,最终取代PVC 中不稳定氯原子,从根本上防止PVC 脱HC l 的降解反应发生。 在这里笔者要强调的是:热稳定剂起稳定化反应的几种类型中,只有消除聚氯乙烯中不稳定氯原子的反应以及抗氧化反应是从根本上预防聚氯乙烯的降解、交联,其它的如吸收氯化氢、破坏正碳离子以及双键加成反应均是在聚氯乙烯已经分解较严重以后(已经脱HCl ,形成了一些双键以后)的补救方法,因而能消除不稳定氯原子的热稳定剂都有良好的初期色相(没有或较少地形成双键)。 金属类衍生物热稳定剂消除PVC 中不稳定氯 2 4助剂 聚氯乙烯Polyvinyl Chloride 2003年第2期 No.2,2003 Ξ[收稿日期]2002-09-01;[修回日期]2002-11-06

从PVC稳定剂角度分析PVC制品的白化问题

从PVC稳定剂角度分析PVC制品的白化问题 透明PVC制品如果经过水浸渍,或户外暴晒,或经弯曲、拉伸等会产生白化现象,而失去透明性。下面,小编忽略其他因素的影响,站在PVC稳定剂分析水浸白化、曝晒白化和应力白化这3大白化问题。 1、水浸白化 许多类型的透明PVC制品当长时间与水或水蒸气接触时,呈现出一种发白的雾状浊化的外观。软制品比硬制品更厉害。 人们认为这种现象是由于配方中存在容易水合作用的助剂或者助剂分解物而造成的。若只从PVC稳定剂方面分析,则是由于水的浸透,使稳定剂从PVC中析出,并发生水合作用,在表面形成水合析出物(影响透明性)。这种情况下,即使是浸透的水分没有了,稳定剂也不能返还原样,只有升高温度,使稳定剂的相容性得到了恢复,才能变为透明。 试验证明,稳定剂中几乎含有碱土金属盐的配方,尤其是钡和钙,都容易出现不同程度的这种问题。含有镉盐或锌盐的材料,偶尔也会出现这种现象。有机锡稳定剂一般不会出现这种遇水发白的现象。 2、曝晒白化 PVC制品在室外曝晒,也会呈现白化现象。 这与PVC稳定剂的相容性有关。在金属皂PVC稳定剂中,与PVC相容性好的苯甲酸盐比硬脂酸盐白化现象少。有机锡稳定剂不容易产生白化,含硫有机锡最好,其次是月桂酸盐类、马来酸盐类。添加光稳定剂、亚磷酸酯、液体复合稳定剂等在一定程度上可以防止或缓解PVC因曝晒产生的白化现象。 3、应力白化 应力白化是指PVC透明硬制品在受机械外力的作用下,如折曲、拉伸后,PVC制品局部如弯曲折痕处、拉伸部位出现白化现象。这可能是由于外力作用使分子结构发生变化,聚合物分子链产生取向,PVC密度发生改变,同时一些分子间出现空隙,形成光散射,而使PVC 制品上呈现白色。

PVC配方设计中稳定剂的选择要点

PVC配方中稳定剂的选择要点 PVC用的稳定剂包括热稳定剂、抗氧剂、紫外线吸收剂和螯合剂。配方设计时根据制品使用要求和加工工艺要求选用不同品种,不同数量的稳定剂。 (一)热稳定剂 热稳定剂必须能够捕捉PVC树脂放出的具有自催化作用的HCL,或是能够与PVC树脂产生的不稳定聚烯结构起加成反映,以阻止或减轻PVC树脂的分解。一般在配方中根据制品的要求来选用热稳定剂品种。例如: 铅盐稳定剂主要用在硬制品中。铅盐类稳定剂具有热稳定剂好、电性能优异,价廉等特点。但是其毒性较大,易污染制品,只能生产不透明制品。近年来复合稳定剂大量出现,单组分的稳定剂已有被取代的危险。复合稳定剂的特点是专用性强,污染小,加工企业配料简便等优点。但由于无统一的标准,所以各家的复合稳定剂差异很大。 钡镉类稳定剂是性能较好的一类热稳定剂。在PVC农膜中使用较广。通常是钡镉锌和有机亚磷酸酯及抗氧剂并用。 钙锌类稳定剂可作为无毒稳定剂,用在食品包装与医疗器械、药品包装,但其稳定性相对教低,钙类稳定剂用量大时透明度差,易喷霜。钙锌类稳定剂一般多用多元醇和抗氧剂来提高其性能,最近已经国内已经有用于硬质管材的钙锌复合稳定剂出现。深圳市森德利塑料助剂有限公司成功开发出CZX系列无毒钙锌稳定剂,能够满足硬质管材及管件的生产,并在联塑等管材生产厂家批量使用。 有机锡类热稳定剂性能较好,是用于PVC硬制品与透明制品的较好品种,尤其辛基锡几乎成为无毒包装制品不可缺少的稳定剂,但其价格较贵。 环氧类稳定剂通常作为辅助稳定剂。这类稳定剂与钡镉钙锌类稳定剂并用时能提高光与热的稳定性,其缺点是易渗出。作辅助稳定剂的还有多元醇,有机亚磷酸酯类能。 近年来还出现了稀土类稳定剂和水滑石系稳定剂,稀土类稳定剂主要特点是加工性能优良,而水滑石则是无毒稳定剂。 热稳定剂的选用原则 1.硬质PVC配方中热稳定剂的选用 硬质PVC中增塑剂加入量少或不加,要求稳定剂的加入量相应增大,且稳定效果要好。 (1)不透明硬制品常选用的为三碱式硫酸铅及二碱式亚磷酸铅,两者协同加入效果好,加入比例为2:1或1:1,总加入量为3~5份。 (2)透明硬制品不用铅盐类,常选用除Pb、Ca之外的金属皂类及有机锡、有机锑和稀土稳定剂。其中金属皂类加入量为3~4份,有机锡类为1~1.5份。 2.软质PVC及PVC糊制品配方中热稳定剂的选用 这类配方中增塑剂含量高,加工温度低,可适当减少稳定剂的加入量。 (1)不透明软制品常选铅盐(1~2份)与金属皂类(1~2份)协同加入。 (2)半透明软制品常选用几种金属皂类并用,加入量2~3份。 (3)透明软制品常用有机锡类(0.5~1份)与金属皂类(1~2份)协同加入。也可用有机锑及稀土稳定剂代替有机锡。 3.无毒PVC配方中热稳定剂的选用 (1)不宜选用铅盐类稳定剂。 (2)除Pb、Cd皂外其它金属皂类稳定剂可选用。

PVC生产的稳定性问题

PVC生产的稳定性问题 热稳定剂是PVC加工不可缺少的主要助剂之一,PVC热稳定剂使用的份数不多,但其作用是巨大的。在PVC加工中使用热稳定剂可以保证PVC不容易降解,比较稳定。PVC 加工中常用的热稳定剂有碱式铅盐类稳定剂、金属皂类稳定剂、有机锡稳定剂、稀土稳定剂、环氧化合物等。PVC降解机制复杂,不同稳定剂的作用机制也不相同,所达到的稳定效果也有所区别。 1.PVC的热降解机理 PVC在100~150℃明显分解,紫外光、机械力、氧、臭氧、氯化氢以及一些活性金属盐和金属氧化物等都会大大加速PVC的分解。PVC的热氧老化较复杂,一些文献报道将PVC的热降解过程分为两步。(一)脱氯化氢:PVC聚合物分子链上脱去活泼的氯原子产生氯化氢,同时生成共轭多烯烃;(二)更长链的多烯烃和芳环的形成:随着降解的进一步进行,烯丙基上的氯原子极不稳定易脱去,生成更长链的共轭多烯烃,即所谓的“拉链式”脱氢,同时有少量的C-C键的断裂、环化,产生少量的芳香类化合物。其中分解脱氯化氢是导致PVC老化的主要原因。关于PVC的降解机理比较复杂,没有统一的定论,研究者提出的主要有[4]自由基机理、离子机理和单分子机理。 2.PVC的热稳定机理 在加工过程中,PVC的热分解对于其他的性质改变不大,主要是影响了成品的颜色,加入热稳定剂可以抑制产品的初期着色性。当脱去的HCl质量分数达到0.1%,PVC的颜色就开始改变。根据形成的共轭双键数目的不同,PVC会呈现不同种颜色(黄、橙、红、棕、黑)。如果PVC热分解过程中有氧气存在的话,则将会有胶态炭、过氧化物、羰基和酯基化合物的生成。但是在产品使用的长时间内,PVC的热降解对材料的性能影响很大,加入热稳定剂可以延迟PVC降解的时间或者降低PVC降解的程度。 在PVC加工的过程中加入热稳定剂可以抑制PVC的降解,那么热稳定剂的起到的主要作用有:通过取代不稳定的氯原子、吸收氯化氢、与不饱和部位发生加成反应等方式抑制PVC分子的降解。理想的热稳定剂应该具有多种功能:(1)置换活泼、不稳定的取代基,如连接在叔碳原子上的氯原子或烯丙基氯,生成稳定的结构;(2)吸收并中和PVC加工过程中放出的HCl,消除HCl的自动催化降解作用;(3)中和或钝化对降解起催化作用的金属离子及其它有害杂质;(4)通过多种形式的化学反应可阻断不饱和键的继续增长,抑制降解着色;(5)最好对紫外光有防护屏蔽作用。 3.PVC稳定剂、作用机理及用途 3.1铅盐稳定剂 铅盐稳定剂[7]可分为3类:(1)单纯的铅盐稳定剂,多半是含有PbO的盐基性盐;(2)具有润滑作用的热稳定剂,主要是脂肪酸的中性和盐基性盐;(3)复合铅盐稳定剂,以及含有铅盐和其它稳定剂与组分的协同混合物的固体和液体复合稳定剂。

PVC热稳定剂&其应用技术(吴茂英)

书名:《PVC热稳定剂及其应用技术》 主编:吴茂英 第一章:绪论 PVC是世界五大通用塑料之一,在中国其消费量第一位。中国经济的发展,特别是城市化和 房地产业的发展,使PVC建筑材料在中国获得极大的发展机遇,其需求量大幅度增长;另外,交 通运输、通信等领域对PVC 树脂的需求也呈高速增长态势。 PVC异型材门窗保温保冷、耐气候性及防腐性好,符合环保要求,比普通钢门窗能耗可节省17%。建筑耗能占我国总耗能的1/4,建筑保温性能上,耗能占房屋能源浪费50%。当前日益受关 注的全球防止气候变暖的环境问题下,异型材门窗的应用将有新的潜力。 热稳定剂最基本的性能是热稳定、加工和耐候性能。随着塑料行业发展,其他性能及助剂的 相伴存在,经优化设计的“一包化”产品是PVC热稳定剂进入成熟阶段的标志性成果。综合性能 平衡、性价比高、环保性好、使用方便及提高生产效率的定制“一包化”复合稳定剂,预期将在 世界范围内受到普遍欢迎,并成为未来的开发趋势。 第二章:PVC热降解与热稳定剂化学原理 工业生产的PVC热降解主要是由于其分子含有不稳定结构缺陷引起的。目前,无法从根本 上改进合成方法和工艺避免或减少其缺陷的生成,因此添加“热稳定剂”有效提高PVC热稳定性。在实际应用中要求热稳定剂具备更全面的性能,任何一种单组分热稳定剂都无法满足。实际使用 的热稳定剂基于协同作用原理设计开发的复合体系,即所谓复合热稳定剂。 锌基复合热稳定协同作用:协效热稳定剂“中和HCl”,抑制HCl和ZnCl2浓度增长,减弱 了HCl对PVC热降解的催化作用,从而提高PVC长期稳定性;协效热稳定剂中和HCl保护主效稳 定剂,减缓的消耗,进而减慢了PVC的变色速率。主效稳定剂通过取代不稳定氯抑制PVC热降解 的引发,不但抑制了PVC变色,同时也保护了协效热稳定剂,减缓对其的消耗。 第三章:热稳定剂的应用性及其评价

相关主题
文本预览
相关文档 最新文档