当前位置:文档之家› 剥离法制备高质量石墨烯的初步研究

剥离法制备高质量石墨烯的初步研究

剥离法制备高质量石墨烯的初步研究
剥离法制备高质量石墨烯的初步研究

第3期唐多昌,等:机械剥离法制备高质量石墨烯的初步研究17厚度si02的Si基片,切割成10mm×10咖小片,采用Hcl:H202:H20=l:2:8溶液进行清洗,用高纯水冲洗,最后用氮气吹干,使基片表面更加清洁和平整。机械剥离法采用粘胶带的方式,胶带采用特殊的3M思高牌胶带。使用镊子夹取16cm长的思高牌胶带贴附在高定向热解石墨片表面,轻轻压实,使胶带和石墨片紧紧贴附,慢慢撕下。胶带表面会粘附有很薄的一层石墨薄片,然后把胶带的两端对折,使石墨薄片夹在胶带具有粘性一侧的中间,轻轻的压实,慢慢撕下,平稳的将石墨薄片一分为二。完美的剥离,剥离的石墨薄片表面如原子般平滑,复制出的石墨薄片是发亮的。重复3到lo次剥离,直到胶带上出现颜色如墨水斑点一样的石墨薄片。小心的将附有石墨薄片的胶带贴附在氧化的硅片上,轻轻挤压掉胶带和硅片之间的空气,使样品和胶带完全贴附,保持lomin,慢慢从硅片表面撕下胶带。这时数千小片石墨都粘到了硅片上,而其中部分样品就是少层、甚至单层的石墨烯。

采用日本尼康公司多功能材料光学显微镜(型号LVlooD)、美国inVia型拉曼光谱测试仪(氩离子激光器、激发光波长514.5nm、光斑功率1.7rnw)、日本精工的SPl3800型原子力显微镜分析了所获得的石墨烯的特点。

2实验结果和分析

2.1OM分析

通过光学显微镜对分布在附有300nmSiO:的硅片上的石墨小片进行筛选,筛选出少层石墨烯。如图l所示,不同厚度的石墨小片在光学显微镜下呈现出不同的干涉颜色,根据其干涉颜色可以对少层石墨烯作初步判定。硅片上siO:的厚度和显微镜光源的改变都会引起其干涉颜色的变化,而且由于每个实验室条件不同,所以难以定量的从颜色上区分确定石墨烯薄层的厚度一】。凭借实验经验,找到了少层的石墨烯,如图l中矩形框区域所示。

2.2AFM分析

首先使用原子力显微镜对图1方框中石墨烯薄层进行厚

度分析。图2a中,1区域石墨烯薄层的厚度约为o.62llIll,为

单层的石墨烯。图2b中,2区域石墨烯薄层的厚度约为1.25

nm,为2~3层的石墨烯。图2中3区域薄层较厚,这里不做分

析。石墨烯单层厚度是一个原子层的厚度0.35nm,由于原子

力显微镜仪器内部不同相互作用力的存在和石墨烯薄层与衬

底之间存在一定厚度的死空闾,原子力显微镜对厚度的测量结

果存在一定偏差,测量值比实际的厚度要厚Ⅲ1。图1摄像机成像过程Fig.1FiguRofI瑚gingproce鲻

(a)I区域单层石墨烯㈣2区域2—3层石墨烯图2石墨烯样品的删图像

Fig.2AFMi眦geofgraphenesheets

使用原子力显微镜对石墨烯样品的表面形貌进行分析。如图3,石墨烯薄层的表面比较均匀,但并不完全平整,它们表现出物质微观状态下固有的粗糙性,表面会出现几度的起伏。

18西南科技大学学报第25卷

(a)l区域单层石墨烯∞2区域2—3层石墨烯

图3石墨烯的表面形貌

F毽.3Su血cecIlamc蜘zationoftI地graphene8heet8

2.3拉曼分析

图4为所选石墨烯样品、高定向热解石墨和高纯石墨的拉曼光谱。

(a)l层石墨烯(c)高定向热解石墨㈣2—3层石墨烯(d)高纯石墨

垡!壹丝鱼墨/、d

盟壶壅塑垫堡鱼墨^J

(h)2~3层右墨烯A鱼

^@!星互墨竖JL—童

函面—1丽矿—夏丽—丽

Ramanshjn/rm“

图4样品的拉曼谱

ng.4Ra咖spectraof蛐ples

在1570cm。附近的峰叫作G峰,在1350cmq附近的峰叫做D峰,在2680cm一附近的峰叫做2D峰。在拉曼谱中,石墨烯薄层数直接影响着2D峰的出峰位置、强度和峰的形状,图4中,a谱线是图2b中l区域的拉曼光谱,2D峰十分尖锐,蜂的形状比较对称,2D峰强度明显强于G峰强度,同时参照AFM对厚度的测量结果和文献[11],充分说明a谱线为l层石墨烯的拉曼谱.b谱线是图2a中2区域的拉曼光谱,相比a谱线,2D峰开始宽化、形状变得不对称、强度略高于G峰、位置向高波数方向移动,G峰的强度变大,根据文献[11]和AFM测

量结果'b谱线为2—3层石墨烯的拉曼谱线。随着石墨烯层数的增加,G峰越来越强,2D峰逐渐向高波数方向移动,最后G峰强度远高于2D峰强度,百万层的石墨烯堆叠便形成了几毫米厚的高定向热解石墨(HOPG),c谱线是HOPG的拉曼谱线,G峰很强,相对a谱线,2D峰明显向高波数移动;d谱线是高纯石墨(纯度99.99%)的拉曼光谱,比其它谱线多了一个D峰,此峰反映的是碳材料中原子结构的无序。在a,b,c谱线中并没有找到D峰,说明高定向热解石墨是完美的,无缺陷的石墨,剥离的1层、2—3层石墨烯也是高质量的,无缺陷的。拉曼图谱中,2D峰宽度及位置存在明显差异,这与石墨烯的厚度有着密切的关系,石墨烯厚度的变化可以改变其自身的电子能带结构,从而影响双共振拉曼散射的过程¨21。

4结论

利用机械剥离方法制备出了高质量的石墨烯,使用光学显微镜对制备出的石墨薄层进行筛选,通过原子力显微镜和拉曼光谱仪对筛选出的石墨烯进行分析,得到了单层、2~3层石墨烯,拉曼光谱中a、b谱线没有出现D峰,表明获得的石墨烯是高质量的。机械剥离法是制备高质量石墨烯最简单的办法,有助于今后石墨烯研究和应用的深入。

参考文献

[1]Novoselov,K.s.,A.K.Geim,s.V.Morozov,eta1.ElectricFieldE丘&tinAtomicaⅡy11lincarbonFil瞄[J].Science,2004,306:666—669.

[2]Nov∞e10v,K.s.,Ji鲫gD.,F.Schedin.Two.dimensiorIalAt伽iccrystals[J].PNAS,20Q5,102:10451—10453.

[3]Geim,A.k,K.s。Novoselov.11Iem∞0fGraphene[J].NatureMaterials,2007,6:183一191.

[4]schedin,F.,A.K.Geim,s.V.Morozov,et81.Detocti仰ofIrIdividualG∞MoleculesAd∞rbed∞G髓phene[J].Natu∞Matedals,2007,6:652—655.

(下转第59页)

机械剥离法制备高质量石墨烯的初步研究

作者:唐多昌, 李晓红, 袁春华, 杨宏道, TANG Duo-chang, LI Xiao-hong, YUAN Chun-hua, YANG Hong-dao

作者单位:西南科技大学理学院,四川绵阳,621010

刊名:

西南科技大学学报

英文刊名:JOURNAL OF SOUTHWEST UNIVERSITY OF SCIENCE AND TECHNOLOGY

年,卷(期):2010,25(3)

参考文献(12条)

1.NI Z.H;WANG H.M;J.Kasim Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[外文期刊] 2007(01)

2.Kim,K.S;ZHAO Y;JANG H Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes 2007

3.Berger,C;SONG Z.M;LI X.B Electron Confinement and Coherence in Patterned Epitaxial Graphene 2006

4.LI X.L;ZHANG G.Y;BAI X.D Highly Conducting Graphene Sheets and Langmuir-Blodgett Films 2008

5.Stankovich,S;D.A.Dikin;G.H.B.Dommett Graphene Based Composite Materials 2006

6.Schedin,F;A.K.Geim;S.V.Morozov Detection of Individual Gas Molecules Adsorbed on Graphene[外文期刊] 2007(9)

7.Geim,A.K;K.S.N ovoselov The Rise of Graphene[外文期刊] 2007(3)

8.Novoselov,K.S;Jiang D;F.Schedin Two-dimensional Atomic Crystals 2005

9.Graf,D;F.Molitor;K.Ensslin Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene 2007

10.Ferrari,A.C;J.C.Meyer;V.Scardaci Raman Spectrum of Graphene and Graphene Layers 2006

11.Nemes-Incze,P;Z.Osvath;K.Kamaras Anomalies in Thickness Measurements of Grapheme and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy 2008

12.Novoselov,K.S;A.K.Geim;S.V.Morozov Electric Field Effect in Atomically Thin Carbon Films[外文期刊] 2004(5696)

本文链接:https://www.doczj.com/doc/1614493368.html,/Periodical_xngxyxb201003004.aspx

剥离重组法制备石墨烯二氧化钛复合物

剥离重组法制备石墨烯二氧化钛复合物

学校代码:10722 学号:0808014113 分类号:密级:公开 剥离重组法制备石墨烯二氧化钛复合物 Stripping method for restructuring graphite surfaces titanium dioxide compound 作者姓名:邢世才 专业名称:化学 学科门类:理学 指导教师:邓玲娟 提交论文日期:2012年5月 成绩评定:

目录1.1 石墨烯材料简介 1.3 石墨烯复合物的制备方法 1.3.1 机械剥离法 1.3.2 氧化石墨还原法 1.3.3 SiC 分解法 1.3.4 化学气相沉积法 1.3.5电子束辐照法 1.3.6微机械分离法 1.4石墨烯材料的应用 1.4.1 石墨烯基电源材料 1.4.2 石墨烯复合材料 1.4.3 传感器 1.4.4 石墨烯晶体管 2.石墨烯复合材料的研究进展 1.1.1石墨烯与金属化合物复合 1.1.2石墨烯-非金属材料复合 1.1.3石墨烯与聚合物复合 3.石墨烯-二氧化钛复合物研究进展 1.5 本课题的特色与创新之处

文献综述 1.1 石墨烯复合材料的研究进展 石墨烯是由单层碳原子组成的六方蜂巢状二维结构,是其他维的石墨材料的基础材料。它可以包裹形成零维富勒烯,卷起来形成一维碳纳米管,层层堆积形成三维石墨。自从Geim 等用胶带方法制备出石墨烯以来,其就引起物理界和化学界的轰动和极大的兴趣.石墨烯的这种特殊结构,使其表现出一些独特的物理性能,如室温量子霍尔效应、超高的电子迁移率和弹道运输、较长的电子平均自由路径、良好的热传导、较强的机械强度和出众的灵活性。其优异的性能、极大的比表面积和较低的生产成本(相对于碳纳米管),非常适合于高性能复合材料的开发.在实际应用中,石墨烯复合材料可以分为两类:石墨烯/无机复合材料和石墨烯/聚合物复合材料.制备石墨烯复合材料的方法主要有两种:先让氧化石墨与其他材料复合,再将其中的氧化石墨还原得到石墨烯纳米复合材料;或者用改性过的石墨烯与其他材料复合.这些复合材料广泛地应用在超级电容器、锂电池、电催化和燃料电池等领域。 1.1.1 石墨烯与金属化合物复合 金属化合物与石墨烯用不同方法制备复合材料,主要用于超级电容器、锂电池等领域.金属化合物包括金属氧化物、金属氢氧化物、金属硫化物等。 TiO2是一种应用广泛的半导体材料,由于其成本低、稳定性好、对人体无毒性,并具有气敏、压敏、光敏以及较强的光催化特性,而被广泛应用于传感器、太阳能电池和光催化等领域.Manga等通过喷墨印刷术处理前驱溶液氧化石墨和二(2-羟基丙酸)二氢氧化二铵合钛)制备石墨烯-TiO2光电导薄膜.由于这种薄膜制备的光电导体设备具有宽带光电导性、高的光电探测能力和光导率,与纯TiO2的光电探测器相比具有更快的光响应。Williams等通过紫外照射TiO2悬浮液,使其释放电子还原分散在乙醇里的氧化石墨.TiO2颗粒和石墨烯相互作用阻碍剥离石墨烯的团聚.光催化技术不仅提供了紫外辅助还原技术,而且还开创了制备光敏石墨烯半导体复合材料的新途径.Tang等通过分子嫁接方法把化学剥离的石墨烯加入到TiO2纳米颗粒薄膜中,适用于染料敏化太阳能.由于石墨烯的高电导性,石墨烯/TiO2复合薄膜((3.6±1.1)×102Ω/cm)提高了纯TiO2纳米颗粒薄膜((2.1±0.9)×105Ω/cm)电导率2个数量级.此外,基于石墨烯/TiO2复合薄膜的染料敏化太阳能的功率转换效率(1.68%)比纯TiO2纳米颗粒薄膜(0.32%)高出5倍多,这表明了加入石墨烯能有效增强光电性能.其他的金属化合物例如磷酸亚铁锂(Li Fe-PO4)、氧化锡(SnO2)、氧化亚铜(Cu2O)、铂(Pt、硫化镉(CdS)与石墨烯复合材料可以用在锂电池、电催化和传感器等方面.

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

石墨烯的制备方法有哪些

石墨烯的制备方法有哪些 石墨烯的制备方法有哪些?石墨烯是近年来兴起的一种新型高科技材料,应用广泛,价值巨大,不过也存在一些缺点,那就是以目前的技术和设备来说,生产和制备不是一件容易的事,技术门槛相当高,且产率较低,成本不菲。下面就让我们一起来看看石墨烯的制备方法有哪些吧。 微机械剥离法 2004年,Geim等初次用微机械剥离法,成功地从高定向热裂解石墨(highly oriented pyrolytic graphite)上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,只能作为实验室小规模制备。 溶剂剥离法

溶剂剥离法的原理是把少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

液相法制备石墨烯

液相法制备石墨烯 摘要 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣。石墨烯是一种二维单元子层厚度的晶体,其碳原子呈蜂窝状晶格排布,并在单原子层厚度上集合了优异的电学、机械、光学与热学性质。目前人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。现有的石墨烯的制备方法有微机械剥离法、化学气相沉积法、液相或气相直接剥离法、晶体外延生长法﹑氧化-还原法等,但大规模高质量制备技术仍然是制约其进入实际应用的瓶颈之一。 本文采用液相直接剥离石墨来制备石墨烯,按照正交试验设计方案,通过多次实验,改变石墨与溶剂的配比、超声时间、超声功率等,使得石墨剥离充分,通过适当时间的高速离心得到分散较好的石墨烯分散液。再选用不同的溶剂同样对石墨进行剥离得到石墨烯分散液。实验结果表明使用二甲基甲酰胺(DMF)作为溶剂剥离石墨,当浓度配比在0.14mg/ml,超声时间在9小时时效果最好,丁达尔效应表明分散液分散效果良好, 紫外光谱(UV)结果分析得出DMF剥离石墨没有引入其他官能团,利用扫描电子显微镜(SEM)得出微观图,得到低于五层的石墨烯。 与其他石墨烯制备方法相比,本论文所采用的液相直接剥离法制备石墨烯具有仪器设备简单、原材料便宜易得、液相体系便于材料加工成型等优点。直接利用数控超声机对放有石墨的溶剂进行超声剥离,不涉及化学变化从而得到的样品质量高。 关键词:石墨烯,液相剥离,正交试验设计

Graphene by Liquid Phase-based Exfoliation ABSTRACT Graphene has attracted much interest in recent years due to its unique and outstanding properties. Graphene is a two-dimensional crystal with atomic thickness, whose atoms are arranged in a honey comb lattic. Different routes to prepare graphene have been developed and achieved. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gas phase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. But large high quality preparation technology is still restrict the bottleneck of entered actual application. In this paper, liquid phase-based exfoliation of graphite method was used to fabricate graphene. By controlling the graphite and solvent ratio, the ultrasonic time, ultrasonic power according to orthogonal test design. Make graphite stripping fully, and at the same time through proper time of high-speed centrifugal get spread good graphene dispersed, and then choose different solvents of graphite and on the same stripped of graphene to dispersed. The experimental shown that when using DMF as solvent stripping graphite, it brought the best results when the ultrasonic time is nine hours and the concentration ratio is 0.14mg/ml. Then Tyndall effect shown that the dispersion liquid had a good dispersion effect Ultraviolet spectroscopy (UV) analysis of the results obtained that other functional groups were not introduced in DMF stripped graphite.Finally, the Graphene less than five layers could be observed in the microgram obtained by scanning electron microscopy (SEM) In comparison with other methods, liquid phase-based exfoliation of graphite method in preparation of grapheme has advantages that the devices required are simple, raw materials are cheap and easy to get, liquid-phase state is easy to be further processed and suitable for mass production. Numerical control ultrasonic machine using directly to a solvent with graphite for ultrasound dissection, not only simple operation, but also very safe. KEY WORDS: graphene, liquid phase-based exfoliation, orthogonal experimental design

热膨胀剥离法制备石墨烯及其表征

以-48μm高纯鳞片石墨为原料,先采用Hummers法制备氧化石墨,再采用高温热膨胀剥离法制备石墨烯。利用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、原子力显微镜(AFM)、N2 吸附-脱附(BET)等研究了氧化石墨及石墨烯的晶体结构、表面官能团、表面形貌、比表面积、孔径分布等。XRD 研究结果表明,氧化石墨层间距为0.94 nm,原有的石墨峰消失;热膨胀所得石墨烯(2θ=25.6°, d(002)=0.348nm)为无定形态。FT-IR 分析表明,石墨氧化过程中结构层间形成大量含氧官能团,经高温还原后仅残存部分含氧官能团。石墨烯具有较高的比表面积(336.7m2/g),其厚度在0.4~0.7 nm 之间,为1~2 层石墨烯。 2004 年,英国曼切斯顿大学K S Novoselov 和A K Geim 等人,在实验中通过胶带反复剥离石墨片发现了只有1 个原子厚度单晶石墨膜——石墨烯。石墨烯材料具有理论高比表面积 (2600 m2/g) 以及奇特的电性能 (15000cm2/(V·s))、导热性能(3000 W/(m·K))、拉伸模量(1.01 TPa)、极限强度(116 GPa) 和光学性质,引起了科学家的广泛关注。 目前,石墨烯的制备方法主要分为化学法和物理法。化学法包括热膨胀剥离法、化学气相沉积法、氧化石墨还原法、电化学法、石墨插层法等。物理法包括机械剥离法、爆炸法、加热SiC 法、取向附生法。石墨烯可通过膨胀石墨超声或者球磨制备,其片层厚度一般为30~100 nm,难以得到单层石墨烯。本实验首先采用Hummers 法制备氧化石墨,在 1050 ℃高温热膨胀,并通过在水溶液中超声制备了1~2 层石墨烯。 1、实验部分 1.1、原料及试剂 天然高纯鳞片石墨,含碳99.99%,粒径为-48μm,其X 射线衍射分析表明(002)晶面间距为0.336 nm。高锰酸钾、98% 浓硫酸、硝酸钠、30%双氧水、5% 盐酸,均为分析纯。 1.2、实验方法 氧化石墨制备:采用Hummers 法制备氧化石墨。首先在干燥烧杯中加入55 mL 98%浓硫酸和1 g 硝酸钠,冰浴条件下冷却,当体系温度低于5 ℃时,搅拌中加入2 g 鳞片石墨,混合均匀后,缓慢加入5 g 高锰酸钾,控制反应液温度不超过 20 ℃,反应2 h,然后将烧杯置于 35 ℃左右的恒温水浴中,均匀搅拌,待混合液温度升至 35 ℃,反应30 min,加入92 mL 去离子水,控制反应液温度在 98 ℃左右,继续搅拌15 min,然后加入280 mL 去离子水将反应终止,同时加入20 mL 30% 双氧水,这时溶液从棕黑色变为鲜亮的黄色,趁热过滤,并用2

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

CVD法制备石墨烯

题目: CVD法制备石墨烯及其进展

目录 1. 石墨烯 1.1 石墨烯简介 2.石墨烯的制备方法 2.1 物理方法制备石墨烯 2.1.1机械剥离法 2.1.2取向附生法—晶膜生长 2.1.3 液相和气相直接剥离法 2.2 化学法制备石墨烯 2.2.1 化学气相沉积法 2.2.2外延生长法 2.2.3 氧化石墨还原法 3.化学气相沉淀法制备石墨烯 3.1碳源 3.2生长基体 3.3 生长条件 4.不同基体时制备特点 4.1以镍为基体 4.2以铜为基体 5.讨论 6.总结与展望 参考文献

摘要: 石墨烯作为一种近年来发现的新材料,拥有许多独特的理化性质,在多个领域具有很大的应用潜力,成为了目前研究的热点。在多种制备石墨烯的方法中,化学气相沉积(Chemical Vapor Deposition, CVD)法所制备的石墨烯具有面积大、质量高、均匀性好、层数可控等优点,被广泛采用。一般可采用镍,铁,铜,铂等过渡金属作为生长衬底,目前,研究中多采用铜衬底,这是由于其相对比较经济且所生长的石墨烯质量较好。但是如何利用化学气相沉积(CVD)在金属镍(Ni)和铜(Cu)衬底上实现高质量大面积石墨烯的可控生长还存在很大的难度。本文将重点介绍化学气相沉淀法制备石墨烯。 关键词:化学气相沉淀法,石墨烯 1. 石墨烯 1.1 石墨烯简介 石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。石墨烯是一种二维晶体,由碳原子按照六边形进行排布,相互连接,形成一个碳分子,其结构非常稳定;随着所连接的碳原子数量不断增多,这个二维的碳分子平面不断扩大,分子也不断变大。单层石墨烯只有一个碳原子的厚度,即0.335 纳米,相当于一根头发的20万分之一的厚度,1毫米厚的石墨中将将近有150万层左右的石墨烯。石墨烯是已知的最薄的一种材料,并且具有极高的比表面积、超强的导电性和强度等优点。 石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15 000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料[12]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。 2石墨烯的制备方法

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

相关主题
文本预览
相关文档 最新文档