当前位置:文档之家› 中小型乘用车发动机灰铸铁汽缸体(汽缸盖)

中小型乘用车发动机灰铸铁汽缸体(汽缸盖)

中小型乘用车发动机灰铸铁汽缸体(汽缸盖)
中小型乘用车发动机灰铸铁汽缸体(汽缸盖)

中小型乘用车发动机灰铸铁汽缸体(汽缸盖)

常见缺陷与对策浅析

康宽滋(江铃铸造厂江西省南昌市330001)

概述

改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发动机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸件产量还是铸件技术要求及铸件质量,都基本上满足了现代汽车发动机日

益提高的要求。

以中小型乘用车发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铸件。许多厂家为满足高强度薄壁铸件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机、高压造型线、高度自动化的制芯中心、强力抛丸设备,大多采用整体浸涂、烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测、热分析法铁水质量检测与判断装置、真空直读光谱仪快速检测,有的还配置了铸件。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模拟技术。可以毫不夸张的说,就硬件配置而言,我国发动机铸造水平丝毫不亚于当今世界工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生

产条件为现代生产条件。)

然而,应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,

我们与世界发达国家还有较大的差距。

提高产品质量,减少废品损失,是缩小与发达国家差距、发挥引进设备效能、提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。

1 气孔

气孔通常是汽缸体铸件最常见的缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一

个永久的课题。

汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部,以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。

在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵人性气孔。现对侵人性

气孔分析出如下:

1.1 原因

1.1.1 型腔排气不充分,排气系统总截面积偏小。

1.1.2 浇注温度较低。

1.1.3 浇注速度太慢;,铁水充型不平稳,有气体卷人。

1.1.4 型砂水份偏高;型砂内灰份含量高,型砂透气性差。

1.1.5 对于干式气缸套结构的发动机,水套坭芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻人排气通道而堵死排气道;坭芯砂粒偏细,透气不良;上涂后未充分干燥;坭芯砂与涂料发气量太大,或发气速度不当;涂料的屏蔽性差……)。经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。

1.1.6 孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。

1.1.7 浇注时未及时引火

1.2 对策

1.2.1 模型上较高部位设置数量足够、截面恰当的出气针或排气片;而芯头部位设置排气空腔。

上述排气系统均应将气体引至型外。通常排气截面应为内浇道总截面积1.5~1.8倍左右。

1.2.2 浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较平稳,不会冲击铸型或产生飞溅或卷入气体。而浇注系统的截面大小以8~l0kg/s的浇注速度来

计算较为适宜。

1.2.3 铁液的熔炼温度应不低于1500℃,而手工浇注时末箱的浇注温度应控制在1400℃左右(视铸件大小与壁厚可适当调整)。最好能采用自动浇注,浇注温度误差应在20℃以内。

1.2.4 一个好的适于高压造型的砂处理系统,型砂水分应控制在2.8~3.2%,其时的紧实率应在36~42%之间,而温压强度应达180—220kpa(均指在造型机处取样检测)。为达这些指标,需监控型砂的灰份,辅助材料的添加量,合适的原砂粒度、循环砂的温度及混砂效率。

1.2.5 注意做好铁液去渣,浇注时挡渣引火以及孕育剂的干燥等工作。

1.2.6 对于干式汽缸套结构的发动机缸体,至关重要的是要有非常完善到位的水套坭芯工艺:

a、水套坭芯用砂的平均细度较之其他坭芯要粗一些,以求有良好的透气性。

b、设置充分的互相连通的排气孔网并使之能排出型外,这些孔网尽可能在制芯时生成,亦可在成型后钻加工形成。对于前者要定期监控检查孔网是否畅通(当心部芯砂固化不良时易将孔网堵塞)。

c、对坭芯砂性能要综合考虑,不能片面追求强度。当强度太高时,势必要增大树脂用量,从而使芯砂发气量太高;而当水套芯的结构比较复杂纤薄砂厚不均匀,且又能开出排气孔网时,就要求砂

芯有较高的强度,即使发气量大些也无妨。

d、当水套芯有排气孔网时,涂料要有较好的屏蔽性;当水套芯截面不便设置排气孔网时,涂料要

有较好的透气性,这时砂的粒度也应更粗些。

e、当水套芯布有排气孔网,且使用屏蔽性涂料时,在浸涂时要防止涂料液进入排气孔网,更要注意封火措施(可使用封火垫片材料),以免浇注时铁水进人排气孔网,把排气道堵死;

f、涂料的发气量要低,且施涂后一定要充分干燥。

一个成熟的水套芯工艺,可以将缸筒加工后内表面的气孔废品率控制在3‰,甚至更低。

与缸体水套芯相类似,对缸体的油道芯、挺杆腔坭芯以及缸盖的水套芯,其工艺方法、工艺措施也

可仿照缸体水套芯的工艺思路来考虑。

2 砂眼

砂眼也是汽缸体(汽缸盖)铸件的常见缺陷,多见于铸件的上型面,也有在缸筒内表面经加工后暴露

出来的。

2.1 原因

2.1.1 浇注系统设计不合理。

2.1.2 型砂系统管理不善,型砂性能欠佳。

2.1.3 型腔不洁净。

2.1.4 坭芯表面状况不良或是施涂与干燥不当。

2.2 对策

2.2.1 就浇注系统设置方面来说,为避免或减少砂眼缺陷,应注意以下事项:

a、要有合理的浇注速度。截面太小,则浇注速度太慢,铁液上升速度太慢,上型受铁液高温烘烤时间长,容易使型砂爆裂,严重时会成片状脱落。浇注系统的比例,应使铁水能平稳注人,不得形

成紊流或喷射。

b、尽量使铁液流经的整个通道在坭芯内生成,通常坭芯砂(热法覆膜砂或冷芯砂)较之外模粘土砂更耐高温铁液冲刷。而直浇道难以避免设置在外模的粘土砂砂型中通过,这时可在直浇口与横浇口搭接处设置过滤器(最好是泡沫陶瓷质),可以将铁液在直浇道内可能冲刷下来的散砂和铁液夹渣加以

过滤,从而可减少砂眼和渣眼。

c、浇道是变截面的,因此变截面处应尽可能圆滑光洁,避免形成易被铁液冲垮的尖角砂。

d、浇道的截面比例宜采用半封闭半开放型式,以降低铁液进人型腔时的流速与冲击,而内浇道位

置应尽可能避免直接冲击型壁和型芯,且呈扩张形为好。

2.2.2 为防止铸件的砂眼缺陷,型砂方面的主要措施是:

a、是控制型砂中的微粉含量。型砂在反复使用中,微粉含量会越来越高,这会降低型砂的湿压强

度,水分及紧实率则会提高,使型砂发脆。

b、浇注时坭芯溃散后混入旧砂,未燃尽的残留树脂膜,会使型砂的韧性更差,产生砂眼的可能性也增大。为此需要改善型砂的表面稳定性,降低脆性、提高韧性,方法是在型砂中添加适当的a一淀粉,也有的改用FS粉,均可取得良好的效果,也可以在型腔表面施表面安定剂(喷洒)。

2.2.3 在造型、翻箱,特别是下芯、合箱等各环节容易将砂粒掉人型腔,而又未能清理干净,极易造成铸件砂眼缺陷。为此,一是要选取恰当的芯头间隙和斜度并保证下芯和合箱的工装精度,以免碰坏砂型或损坏型芯而将砂粒散落在型腔内;二是合箱前清理干净型内可能掉人的砂粒(抽吸法

好于吹出法)。

2.2.4 不能忽视的是,坭芯的飞边毛刺要清理干净,上涂烘干后待用的坭芯表面的砂粒灰尘也要吹净,否则容易被铁水冲刷并富集在铸件某处形成砂眼。同时,需要强调的是,坭芯上涂不能太厚,尤其是当工艺要求个别坭芯的个别部位或全部两次浸渗涂料时,涂料不能太厚,且须等第一次上涂干燥到一定程度后才能上涂第二层,否则浇注时过厚的涂料会爆裂而形成夹砂(渣)。

3 脉纹(飞翅)

通常在铸件的内表面或热节部位,如缸体缸盖的水套腔内,或是进排气道内,由于浇注时高温铁液的作用,使坭芯硅砂发生相变膨胀引起砂芯表面产生裂缝,液体金属渗入其中,从而导致铸件形成飞翅状凸起的缺陷,即“脉纹”。脉搏纹一旦出现,难以清理。当水套腔内有脉纹时,轻者会影响内腔的清洁度,重者会影响冷却水的流量,从而降低对发动机的冷却效果,甚至会引起“烧缸”、“拉缸”

严重后果;当气道内出现脉纹时,会影响气道涡流特性,最终影响发动机的整机工作性能。

生产实践表明,冷芯工艺产生脉纹的倾向要稍大于壳芯产生脉纹的倾向。

3.1 原因

3.1.1 如上所述,产生脉搏纹的根本原因是高温铁水作用于砂芯引起硅砂的膨胀裂纹。

3.1.2 砂芯材料不具备低膨胀的性能,或者其自身不能吸收这种受热产生的膨胀。

3.1.3 砂芯的韧性或高温强度不足以克服膨胀应力导致产生裂纹。

3.1.4 所用涂料不能抵御砂芯在高温下产生膨胀裂纹。

3.1.5 铁液未能在砂芯产生裂纹前凝固结壳,从而预防脉纹产生。

3.2 对策

针对3.1所列产生脉搏纹的原因(或者说脉纹形成的机理),显然应采取如下措施:

3.2.1 在保证能得到健全铸件而又不产生气孔等缺陷的铁液充型温度下,尽可能采取较低的浇注温度以减轻砂芯受热膨胀的程度;同时采用较快的浇注速度,以避免砂芯长时间受到高温烘烤可

能产生的膨胀裂纹。

3.2.2 用于易产生脉纹坭芯(如水套芯、进排气道芯)的芯砂原砂预先进行消除相变膨胀处理,或者在砂芯材料中添加一些辅助材料,降低砂芯材料的热膨胀率;再就是原砂的颗粒组成以三筛或四

筛级配,以求砂芯材料能自身吸收膨胀变形。

3.2.3 必要时,在砂芯材料中使用一定比例的非石英系列砂(如橄榄石砂、锆英砂等),第一它们的膨胀率极小,第二其导热性好,使铁液结壳时间早于砂芯相变膨胀开裂时间。

3.2.4 提高砂芯材料的韧性和高温强度。

3.2.5 使用强度、韧性优良,且导热性能好的烧结型涂料,以增强砂芯表面抗膨胀裂纹的能力。

以上这些措施既适用于冷芯砂,也适用于热法覆膜砂(壳型砂)。由此看出,预防或减少脉纹缺陷的

主要措施是改善砂芯膨胀性能。

4 清洁度

现代发动机对清洁度的要求十分苛刻。对汽缸体(汽缸盖)铸件而言,水腔、油腔、挺杆室等部位允许残留的砂粒和异物,仅限为数克(g)以内。许多企业尽管采取了二次抛丸、强力抛丸,甚至引进了先进的抛丸设备,如鼠笼或机械手抛丸,要完全达到内腔清洁度要求,仍然较为困难,无论是壳芯

或冷芯,情形均一样。

4.1 原因

清洁度达不到要求,从根本上来说是由于铸件结构方面的原因,上述各腔在抛丸时,因为出砂孔眼少而小,铁丸所能投射进去的量有限,所以内腔的光洁度与清洁程度均不及铸件的外表面,也不及曲轴箱和缸筒面等部位。在不能改变铸件结构的情况下,只能查找影响清洁度其他方面的原因。

4.1.1 坭芯表面状况不良,如充填不紧实;砂芯表面粗糙;粘模等。

4.1.2 施涂不当,如涂料性能差,玻美度不合适,涂层厚度不够等。

4.1.3 现有强力抛丸装置对铸件大部分内外表面都能清理得很干净,但对狭窄复杂的水腔、油

腔仍显不足。

4.2 对策

4.2.1 改善和提高坭芯表面质量状况,如选用流动性好的制芯材料(安息角<29。);合理设置排气塞并加以维护使其畅通;施用品质好的脱模剂防止粘模等,这些措施的目的是得到表面紧实致密

的坭芯。

4.2.2 通常都要对坭芯施以涂料层。涂料玻美度要合适;涂料要有较强的渗透性;涂料层要有一定厚度(一般要达0.2mm),涂层干燥后不能显见砂粒为宜;选用的涂料防粘砂性能优良,在浇注温度下能在铸件表面形成一低熔点的烧结层,而且在铸件冷却过程中因收缩率的不同能自动剥离下

来。

4.2.3 如3.0所述,要努力避免防止脉纹缺陷的产生。一旦出现脉纹,铸件的内腔清洁度情况,

就更加恶化。有关措施参见3.2。

4.2.4 对铸件内腔清理,国内外的主流工艺方法是采用强力机械抛丸的方式,其型式有鼠笼抛丸,机械手夹持抛丸等。对这类抛丸设备,要维护达到额定抛丸电流值,要调整最佳抛射角度,对后一种抛丸型式,还可对难以清理的内腔将程序设置在最佳人射角度时适当延长抛射时间。

此外,还有以下几种改善和提高内腔清洁度的手段:

a、电液压清理,其原理是将待清理铸件置于水池中,在高能量放电过程中,所产生的高压冲击波将粘附在铸件上的砂粒振击脱落。理论上说水能浸入的孔腔内,其粘砂均能清理干净,但这种方法占地面积大、耗能高、流程长(尚要倒空内腔积水并烘干水迹)、维护量大,也有一定的安全问题。

b、先将铸件置于炉内焙烧,再进行抛丸。这种方法提高铸件清洁度的效果还是很明显的,但同样

是能耗较高、周期长,如以煤炭作加热炉燃料,则作业环境较差。

c、有的厂家除采用强力抛丸以外,还针对水道腔或油道腔进行喷丸清理。这种方法对提高内腔清洁度最有效,所能达到的清洁度水平最高,但目前仅有此类通用单机产品,尚需人工握持喷丸头伸进密封的工作室对准有关出砂孔喷射,劳动强度大、环境恶劣。期待着专用的自动喷丸设备在汽缸

体(汽缸盖)清理生产线上应用。

5 渗漏

渗漏是指汽缸体(汽缸盖)在压力试验(水压/气压)时的泄漏现象,多发生在汽缸体(或汽缸盖)的水

套腔或是油道腔。

引起渗漏的原因有夹杂和疏松两大类(机械损伤或铸造裂纹引起的曲轴箱渗漏的情况极少,在此不

加论述)。

5.1 夹杂引起的渗漏

5.1.1 原因

(1)坭芯在修芯时未清除飞边、毛刺,或坭芯上有松散粘附的大小不一的砂粒、砂团未清除干净,致使浇注时被铁液冲刷下来并飘浮富集在水套壁或油道壁,形成夹砂(砂眼),使腔壁贯通渗漏。

(2)组合好的坭芯被粉尘砂粒污染或型腔内不慎掉入散砂,没有清理干净,也会形成砂眼使腔壁贯

通而渗漏。

(3)铁液不纯净,而浇道内又元过滤措施或拦渣效果差,使铁液中的夹渣进入型腔,使水腔或油腔

的腔壁形成贯通性的渣孔而渗漏。

5.1.2 对策

(1)认真清除坭芯的飞边毛刺,并清除坭芯上附着的砂粒砂团,避免在水腔/油腔壁上可能形成的

砂眼。

(2)吹净砂粒与粉尘污染的组合好的坭芯组,清理掉人型腔的砂粒。

(3)直浇道设置高效的过滤器,横浇道应有良好的拦渣功能,并做好铁液净化工作(造渣、除渣),以

防腔壁上产生渣眼。

5.2 缩松引起的渗漏

这种渗漏常发生在水腔(油腔)或喷油嘴等热节部位。

5.2.1 原因

(1)铁液成分不恰当,Si/C过高,石墨片粗大,组织疏松。

(2)孕育过量,致使共晶团数量过多,微晶间隙难以补缩致密。

5.2.2 对策

(1)在规定的碳当量保持不变的前提下,限制Si/C在0.5~0.6之间。

(2)不得孕育过量,较有效的措施是采用SiSr(含锶)孕育剂,其石墨化能力极强,用量仅FeSi孕育

剂的50%,既可充分孕育消除截面敏感性,又可避免产生过多数量的共晶团。

(3)在易产生缩松的热节部位,局部刷除碲粉醇基涂料,增加该部位的冷却能力,防止产生缩松。有报道称,含Pb量达0.0008%,即可造成缩松渗漏,须注意使用的炉料中有否镀Pb材料,或须先行除去镀层。此外影响缩松渗漏的微量元素还有Ti、Al等,它们都会增加铁液的收缩倾向,要严格

控制。

6 材质性能方面的缺陷

纵观国内外发动机技术发展趋势,都在追求减薄铸件壁厚,从而减轻铸件乃至整机重量,达到降低油耗的目的。目前发动机单位功率的缸体缸盖重量达到1.8kg/kw左右,相应的铸件主要壁厚仅3.5mm左右,这就对铸件的材质性能提出了很高要求。概括起来说,主要为:

a、干型单铸试棒的抗拉强度曲~>250MPa,指定本体部位的抗拉强度crb~>200MPa:

b、铸件指定部位的硬度在180HB以上,铸件厚薄断面的硬度差在30HB以下;

c、铸件本体的主要部位珠光体含量在90%以上,石墨形态应大部分为A型,允许表面有少量B、

D型,石墨最大长度应在2501μm以下。

尽管我国大多数专业发动机铸件生产厂家,通过技术改造和技术引进,达到了现代生产条件,但

也不时出现达不到上述材质要求方面的缺陷。

6.1 原因

6.1.1 铁液熔炼温度偏低,过冷度小,使得后续的孕育强化效果差。

6.1.2 炉料(金属炉料与非金属炉料)质量差,微量元素及非金属夹杂物含量高。

6.1.3 合金化措施不当(或合金元素选择不当,或合金加入量不当,或合金化方法不当)。

6.1.4 孕育措施不当(孕育剂成分、孕育剂形态、孕育量、孕育方法等)。

6.1.5 在保温炉内处置不当(如频繁且大幅度调整化学成分,使铁液在炉内保温时间过长,元素

变化大),成分控制精度差。

6.2 对策

6.2.1 提高熔炼温度以提高铁液的稳定性,增加其过冷倾向,消除原材料的“遗传性”;并保证出铁温度大于1480℃,以确保初始浇注温度达到1450℃,而终了浇注温度达1400℃。

6.2.2 加强冲天炉控制,使之炉况稳定,从而保证进入保温电炉的铁液成分稳定(减少成份烧损的波动)。这样可减少电炉内成分调整所需的时间,以免增加铁液的收缩倾向和白口倾向。

6.2.3 保温电炉内不得已需要增c操作时,一要选择吸收率高的增碳剂,二要保证有充分电磁搅拌和充分吸收的时间,否则所取铁水样不能反应整个熔体真实含c量,导致实际碳当量发生偏差。

6.2.4 减少碳当量的波动,提高成份控制精度,要求△CE≤O.05%,△si≤O.1%。

6.2.5 对于形状复杂、薄壁高强度的缸体、缸盖类铸件的铁液,既要有高强度,也要有良好的铸造性能。为此通常其成份设计为高碳当量(3.9—4.1%),使其具有良好的铸造性能,而为了达到

较高的力学性能,则采用低合金化措施。

a、根据我国资源情况以及多数企业的经验与习惯,多采用Cr、cu等合金元素,有利于增加并细化

和稳定珠光体,改善石墨形态,从而得到较高的力学性能。

b、合金的加入量必须加以控制。cr是一种促进形成并稳定珠光体的元素,且能细化珠光体,因而能显著提高灰铸铁的强度;然而Cr与c又有较强的亲和力,是一种强碳化物元素,这就会增加铁液的白口化倾向;同时cr元素还会降低铸铁的共晶凝固温度,使铁液的凝固温度范围扩大,因此加大了灰铸铁的缩松、缩孔倾向,降低铸件的致密性,这就可能影响cr对灰铁的强化作用。当cr是在0.2。

0.3%范围时,则能避害趋利。

同样,Cu也是促进并稳定和细化珠光体的元素,Cu又是促进石墨化的元素,这就可以抵消Cr增大白口倾向的不利影响。Cu的适宜加入量为0.4~0.5%。

由此,推荐cr与cu组合使用,会取得更好的效果,既保证了良好的铸造性能,又提高了铸铁的力

学性能。

这里需要指出的是,由于Cr、cu元素的作用,增加珠光体并稳定和细化珠光体成片间距很小的层片状组织,改善石墨形态(呈A型)、分布与大小,因此缸体、缸盖在热交变应力作用下抵抗热疲劳产生裂纹的能力也得到提高(即具有好的热稳定性)[3]。

6.2.6 采取恰当的孕育处理,可以提高缸体、缸盖铸件的材质强度,特别是提高其硬度和显微组织的均匀性,改善厚薄截面的敏感性,使得硬度差在30HB以内,并具有良好的切削加工性。这里

恰当的孕育处理包括:

a、选用合适的孕育剂。在众多孕育剂中,含Ba、ca、sr(锶)等元素的孕育剂,不仅有很好的抗孕育衰退作用,且具有强烈的石墨化作用,可显著改善铸件截面敏感性,避免铸件在最小壁厚处的白

口倾向,且显微组织也更加均匀。

b、合适的孕育方法,在包内孕育、喂丝孕育、型内孕育、随流孕育等方法中,以随流孕育最简便,最适宜于大批量流水生产,效果也最好。推荐粒度为0.5一1.0mm,加入量为0.1~0.2%。

c、需要指出的是,BaSi孕育剂会使铸件硬度偏低,可加人微量Sn(O.04~0.06%)或Sb(锑)(0.02%),

可弥补硬度偏低的不足。

6.2.7严格控制炉料,标准是(1)微量元素低;(2)洁净;(3)严禁混人合金元素。

7 收缩

汽缸体(汽缸盖)铸件结构复杂,壁厚差别较大。园弧曲面凸起的厚大部位,大批量流水生产时,工艺上又不便采取冒口补缩之类的措施。当其他工艺处置不当时,这些厚大热节处往往会产生集中收

缩,严重时会产生较深的缩裂缺陷。

7.1 原因

7.1.1 上述部位的根部,时有造型充填不紧实,该部位铸型硬度/刚度不足的情形。当铁液凝

固石墨化膨胀时,发生型壁位移。

7.1.2 浇注温度偏高

7.1.3 铸液收缩倾向较大

7.2 对策

7.2.1 提高型砂的流动性,控制合适的型砂紧实率,对气冲造型或气流预紧实的造型方法,模型相应部位增加排气塞,采取这些措施后,可提高缺陷发生部位的铸型硬度/刚度,使高碳当量铁液凝固时不会因为石墨化膨胀产生型壁位移,从而能实现无冒口自补缩。

7.2.2 在满足充型要求,不得产生气孔等缺陷的情况下,切勿盲目提高浇注温度。(浇注温度太

高,还会引起跑火漏箱和粘砂等缺陷)

7.2.3 保证铁液有良好的铸造性能,尤其要防止铁液的白口倾向和收缩倾向。

a)要精确控制碳当量(3.9—4.1%),低于下限时,则铁液的收缩倾向加大,在前述部位出现缩孔

缺陷的可能性就增大。

b)对高碳当量铁液低合金化处理时,要控制可能由此引起收缩增大的倾向。一些增大灰铁白口倾向、收缩倾向的合金元素,要严格用量。如前述cr,会降低共晶温度扩大凝固温度区间,其用量不得超

过0.035%等。

c)电炉内采用增碳剂调整碳当量(碳量)时,一定要有充分吸收增c的时间,否则会出现增碳假象。

这样的铁水浇注的产品,往往会出现收缩。

d)要控制原铁水中非合金化带来的一些有害元素的含量,如P、Ti、V等也会增加铁液的收缩倾向。

8 加工性能

切削加工性能差是我国发动机铸件普遍存在一个问题,也是与国外铸件质量最大差距所在。即使国产铸件与进口KD件的化学成分,基体金相组织乃至硬度值相近,但国产铸件的切削加工性能仍远

不及进口KD件,有时刀具消耗相差一倍以上。

8.1 原因

8.1.1 来自原材料的微量元素的影响

a、铁中微量元素超标,如Ti、V、P

b、Be、B等,这些微量元素含量较高时,有的呈游离碳化物,

氮化物等硬质点形式存在(碳化钛、氮化钛等);有的使硬质相索氏体数量明显增加(如V等)。

b、废钢中混入合金钢(如Ti、V等),或使用了带有镀层的废钢,如镀Pb的废钢板。

c、有的元素(如Pb、Be)增加铸件的白口倾向。

8.1.2 熔炼工艺不当,如在电炉中熔炼时间过长,铁液白口化倾向加大。

8.1.3 孕育等工艺不当,即所选用的孕育剂或孕育工艺未能消除铸件断面的敏感性,尤其未能

消除5mm薄壁处的显微组织硬质相。

8.2 对策

8.2.1 选择恰当的生铁,控制生铁中微量元素的含量,Ti<0.05%,V≤0.01%,采用低碳钢废

钢,严禁废钢中混入合金钢。

8.2.2 避免合金化过程中产生过多的且分布不均匀的硬质相显微组织。通常为保证良好的铸造性能和达到较高的力学性能,一般都采用高碳当量辅以合金化措施。合金化的目的是增加珠光体量,并细化和稳定珠光体,但要避免产生白口化倾向,避免产生偏析,避免硬质相显微组织出现。这就要合理选择并组合合金化元素,并最好采用孕育方式加入。

8.2.3 改善切削加工性能十分重要的一环是:采取有效的孕育工艺。一是选用含Ca、B。的孕育剂要优于传统的75SiFe孕育剂,二是采取随流孕育处理。这样的孕育工艺可获得均匀的组织以及均匀的显微硬麦。尤其是对壁厚差较大的汽缸体(汽缸盖)铸件,其最小壁厚5ram处的显微组织与性

能更趋均匀。

以上是根据我国发动机铸造企业近年来取得较大技术进步、铸造材料供应也有较大改观、总体水平有了较大提升的情况,对中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的、较为普遍遇到的铸造缺陷及其对策所作的一个肤浅的分析。由于技术进步,一些不常见到、不常发生或是所占比例很小的铸造缺陷,如机械损伤、尺寸偏差、粘砂等,这里不再涉及。

图解常见汽车发动机结构图

发动机作为汽车的动力源泉,就像人的心脏一样。不过不同人的心脏大小和构造差别不大,但是不同汽车的发动机的内部结构就有着千差万别,那不同的发动机的构造都有哪些不同?下面我们一起了解一下。 ●汽车动力的来源 汽车的动力源泉就是发动机,而发动机的动力则来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。 ●气缸数不能过多

一般的汽车都是以四缸和六缸发动机居多,既然发动机的动力主要是来源于气缸,那是不是气缸越多就越好呢?其实不然,随着汽缸数的增加,发动机的零部件也相应的增加,发动机的结构会更为复杂,这也降低发动机的可靠性,另外也会提高发动机制造成本和后期的维护费用。所以,汽车发动机的汽缸数都是根据发动机的用途和性能要求进行综合权衡后做出的选择。像V12型发动机、W12型发动机和W16型发动机只运用于少数的高性能汽车上。 ●V型发动机结构 其实V型发动机,简单理解就是将相邻气缸以一定的角度组合在一起,从侧面看像V字型,就是V型发动机。V型发动机相对于直列发动机而言,它的高度和长度有所减少,这样可以使得发动机盖更低一些,满足空气动力学的要求。而V型发动机的气缸是成一个角度对向布置的,可以抵消一部分的震动,但是不

好的是必须要使用两个气缸盖,结构相对复杂。虽然发动机的高度减低了,但是它的宽度也相应增加,这样对于固定空间的发动机舱,安装其他装置就不容易了。 ●W型发动机结构 将V型发动机两侧的气缸再进行小角度的错开,就是W型发动机了。W型发动机相对于V型发动机,优点是曲轴可更短一些,重量也可轻化些,但是宽度也相应增大,发动机舱也会被塞得更满。缺点是W型发动机结构上被分割成两个部分,结构更为复杂,在运作时会产生很大的震动,所以只有在少数的车上应用。 ●水平对置发动机结构

汽车发动机分类

发动机的分类 按照进气系统分类 内燃机按照进气系统是否采用增压方式可以分为自然吸气(非增压)式发动机和强制进气(增压式)发动机。汽油机常采用自然吸气式;柴油机为了提高功率有采用增压式的。 按照气缸排列方式分类 内燃机按照气缸排列方式不同可以分为单列式和双列式。单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角<180°(一般为90°)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。 按照气缸数目分类 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。 按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可靠,冷却效果好,被广泛地应用于现代车用发动机。 按照行程分类 内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程

内燃机。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机。 按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机和柴油机。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。

气缸垫的更换操作方法

气缸垫的更换操作方法 汽车(发动机)大修 更换气缸垫作业的方法 判定为气缸垫烧蚀故障后,要按照正确的力法更换,以提高气缸垫的密封质量。 (1)拆卸缸盖螺栓时,必须等发动机完全冷封之后再进行,拆卸时要按照“从两边向中间对角均匀松开”的原则,以防止缸盖发生翘曲变形。 (2)清除旧的气缸垫,清洁气缸盖及气缸体密封表面。 此项工作要求特别的耐心细致,要彻底清除密封表面的旧密封胶、积炭及腐蚀生成物,并用压缩空气吹干净。 (3)检查气缸盖与气缸体密封表面有无变形。 用直尺和厚薄规沿着密封表面的纵向和横向分别检查,一般要求在气缸体与气缸盖的密封面全长上不平度不大于0.10mm,在任何100mm 的长度上不平度不大于0.03mm,在密封面上不能有任何的凸起或凹陷部位。检查缸套上端面高于气缸体上平面的高度,要在规定的0.05~0.15mm 范围内。

(4)选用的气缸垫必须是符合要求、质量可靠的原厂配件安装时要注意其安装方向,基本原则是卷边朝向易修整的接触面或硬平面。 具体说明如下: ①如果气缸垫本身有安装标志,则按安装标志进行安装。 ②无标志,缸盖为铸铁,卷边朝向缸盖,缸盖为铸铝时,卷边要 朝向缸体,当缸盖缸体均为铸铝时,卷边朝向湿式缸套的凸沿。 (5)缸盖螺栓的紧固方法:

缸盖螺栓的紧固是保证气缸垫密封质量的最重要的一环,此项操作的规范与否,直接影响气缸垫的密封质量,必须严格按照技术标准进行操作,同时有一些细节问题必须加以注意: ①要彻底清理螺栓孔内的污泥、积炭、冷却液、机油等杂物和液体,必要时用丝锥清理螺纹,并用压缩空气吹干净。 ②彻底清洁缸盖螺栓,认真检查螺栓,如果有裂纹、点蚀及颈缩现象就应报废不能继续使用。用卡尺测量螺栓在自由状态下的长度,如果螺栓的塑性变形量超过1.5%就不能再继续使用。还有一些发动机生产厂在拧紧缸盖螺栓时是将螺栓扭紧到材料的屈服点,用这种方法可以在缸盖上形成更为一致的夹紧力,以保证气缸垫的可靠密封。因此这种螺栓是按照仅使用一次的标准设计的,拆卸后必须更换。如果使用旧螺栓,再次扭紧到材料的屈服点,就会产生薄弱点,造成气缸垫密封失效。 ③缸盖螺栓在安装前要在螺纹部分及法兰支撑面处涂少许机油, 以减轻螺纹副处的干摩擦。 ④对于分体式缸盖,在紧固缸盖螺栓前要将分水管及进气管安装 到缸盖上(不装垫片),并按规定的力矩紧固,否则可能会由于缸盖侧面不在同一平面上而发生漏水或漏气的故障。 ⑤按技术规范紧固缸盖螺栓。各种不同的发动机缸盖螺栓的紧 固方法及力矩是不同的,总的原则是应从中间向两侧对称地扩展交叉进行,分2~4 次扭紧至规定扭矩,在发动机热车时再重复紧固。 ⑥由于材料膨胀系数的不同,为了防止受热后缸盖螺栓的膨胀大 于铸铁缸盖的膨胀而使压紧度降低,对于铸铁缸盖要在发动机达到正常工作温度时再进行第2 次扭紧,铝合金缸盖由于其膨胀系数大于钢,所以在发动机热起后,压紧力会更大,故只需在冷态下一次扭紧即可。

发动机缸体机加生产线培训教程

发动机缸体机加生产线 培训教程 日期:20070925

一、概述 ?发动机是汽车最主要的组成部分,它的性能好坏直接决定汽车的行驶性能,故有汽车心脏之称。而缸体又是发动机的基础零件,通过它把发动机的曲轴连杆机构和配气机构以及供油、润滑、冷却等系统联接成一个整体。 它的加工质量直接影响发动机的性能。 ?本教程主要介绍发动机缸体机加生产线的工艺方案思路及生产线建设。

二、缸体的结构特点和技术要求 ? 1.缸体的结构特点 ?由于缸体的功用决定了其形状复杂、壁薄、呈箱形。其上部有若干个 仅机械加工的穴座,供安装汽缸套用。其下部与曲轴箱体上部做成一体,所以空腔较多,但受力严重,所以它应有很高的刚性,同时也要减少铸件壁厚,从而减轻其重量,而汽缸体内部复杂的水道外尚有直径6-8mm的油道。 ? 2.缸体的技术要求: ?由于缸体是发动机的基础件,它的许多平面均作为其他零件的装配基 准,这些零件之间的相对位置基本上是由缸体来保证的。缸体上的很多螺栓孔、油孔、出沙孔、气孔以及各种安装孔都直接影响发动机的装配质量和使用性能,所以对缸体的技术要求相当严格。

? 3.缸体的材料: ?根据发动机的原理可以知道缸体的受力情况很复杂,需要有足够的强 度、刚度、耐磨性和抗振性,因此对缸体材料有较高的要求。 ?缸体的材料有普通铸铁、合金铸铁及铝合金等。我国发动机缸体采用 HT200、HT250灰铸铁、合金铸铁和铝合金。灰铸铁具有足够的韧性和良好的耐磨性,多用于不镶缸套的整体缸体。由于价格较低,切削性能较好,故应用较广。近年来随着发动机转速和功率的提高,为了提高缸体的耐磨性,国内、外都努力推行铸铁的合金化,即在原有的基础上增加了炭、硅、锰、铬、镍、铜等元素的比例,严格控制硫和磷的含量,其结果不仅提高了缸体的耐磨性和抗拉强度,而且改善了铸造性能。 ?用铝合金铸造缸体、不但重量轻、油耗少,而且导热性、抗磁性、抗 蚀性和机械加工性均比铸铁好。但由于铝缸体需镶铸铁缸套或在缸孔表面上加以涂层,原材料价格较贵等原因,因此其使用受到一定程度的限制。

发动机缸体(汽缸盖)常见缺陷与对策剖析

中小型乘用车发动机缸体(汽缸盖)常见缺陷与对策浅析概述 (铸件脉纹形成机理及其防治) 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发运机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸造产量还是铸件技术要求及铸件质量,都有基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都有采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铁件。许多厂家为满足高强度薄壁铸铁件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机,高压造型线,高度自动化的制芯中心,强力抛丸设备,大多采用整体浸涂,烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测,热分析法铁水质量检测与判断装置,真空直读光谱议快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模式拟技术。可以毫不夸张地说,就硬件配件而言,我国发动机铸造水平丝毫不亚于当今世界上工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。)然而应该承认,在发动机铸造企业的经济效益与产品质量以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。提高生产质量,减少废品损失,是缩小与发达国家差距,发挥引进设备效能,提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1气孔 气孔通常是汽缸体铸件最常见缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部。以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产生呛火现象,导致大面积孔洞与无规律的砂眼。 在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵入性气孔分析出如下: 1.1原因 1.1.1 型腔排气不充分,排气系统总载面积偏小。 1.1.2浇注温度较低。 1.1.3浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4型砂水份偏高;砂型内灰分含量高,砂型透气性差。 1.1.5对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻入排气通道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当,涂料的屏蔽性差……).经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关连。 1.1.6孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。 1.1.7浇注时未及时引火 1.2对策 1.2.1模型上较高部位设置数量足够,截面恰当的出气针或排气片;而芯头部位设置排气空腔.上述排气系统均应将气体引至型外。通常排气截面为应内浇道总截面积1.5~1.8倍左右。 1.2.2浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较

GB3801-83汽车发动机气缸体与气缸盖修理技术条件

GB3801-83汽车发动机气缸体与气缸盖修理技术条件 中华人民共和国国家标准GB3801-83 UDC621.431.72.222.004.124 本标准适用于国产往复活塞式汽车发动机铸铁及铝合金气缸体与气缸盖的修理。其他汽车发动机气缸体与气缸盖可参照执行。通过修理的气缸体与气缸盖应符合本标准的要求。 1技术要求 1.1气缸体与气缸盖不应有油污、积炭、水垢及杂物。 1.2水冷式气缸体与气缸盖用3.5-4.5kgf/cm2的压力作连续5min水压试验,不得渗漏。 1.3汽油发动机气缸体上平面到曲轴轴承承孔轴线的距离,不小于原设计差不多尺寸0.40mm。 注:原设计是指制造厂和按规定程序批准的技术文件(下同〉。 1.4所有结合平面不应有明显的凸出、凹陷、划痕或缺损。气缸体上平面和气缸盖下平面的平面度公差应符合表1的规定。 1.5气缸体曲轴、凸轮轴轴承承孔的同轴度公差应符合原设计规定。凡能用减磨合金补偿同轴度误差的,以气缸体两端曲轴轴承承孔公共轴线为基准,所有曲轴轴承承孔的同轴度公差为0.15mm,以气缸体两端凸轮轴轴承承孔公共轴线为基准,所有凸轮轴轴承承孔的同轴度公差为ф0.15mm。

1.6气缸体后端面对曲轴两端轴承承孔公共轴线的端面全跳动不大于0.20mm。 1.7燃烧室容积不小于原设计最小极限值的95%。同一台发动机的气缸盖燃烧室容积之差应符合原设计规定。 1.8气缸体、气缸盖各结合面经加工后的表面光洁度应不低于▽6。 1.9气缸盖上装火花塞或喷油嘴和预热塞的螺孔螺纹损害不多于一牙,气缸体与气缸盖上其他螺孔螺纹损害不多于两牙。修复后的螺孔螺纹应符合装配要求。各定位销、环孔及装配基准面的尺寸和形位公差应符合原设计规定。 1.10选用的气缸套、气门导管、气门座圈及密封件应符合相应的技术条件,并应满足本标准的有关装配要求。 1.11气门导管承孔内径应符合原设计尺寸或分级修理尺寸(见表2)。气门导管与承孔的配合过盈一样为0.02-0.06mm。 1.12进、排气门座圈承孔内径应符合原设计尺寸或修理尺寸(见表2)。气门座圈承孔的表面光洁度不低于▽5,圆度公差为0.0125mm,与座圆的配合过盈一样为0.07-0.17mm。 1.13镶装干式气缸套的承孔内径应为原设计尺寸或同一级修理尺寸(如表2)。承孔表面光洁度不低于▽6,圆柱度公差为0.0lmm。气缸套与承孔的配合过盈应符合原设计规定;无规定者,一样为0.05-0.10mm。有突缘的气缸套配合过盈可采纳0.05-0.07mm;无突缘的气缸套可采纳0.07-0.l0mm。气缸套上端面应不低于气缸体上平面,亦不得高出0.l0mm。 1.14湿式气缸套承孔的内径应为原设计尺寸或同一级修理尺寸(见表2)。湿式气缸套与承孔的配合间隙为0.05-0.15mm,安装后气缸套上端面应高出气缸体上平面,并应符合原设计规定。 1.15同一气缸体各气缸或气缸套的内径应为原设计尺寸或同一级修理尺寸(见表2),缸壁表面光洁度不低于气78。干式气缸套的气缸圆度公差为0.005mm,圆柱度公差为0.0075mm;湿式气缸套的气缸圆柱度公差为0.0125mm。

发动机气缸排列形式

发动机气缸排列形式 气缸排列形式,顾名思义,是指多气缸内燃机各个气缸排布的形式,直白的说,就是一台发动机上气缸所排出的队列形式。 目前主流发动机汽缸排列形式: L:直列 V:V型排列 其他汽缸排列方式: W:W型排列 H:水平对置发动机 R:转子发动机 直列发动机 直列发动机,一般缩写为L,比如L4就代表着直列4缸的意思。直列布局是如今使用最为广泛的气缸排列形式,尤其是在2.5L以下排量的发动机上。这种布局的发动机的所有气缸均是按同一角度并排成一个平面,并且只使用了一个气缸盖,同时其缸体和曲轴的结构也要相对简单,好比气缸们站成了一列纵队。

『直6发动机』 具体来说,我们常见的大致有L3、L4、L5、L6型四款(数字代表气缸数量)。这种布局发动机的优势在于尺寸紧凑,稳定性高,低速扭矩特性好并且燃料消耗也较少,当然也意味着制造成本更低。同时,采用直列式气缸布局的发动机体积也比较紧凑,可以适应更灵活的布局。也方便于布置增压器类的装置。但其主要缺点在于发动机本身的功率较低,并不适合 配备6缸以上的车型。 V型发动机 所谓V型发动机,简单的说就是将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起

(左右两列气缸中心线的夹角γ<180°),使两组汽缸形成一个夹角的平面,从侧面看汽缸呈V字形(通常的夹角为60°),故称V型发动机。 与我们上面介绍的直列布局形式相比,V型发动机缩短了机体的长度和高度,而更低的安装位置可以便于设计师设计出风阻系数更低的车身,同时得益于汽缸对向布置,还可抵消一部分振动,使发动机运转更为平顺。比如一些追求舒适平顺驾乘感受的中高级车型,还是在坚持使用大排量V型布局发动机,而不使用技术更先进的“小排量直列型布局发动机+增压器”的动力组合。

发动机冲缸垫故障的排除

编订:__________________ 单位:__________________ 时间:__________________ 发动机冲缸垫故障的排除 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1862-16 发动机冲缸垫故障的排除 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 冲缸垫是发动机的常见故障。冲缸垫有多种形式,共同点是有异响。由于缸垫被冲的程度不同,产生的异响声音也不同。本文根据3台红旗-120型推土机发动机不同的冲缸垫故障,说明排除方法。 一台推土机在冷启动时,发生“当、当”两声敲击声,并先冒出一股白烟,待冒出黑烟后发动机才着火;突然加大油门时也有敲击声,油门稳定后异响基本消失;若反复突然加大油门时,仍有敲缸声。断缸检查时,发现异响出在VI缸。怀疑是喷油器油针被卡滞。拆下检查,结果正常。拆下VI缸缸盖时,发现缸垫有烧黑烟现象,原来该缸缸盖螺栓很紧(扭力达250N·m),而缸盖与缸垫却没能压紧,原因是机体上有一水堵高于机体的上平面。更换缸垫,并使水堵高度低于机体上平面,装复后异响即消失,发动机运转

发动机缸体

发动机缸体

————————————————————————————————作者: ————————————————————————————————日期:

发动机缸体 [摘要]缸体是汽车发动机乃至汽车中最重要的零件之一,发动机的加工质量直接影响发动机的质量,进而影响到汽车整体的质量,因此发动机缸体的制造加工长期以来一直受到国内外汽车生产企业的重视。[缸体的简单介绍]发动机缸体是发动机的基础零件和骨架,同时又是发动机总装配时的基础零件。缸体的作用是支承和保证活塞、连杆、曲轴等运动部件工作时的准确位置;保证发动机的换气、冷却和润滑;提供各种辅助系统、部件及发动机的安装。汽车发动机的缸体和上曲轴箱常铸成一体,称为缸体——曲轴箱。缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在缸体内部铸有许多加强筋,冷却水套和润滑油道等。根据缸体与油底壳安装平面的位置不同,通常把缸体分为以下三种形式。(1)一般式缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差(2)龙门式缸体:其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度较好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。(3)隧道式缸体:这种形式的缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。为了能够使缸体内表面在高温下正常工作,必须对缸体和缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷

汽车发动机分类以及各大系统结构详细介绍

汽车发动机分类以及各大系统结构详细介绍 一.分类 内燃机的分类方法很多,按照不同的分类方法可以把内燃机分成不同的类型,下面让我们来看看内燃机是怎样分类的。 (1)按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机和柴油机。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。 (2)按照行程分类 内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程内燃机。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机。 (3)按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液" target=_blank>冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可K,冷却效果好,被广泛地应用于现代车用发动机。 (4)按照气缸数目分类 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。 (5)按照气缸排列方式分类 内燃机按照气缸排列方式不同可以分为单列式和双列式。单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角<180°(一般为90°)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。 (6)按照进气系统是否采用增压方式分类 内燃机按照进气系统是否采用增压方式可以分为自然吸气(非增压)式发动机和强制进气(增压式)发动机。汽油机常采用自然吸气式;柴油机为了提高功率有采用增压式的。 二.基本构造 发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。 (1)曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由

发动机冲缸垫故障的排除正式样本

文件编号:TP-AR-L1748 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 发动机冲缸垫故障的排 除正式样本

发动机冲缸垫故障的排除正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 冲缸垫是发动机的常见故障。冲缸垫有多种形式,共同点是有异响。由于缸垫被冲的程度不同,产生的异响声音也不同。本文根据3台红旗-120型推土机发动机不同的冲缸垫故障,说明排除方法。 一台推土机在冷启动时,发生“当、当”两声敲击声,并先冒出一股白烟,待冒出黑烟后发动机才着火;突然加大油门时也有敲击声,油门稳定后异响基本消失;若反复突然加大油门时,仍有敲缸声。断缸检查时,发现异响出在VI缸。怀疑是喷油器油针被卡滞。拆下检查,结果正常。拆下VI缸缸盖时,发现缸垫有烧黑烟现象,原来该缸缸盖螺栓很紧(扭力

达250N·m),而缸盖与缸垫却没能压紧,原因是机体上有一水堵高于机体的上平面。更换缸垫,并使水堵高度低于机体上平面,装复后异响即消失,发动机运转正常。 另一台推土机的现象是发动机在怠速时,有“吭、吭”的响声;当V缸断油时,响声减弱直到消失。曾怀疑是V缸怠速油量大所致,但调小也无济于事;大、中油门运转时,异响并不明显;气门间隙正常。启动发动机猛加油门时,出现“当、当”的敲击声,反复加大油门,V缸缸垫处冒烟。经检查,故障均为缸垫被冲造成的。 还有一台推土机,有负荷时响声明显;中小油门且无负荷时。异响不明显;反复施加负荷时,响声明显,而且III、IV缸缸盖之间冒气。断缸检查发现。III缸缸垫被烧。更换缸垫后,故障被排除。

更换发动机缸体证明信

竭诚为您提供优质文档/双击可除更换发动机缸体证明信 篇一:重打发动机号码证明 证明 xx车管所审批科: 兹有xxxx有限公司,xxx(车型)车一部,车牌为xxxxx(发动机号码:xxxx,车架号码:xxxxxxxxxxxx)更改发动机中缸一个,原因以下: 一、中缸曲轴瓦座严重变形弯曲度1.2mm,超过维修极限; 二、中缸缸体内壁渗水入油底壳,有裂缝。 请有关部门给予批准为盼。 此致 xxxx汽车维修厂 xxxx年xx月xx日 篇二:发动机缸体 发动机缸体 [摘要]缸体是汽车发动机乃至汽车中最重要的零件之

一,发动机的加工质量直接影响发动机的质量,进而影响到汽车整体的质量,因此发动机缸体的制造加工长期以来一直受到国内外汽车生产企业的重视。 [缸体的简单介绍]发动机缸体是发动机的基础零件和 骨架,同时又是发动机总装配时的基础零件。缸体的作用是支承和保证活塞、连杆、曲轴等运动部件工作时的准确位置;保证发动机的换气、冷却和润滑;提供各种辅助系统、部件及发动机的安装。汽车发动机的缸体和上曲轴箱常铸成一体,称为缸体——曲轴箱。缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在缸体内部铸有许多加强筋,冷却水套和润滑油道等。根据缸体与油底壳安装平面的位置不同,通常把缸体分为以下三种形式。(1)一般式缸体:其特点是油底壳安装平面和曲轴旋转 中心在同一高度。这种缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差(2)龙门式缸体:其特点是油底壳安装平面低于曲轴 的旋转中心。它的优点是强度和刚度较好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。 (3)隧道式缸体:这种形式的缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。为了能够使缸体内表面在高

气缸排列形式

我们在汽车概论课上已经学过了四冲程发动机工作原理,也在PPT中看了多缸共同工作的三种基本形式:直列(L)、V型、水平对置(H)型。今天我来说一说这些气缸排列形式的特点,并另外补充W型结构。 直列发动机结构简单,成本较低,方便维护,是最传统、最普遍的发动机形式,老师上课时提到的没有单数多缸直列发动机是不准确的。因为目前的微型轿车如奇瑞QQ、夏利、微面都有直列三缸发动机,而奥迪、沃尔沃也有直列五缸发动机; V型发动机,顾名思义,就是两列气缸成V字型排列。这样的布局使发动机震动更小,工作时更加安静。同时可以使发动机体积更小更轻,因而车头重心更低。曾连续十余年获得全球最佳发动机荣誉的日产VQ系列发动机就是V型发动机的杰出代表,VQ系列V型6缸发动机的排量从2.0升至3.7升均有分布。 水平对置(H)型发动机目前只有保时捷和斯巴鲁两家汽车公司坚持制造。最为出名的就是保时捷911 Carrera S搭载的3.8升水平对置六缸发动机,和斯巴鲁翼豹STI搭载的2.5升EJ25水平对置四缸发动机。前者排量较大,以自然吸气形式可以输出400ps、440Nm的功率和扭矩;而后者以2.5升的较小排量,在涡轮增压加持下可以压榨出300ps、407Nm的功率与扭矩,稍加升级,动力即可大幅提升。 W型排列其实是V型排列的变种,它在V型排列的基础上,将两列分开排列的气缸再分为两个小的V型,总的来看就相当于四列气缸,W型由此得名。目前,大众集团(V AG)旗下有大众辉腾、奥迪A8、宾利欧陆、大众途锐等车系都有搭载W12动力的顶级车款。另外布加迪威龙(威航)搭载了W16发动机,在四个涡轮增压器的加持下可以爆发1001ps的最大功率,最新款Super Sports的马力更是高达1200ps,极速可以超过431Km/h。

小轿车发动机缸体制造工艺(精)

小轿车发动机缸体制造工艺 - 1 - 小轿车发动机缸体制造工艺 缸体是汽车发动机乃至汽车中的最重要的零件之一,它的加工质量直接影响发动机的质量,进而影响到汽车整体的质量,因此发动机缸体的制造加工长期以来一直受到国内外汽车生产企业的高度重视。 1缸体的简单介绍: 发动机缸体是发动机的基础零件和骨架,同时又是发动机总装配时的基础零件。缸体的作用是支承和保证活塞、连杆、曲轴等运动部件工作时的准确位置;保证发动机的换气、冷却和润滑;提供各种辅助系统、部件及发动机的安装。 汽车发动机的缸体和上曲轴箱常铸成一体,称为缸体——曲轴箱。缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在缸体内部铸有许多加强筋,冷却水套和润滑油道等。根据缸体与油底壳安装平面的位置不同,通常把缸体分为以下三种形式。(1) 一般式缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差(2) 龙门式缸体:其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度较好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。 (3) 隧道式缸体:这种形式的缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。为了能够使缸体内表面在高温下正常工作,必须对缸体和缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的缸体周围和缸盖中都加工有冷却水套,并且缸体和缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对缸体和缸盖起冷却作用。现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。按照气缸的排列方式不同,缸体还可以分成单列式、V型和对置式三种。 第 - 1 - 页共 7 页 小轿车发动机缸体制造工艺 - 2 - 2缸体的工作条件: 缸体通常工作在高温、高载荷、磨损剧烈的条件下,承受较大的压力,受力复杂,同时工作在汽油的沉浸下,工作环境潮湿。 3缸体的使用性能要求: 缸体的工作条件决定了缸体必须具有高强度、高刚度、高硬度、高耐磨性以及良好的散热性,同时要有很好的密封性、防漏性、减振性等。

发动机原理初级14页word文档

汽车构造知识! 发动机的工作原理和总体构造 第一节发动机的分类发动机:将某一种形式的能量转化成机械能的机器 发动机包括热机和电动机等。热机是把热能转化为机械能,它包括内燃机和外燃机,内燃机燃料在机器内部燃烧,外燃机燃料在机器外部燃烧;电动机是把电能转化为机械能。内燃机和外燃机相比,体积小,质量小,便于移动,起动性好,广泛应用于车、船、飞机等。汽车发动机指车用内燃机。内燃机的分类方法很多,按照不同的分类方法可以把内燃机 分成不同的类型。 1) 按照所用燃料分类 内燃机按照所使用燃料的不同可以分为汽油机和柴油机。使用汽油为燃料的内燃机称为汽油机;使用柴油机为燃料的内燃机称为柴油机。汽油机与柴油机比较各有特点;汽油机转速高,质量小,噪音小,起动容易,制造成本低;柴油机压缩比大,热效率高,经济性能和排放性能都比汽油机好。) 按照行程分类 内燃机按照完成一个工作循环所需的行程数可分为四行程内燃机和二行程内燃机。把曲轴转两圈(720°),活塞在气缸内上下往复运动四个行程,完成一个工作循环的内燃机称为四行程内燃机;而把曲轴转一圈(360°),

活塞在气缸内上下往复运动两个行程,完成一个工作循环的内燃机称为二行程内燃机。汽车发动机广泛使用四行程内燃机。 3)按照冷却方式分类 内燃机按照冷却方式不同可以分为水冷发动机和风冷发动机。水冷发动机是利用在气缸体和气缸盖冷却水套中进行循环的冷却液作为冷却介质进行冷却的;而风冷发动机是利用流动于气缸体与气缸盖外表面散热片之间的空气作为冷却介质进行冷却的。水冷发动机冷却均匀,工作可靠,冷却效果好,被广泛地应用于现代车用发动机。 4) 按照气缸数目分类 内燃机按照气缸数目不同可以分为单缸发动机和多缸发动机。仅有一个气缸的发动机称为单缸发动机;有两个以上气缸的发动机称为多缸发动机。如双缸、三缸、四缸、五缸、六缸、八缸、十二缸等都是多缸发动机。现代车用发动机多采用四缸、六缸、八缸发动机。 (5) 按照气缸排列方式分类 内燃机按照气缸排列方式不同可以分为单列式和双列式。单列式发动机的各个气缸排成一列,一般是垂直布置的,但为了降低高度,有时也把气缸布置成倾斜的甚至水平的;双列式发动机把气缸排成两列,两列之间的夹角<180°(一般为90°)称为V型发动机,若两列之间的夹角=180°称为对置式发动机。 6) 按照进气系统是否采用增压方式分类 内燃机按照进气系统是否采用增压方式可以分为自然吸气(非增压)式发

发动机更换气缸垫的要点

发动机更换气缸垫的要点 一台汤姆洛克DINO500型钻机,配用CAT3116DIT型发动机,使用了2000h左右就出现了气缸垫漏水现象。 经研究认为,该机的气缸盖结构是整体式缸盖,其上有各缸燃油系统的单体泵及气门间隙的调整机构等,虽然气缸盖更换工作本身比较容易完成,但由于没有该机的任何技术资料,气缸盖更换后单体泵供油时间的调整会是整个修复过程的难点,考虑到该机使用时间不长,运转时各方面性能及排出的烟色都正常,说明机器磨损不太严重,有关单体泵喷油行程的调整数据可以通过发动机铭牌获得,且送出外修则会花费很大,因此仍决定自行更换气缸盖垫,并在拆卸、安装过程中注意了以下要点。 1、拆卸过程 由于没有该机的有关技术资料和数据,在拆卸气缸盖前做了以下测量工作。(1)单体泵行程的测量 利用深度游标尺对单体泵各部位进行了测量,发现附图所示单体泵的喷油行程h 值与发动机铭牌上的喷油行程数据相同,并发现了以下规律: A、逐缸检测时,在某缸作功时,下一个即将作功气缸的单体泵的行程h值与发动机铭牌上的喷油行程数据相同,均为64.78mm,这为选用逐缸调整单体泵供油时间提供了依据。 B、在I缸作功时,III、V、VI缸喷油行程h和实测值与发动机铭牌上的喷油行程数据相同,在VI缸作功时,I、II、IV缸喷油行程h的实测值与发动机铭牌上的喷油行程数据相同。据此,可以在以后选用两次调整法调整各缸单体泵的喷油行程h值。 另外,拆卸时应用划针将单体泵在气缸盖的相对位置做好记号。 (2)气门间隙的测量 测得气门间隙是:进气门0.40mm,排气门0.65mm;考虑到磨损等因数,认为安装时气门间隙应调整到与CAT3306型发动机的一样,即进气门0.38mm、排气门0.64mm。 (3)气缸盖螺栓拧紧力矩的测量

汽车发动机缸体结构

由于发动机缸体是大平面的板状结构,还存在少量的质量集中,本文在建立缸体有限元模型时用到的有限元单元类型有壳单元(大部分为四边形,为了满足结构特征,采用了少量三边形)、实体单元(六面体和五面体)。汽修学校:在薄壁和缸体上所有加筋的地方,采用了壳体单元,而在壁厚或者受力较大的地方,例如缸筒周围,采用了实体单元。这样一个复杂的结构,最后简化为由31707个单元和44162个节点所组成的有限元模型。 有限元模型在既有壳体单元,又有实体单元时,我们应考虑到它们的边界问题。因为壳体单元的节点具有六个自由度,而实体单元的节点只具有三个自由度。 而且壳体单元较实体单元要软的多,汽修学校:刚度远远不如实体单元。为了实现很好的刚度过渡,我们采用了无质量的虚拟单元。这种虚拟单元除了密度为零以外,其他参数根据构件的材料特性来定。 壳体单元和实体单元在采用虚拟单元相连时,有三种不同的连接形式,这些虚拟单元都是无质量的壳体单元,其参数给定,连接方式壳体单元在和壳体单元相连接时,节点自由度是相同的,但是并不意味着壳体单元之间能直接连接.直接连接会造成单元受力与实际结构受力不相符合,汽修学校:例如在壁与壁的连接处,尤其是不同壁厚的两壁交界处,壳体单元之间应采用虚拟单元连接。是发动机缸体的有限元模型,蓝色的是壳体单元,红色的是实体单元,灰白色的单元是虚拟单元. 由图可以看出缸体的单元网格划分的非常细,主要是因为缸体受力复杂,为了更好的掌握缸体具体部位的振动形态,使结果更精确。发动机的排气管一侧发动机的油底壳主要是储存机油并封闭曲轴箱。汽修学校:机油盘受力很小,一般采用薄钢板冲压而成。虽然油底壳受力不大,但它存在大面积的平面结构,刚度较低,振动剧烈,因而在这些地方最容易产生结构噪声。根据油底壳的结构特征,我们选择了壳体单元作为有限元模型的单元类型。 油底壳的有限元模型共有1849个单元和1$81个节点。其模型如图5所示。传统的发动机在缸体下部是曲轴箱,但由于下部呈开口箱形状,刚度差、振动剧烈、辐射噪声大,因此,近年来对曲轴箱的结构改进较大,汽修学校:例如采用龙门式或隧道式结构的曲轴箱。但是这些措施在降低噪声方面所起到的效果并不显著,根据国外发动机的设计经验,采用梯形框架可以大幅度的增加缸体、油底壳之间的刚度。 梯形框架是连接在缸体和油底壳之间的部件,它起到支撑曲轴、、封闭缸体下部的作用。由于梯形框架这种结构刚度较高,所以大大的增加了发动机缸体下部的刚度;由于梯形框架的使用,降低了油底壳的高度,汽修学校:使得油底壳的噪声辐射面变小,而且改善了油底壳的响应特性,大大降低油底壳的振动噪声。根据梯形框架结构特点和受力特性 我们采用了实体单元为主,夹带壳体单元的有限元单元类型,总共由5209个单元和8223个节点所组成。其模型如图6所示。在梯形框架的有限元模型中,

汽车的排量指的是发动机所有汽缸的容量之和

汽车的排量指的是发动机所有汽缸的容量之和。比如说,某汽车发动机有4个汽缸,每个汽缸的容量是0.5L,那么该发动机的排量就是0.5L*4=2.0L。又或者是某汽车发动机有6个汽缸,每个汽缸容量0.6L,那么该发动机排量为0.6L*6=3.6L。 我们经常看到的车的发动机排量大概有以下几款:0.8 1.1 1.3 1.4 1.5 1.6 1.7 1.8 2.0 2.3 2.4 2.5 2.7 2.8 3.0 3.5 4.0 4.2 4.5 5.0 6.0等等。 一般来说,小轿车发动机单个汽缸的容量大概是0.5L左右,换句话说,一般1.6-2.0的发动机有4个汽缸,3.0左右的就有6个汽缸,4.0左右的就有8个汽缸,而5.0就有10汽缸,6.0就有12汽缸(但并非一定)。 理论上,发动机排量越大,功率和扭距都会越大。但也不一定,关键是看生产厂商对发动机的调校。比如说,在一些高性能跑车身上,它需要功率大的发动机,功率大就是说它能跑得快,所以车厂会把发动机调校得功率很大,而扭距则会有所损失。而如果是越野车,它不需要跑得多快,而是需要有很大的力(扭距)来牵引车子,所以车厂会把发动机调校得扭距很大,但会损失一些功率。举个例子说,某款发动机排量是4.0L,用在高性能跑车身上,他的功率有350KW,扭距为300NM,但如果用在越野车上,他可能会被调校成功率为280KW,而扭距变成450NM。 汽车排量的大小关系到车的加速性能以及极速。也关系到车的油耗问题。

一般来说,同一种车,排量越大,油耗就越大。但事实上不是一定成正比的。关键是要搭载合理。比如说某车,最合理的是搭载2.0的发动机,那么你搭载1.6的发动机,则会比2.0的耗油,搭载3.0的也会比2.0的耗油。 发动机的汽缸排列大概有以下几种,直列,水平对置,V型,W型等 直列是比较简单的构造,成本较低,体积较小,一般用在普通轿车上。V6比较复杂些,V8以上的构造就非常复杂了,成本非常高,一般用在高级车上。W12一般大概可以看做是2具V6结合起来,构造也很复杂!至于水平对置只有斯巴鲁和保时捷才有。还有一种更为复杂的就是转子发动机,目前全世界只有马自达有在研究和生产,并且只有马自达的RX-8有装载转子引擎,1.3的排量,而功率和扭距则达到普通3.0发动机的水平,0-100KM/H的加速时间6秒左右!

活塞式发动机,气缸排列形式.

气缸排列形式 气缸排列形式,顾名思义,是指多气缸内燃机各个气缸排布的形式,直白的说,就是一台发动机上气缸所排出的队列形式。 目前主流发动机汽缸排列形式: L:直列 V:V型排列 其他汽缸排列方式: W:W型排列 H:水平对置发动机 R:转子发动机 直列发动机 直列发动机,一般缩写为L,比如L4就代表着直列4缸的意思。直列布局是如今使用最为广泛的气缸排列形式,尤其是在2.5L以下排量的发动机上。这种布局的发动机的所有气缸均是按同一角度并排成一个平面,并且只使用了一个气缸盖,同时其缸体和曲轴的结构也要相对简单,好比气缸们站成了一列纵队。

『直6发动机』 具体来说,我们常见的大致有L3、L4、L5、L6型四款(数字代表气缸数量)。这种布局发动机的优势在于尺寸紧凑,稳定性高,低速扭矩特性好并且燃料消耗也较少,当然也意味着制造成本更低。同时,采用直列式气缸布局的发动机体积也比较紧凑,可以适应更灵活的布局。也方便于布置增压器类的装置。但其主要缺点在于发动机本身的功率较低,并不 适合配备6缸以上的车型。 V型发动机 所谓V型发动机,简单的说就是将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起(左右两列气缸中心线的夹角γ<180°),使两组汽缸形成一个夹角的平面,从侧面看汽缸呈V字形(通常的夹角为60°),故称V型发动机。

与我们上面介绍的直列布局形式相比,V型发动机缩短了机体的长度和高度,而更低的安装位置可以便于设计师设计出风阻系数更低的车身,同时得益于汽缸对向布置,还可抵消一部分振动,使发动机运转更为平顺。比如一些追求舒适平顺驾乘感受的中高级车型,还是在坚持使用大排量V型布局发动机,而不使用技术更先进的“小排量直列型布局发动机+增压器”的动力组合。 概括的说:我们可以这样理解,发动机气缸采用V型布局,可以说在结构层面上克服了一些传统直列布局的劣势,但同样,精密的设计让制造工艺更复杂,同时由于机体的宽度较大,也不方便安装其他辅助装置。

相关主题
文本预览
相关文档 最新文档