当前位置:文档之家› 专题4.1 指数与指数函数(精讲精析篇)(解析版)

专题4.1 指数与指数函数(精讲精析篇)(解析版)

专题4.1 指数与指数函数(精讲精析篇)(解析版)
专题4.1 指数与指数函数(精讲精析篇)(解析版)

专题4.1指数与指数函数(精讲精析篇)

提纲挈领

点点突破

热门考点01 根式的化简与求值

(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数. (2)(n

a )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定.

n a ?????

n 为偶数,a 为非负实数n 为奇数,a 为任意实数,且n a 符号与a 的符号一致

【典例1】化简下列各式: ①4

(x -2)4; ②5

(x -π)5. 【答案】见解析. 【解析】 ①4

(x -2)4

=|x -2|=?

????

x -2,x ≥2,

-x +2,x <2.

②5

(x -π)5=x -π. 【典例2】化简下列各式:

(1)x 2-2x +1-x 2+6x +9(-3

(1-a )3.

【答案】见解析.

【解析】(1)原式=(x -1)2-(x +3)2=|x -1|-|x +3|.

∵-3

∴原式=?????

-2x -2,-3

-4,1≤x <3.

(2)由a -1知a -1≥0,

∴原式=a -1+(a -1)2+1-a =a -1. 【规律方法】

1.根式化简或求值的注意点

解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.

2.对n a n 与(n

a )n 的进一步认识

(1)对(n a )n 的理解:当n 为大于1的奇数时,(n a )n 对任意a ∈R 都有意义,且(n

a )n =a ,当n 为大于1的偶数时,(n a )n 只有当a ≥0时才有意义,且(n

a )n =a (a ≥0).

(2)对n

a n

的理解:对任意a ∈R 都有意义,且当n 为奇数时,n a n =a ;当n 为偶数时,n a n

=|a |=?

??

??

a a ≥0-a a <0.

(3)对于根式的运算还要注意变式,整体代换,以及平方差、立方差和完全平方、完全立方公式的运用,做到化繁为简,必要时进行讨论. 3.有限制条件的根式化简的步骤

热门考点02 指数幂的化简与求值

指数幂运算的一般原则:

(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.

(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【典例3】计算:.

【答案】12

. 【解析】

【典例4】已知则

的值为__________.

【答案】

【解析】

题意,∴,

∴,

故答案为

【典例5】(2020·上海高三专题练习)若1a >,0b <,且22b b a a -+=b b a a --=_________. 【答案】2- 【解析】

22b b

a a

-+=()

2

2228b b

b b a a a a --+=++=,故226b b a a -+=,

()2

2224b b b b a a a a ---=+-=,1a >,0b <,故0b b a a --<,故2b b a a -=--.

故答案为:2-. 【特别提醒】

根式、指数幂的条件求值,是代数式求值问题的常见题型,一般步骤是: (1)审题:从整体上把握已知条件和所求代数式的形式和特点;

(2)化简:①化简已知条件;②化简所求代数式;

(3)求值:往往通过整体代入,简化解题过程.如本题求值问题实质上考查整体思想,考查完全平方公式、立方和(差)公式的应用,如

,解题时要善于应用公式变形.

热门考点03 指数函数的图象及应用

常考题型及技法

(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.

(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. (4)判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.

【典例6】(2020·上海高一课时练习)函数x

y a =和(1)y a x =+(其中0a >且1a ≠)的大致图象只可能是( )

A .

B .

C .

D .

【答案】C 【解析】

由于(1)y a x =+过点()1,0-,故D 选项错误.

当1a >时,x

y a =过()0,1且单调递增;(1)y a x =+过点()1,0-且单调递增,过()0,a 且1a >.所以A 选

项错误.

当01a <<时,x

y a =过()0,1且单调递减,(1)y a x =+过点()1,0-且单调递增,过()0,a 且01a <<.

所以B 选项错误.

综上所述,正确的选项为C. 故选:C

【典例7】(2019·贵州省织金县第二中学高一期中)函数21

()x f x a -=(0a >且1)a ≠过定点( )

A .(1,1)

B .1

(,0)2

C .(1,0)

D .1(,1)2

【答案】D 【解析】

令12102x x -=?=,所以函数21

()x f x a

-=(0a >且1)a ≠过定点1(,1)2

. 【总结提升】

1.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.

2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.

3.识图的三种常用方法

(1)抓住函数的性质,定性分析:

①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复;④从函数的奇偶性,判断图象的对称性.⑤从函数的特征点,排除不合要求的图象. (2)抓住函数的特征,定量计算:

从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3)根据实际背景、图形判断函数图象的方法:

①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析). 4.过定点的图象

(1)画指数函数y =ax(a >0,a≠1)的图象,应抓住三个关键点(0,1),(1,a), .特别注意,指数函数的图象过定点(0,1); (2) x

y a =与x

y a

-=的图象关于y 轴对称;

(3)当a >1时,指数函数的图象呈上升趋势,当0<a <1时,指数函数的图象呈下降趋势;简记:撇增捺减.

热门考点04 指数函数的性质及应用

1.指数函数图象的变化规律

指数函数的图象随底数变化的规律可归纳为:在第一象限内,图象自下而上对应的底数依次增大. 2.有关指数函数性质的问题类型及解题思路

(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).

(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.

(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及单调性问题时,要借助“同增异减”这一性质分析判断. 【典例8】(2016新课标全国III )已知,

,则( )

A. B. C. D.

【答案】A 【解析】因为

,所以

,故选A .

【典例9】(2017·北京高考真题(理))已知函数1

()3()3

x x f x =-,则()f x

A .是奇函数,且在R 上是增函数

B .是偶函数,且在R 上是增函数

C .是奇函数,且在R 上是减函数

D .是偶函数,且在R 上是减函数

【答案】A 【解析】

分析:讨论函数()133x

x

f x ??=- ???

的性质,可得答案. 详解:函数()133x

x

f x ??=- ???

的定义域为R ,且

()()111333,333x

x

x x

x

x f x f x --????

??

??-=-=-+=--=-?? ?

? ???

????????

即函数()f x 是奇函数,

又1y 3,3x

x y ??==- ???

在R 都是单调递增函数,故函数()f x 在R 上是增函数.

故选A.

【典例10】(2019·天津河西区一模)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-

a <2c D .1<2a +2c <2

【答案】D

【解析】作出函数f (x )=|2x -1|的图象, 如图所示,因为a <b <c ,且有f (a )>f (c )>f (b ),

所以必有a <0,0<c <1,且|2a -1|>|2c -1|,

所以1-2a >2c -1,则2a +2c <2,且2a +2c >1,故选D.

【典例11】(2019·浙江学军中学高一期中)已知函数1()421x x f x a +=-?+. (1)若函数()f x 在[]

0,2x ∈上有最大值8-,求实数a 的值; (2)若方程()0f x =在[]1,2x ∈-上有解,求实数a 的取值范围. 【答案】(1)5;(2)17

18

a ≤≤ 【解析】

(1)因为[]

0,2x ∈,所以令[]21,4x

t =∈,

所以得到函数()2

21f t t at =-+,开口向上,对称轴为t a =,

当5

2

a ≤

时,则在4t =时,()f t 取最大值,即()()max 48f t f ==-, 所以16818a -+=-,解得25

8a =,不满足52

a ≤,所以舍去,

当5

2

a >时,则1t =时,()f t 取最大值,即()()max 18f t f ==-,

所以1218a -+=-,解得5a =,满足5

2

a >,

综上,a 的值为5.

(2)因为[]1,2x ∈-,所以令12,42x

m ??

=∈????

所以得到函数()2

21f m m am =-+

令()0f m =,得2210m am -+=,即12a m m

=+, 所以要使()0f m =有解, 则函数2y a =与函数1

y m m

=+

有交点, 而函数1y m m =+

,在1,12??

????

上单调递减,在[]1,4上单调递增, 故在1x =时,有min 2y =,在4x =时,有max 17

4

y =

, 所以可得21724

a ≤≤

, 所以a 的范围为1718

a ≤≤. 【典例12】(2020·上海高三专题练习)已知函数225

13x x y ++??

= ?

??

,求其单调区间及值域.

【答案】在(),1-∞-上是增函数,在()1,-+∞上是减函数,值域为10,81?? ???

【解析】

根据复合函数单调性“同增异减”的法则,将问题转化为求二次函数的单调递减区间问题.

解:令13U

y ??= ???

,225U x x =++,则y 是关于U 的减函数,而U 是(),1-∞-上的减函数,()1,-+∞上的

增函数,∴

225

1 3x x

y

++

??

= ?

??

在()

,1

-∞-上是增函数,而在()

1,

-+∞上是减函数,又∵()2

225144

U x x x

=++=++≥, ∴

225

1

3

x x

y

++

??

= ?

??

的值域为

4

11

0,0,

381

??

????

=

?

? ?

????

?

??

【总结提升】

1在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.

2.指数函数的图象在第一象限内底大图高(逆时针方向底数依次变大).当幂的底数不确定时,要注意讨论底数的不同取值情况.

3.根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.如图是指数函数(1)y =a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b.

规律:在y轴右(左)侧图象越高(低),其底数越大.

4.幂函数y=xα的形式特点是“幂指数坐在x的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y轴左侧的增减性即可.

巩固提升

1.(2019·华东师大二附中前滩学校高三月考)函数

1

(0,1)

x

y a a a

a

=->≠的图象可能是().

A.B.

C .

D .

【答案】D 【解析】

∵0a >,∴

10a

>,∴函数x y a =需向下平移1

a 个单位,不过(0,1)点,所以排除A ,

当1a >时,∴1

01a <<,所以排除B ,

当01a <<时,∴1

1a

>,所以排除C ,故选D.

2.(2020·宾县第二中学高二期末(文))已知,a b ∈R ,则“ln ln a b >”是“11()()33

a b

<”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

【答案】A 【解析】 ∵ln ln a b > ∴0a b >>

∵1133a b

????< ? ?????

∴a b >

∵0a b >>是a b >的充分不必要条件

∴ln ln a b >是1133a b

????< ? ?????

的充分不必要条件 故选A

3.(2019·贵州省织金县第二中学高一期中)函数(01)||

x

xa y a x =<<的图像的大致形状是( )

A .

B .

C .

D .

【答案】D 【解析】 根据01a <<

(01)||

x xa y a x =<<

,0,0

x x a x y a x ?>∴=?-

01a <<,

∴x y a =是减函数,x y a =-是增函数.

(01)||

x

xa y a x =<<在(0)+∞,

上单调递减,在()0-∞,上单调递增 故选:D.

4.(2020·上海高三专题练习)函数()12x f x -的定义域是 ( ) A .(],0-∞ B .[)0,+∞

C .(),0-∞

D .(),-∞+∞

【答案】A

【解析】

120x -≥,解得0x ≤, ∴函数的定义域(],0-∞,故选A.

5.(2020·四川省高一期末)设.108

4y =,0.7

28

y =,3

43

4y =,则( )

A .312y y y >>

B .213y y y >>

C .132y y y >>

D .123y y y >>

【答案】B 【解析】

()

20.8

0.8

1.162

24

y ===,()

0.7

0.7

3 2.1

28

2

2y ===,()

332 1.54

4

342

2y ===.

因为 2.1 1.6 1.5222>>,故213y y y >>. 故选:B

6.(2020·上海高三专题练习)函数f (x )=x a -b 的图象如图,其中a 、b 为常数,则下列结论正确的是( )

A .a >1,b <0

B .a >1,b >0

C .0 0

D .0

【答案】C 【解析】

从曲线走向结合指数函数的单调性可知00, 故选:C.

7.(2020·上海高三专题练习)已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

【答案】A 【解析】

此题考查指数函数的图像的性质和指数函数的上下平移;有已知得到:此指数函数是减函数,分布在第一,

二象限,渐近线是x 轴,即0y =;x

y a b =+(1b <-)是由指数函数向下平移大于1个单位得到的,即

原来指数函数所过的定点(0,1)向下平移到原点的下方了,所以图像不经过第一象限,所以选A ,如下图所示:

8.(2020·上海高三专题练习)若函数1

()21

x f x =+, 则该函数在(-∞,+∞)上是 ( ) A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值

【答案】A 【解析】

设21x t =+,则当(),x ∈-∞+∞时为增函数,且1t >;

于是()11

121x

y t t ==>+为减函数,其图象如图所示: 则故1

21

x y =+为减函数且1y <;图象在y 轴上方,0y >,所以原函数既无最小值,也无最大值.

故正确答案为A.

9.(2019·天津高三高考模拟)若

,则函数的值域是( )

A .

B .

C .

D .

【答案】B 【解析】 将化为,即

,解得

,所以

,所以

函数

的值域是

.故选C.

10.(2020·上海高一课时练习)已知实数a ,b 满足01a b <<<,则下列各式中正确的是( ) A .

2

21333b a b

<<

B .

122333b a b

<<

C .

212333a b b

<<

D .

221333a b b

<<

【答案】D 【解析】

当0α>时,幂函数y x α

=在()0,x ∈+∞上为增函数,

所以当01a b <<<时有22

33a b <, 因为01b <<,

所以指数函数x

y b =在x ∈R 上为减函数, 因此有 2

1

33b b <, 所以有:2213

3

3a b b <<

故选:D

11.(2018届山东、湖北部分重点中学冲刺(二))定义在上的奇函数

,当

时,

,则关于的函数

的所有零点之和为( )

A.

B.

C.

D.

【答案】C

【解析】

当时,

是奇函数,画出函数

的图象,由函数图象可知: ,有个零点,其中有两个零点关于

对称,还有两个零点关于对称,所以这四个零点的和为零,第五个零点是直线与函数

交点的横坐标,

即方程

的解,

,故选C.

12.(2015·江苏高考真题)不等式2

24x x

-<的解集为________.

【答案】(1,2).- 【解析】

,

2

222,x

x

-∴<

是一个递增函数;

故答案为:.

13.(2019·安徽马鞍山二中高三月考(文))若函数3x m y a n -=+-(0a >且1a ≠)的图象恒过定点(3,2),

则m n +=______. 【答案】7 【解析】 ∵函数3x m

y a

n -=+-(0a >且1a ≠)的图象恒过定点,令0x m -=,可得x m =,2y n =-,

可得函数的图象经过定点(),2m n -.再根据函数的图象经过定点()3,2, ∴3m =,22n -=,解得3m =,4n =,则7m n +=, 故答案为:7.

14. (2020·湖北省高一期末)当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.

(提示:

91

0.001952

=)

【答案】10 【解析】

设生物组织内原有的碳14含量为x ,需要经过n 个“半衰期”才不能测到碳14,

则1121000n x x ?<,即10.0012

n <, 由参考数据可知,910.001950.0012=>,1011

0.001950.0009750.00122

=?=<,

所以10n =, 故答案为:10.

15.(2015·湖南高考真题(理))已知函数32,

(),x x m f x x x m ?≤=?>?

,,若存在实数a ,使函数g(x)=f(x)-a 有两个零点,

则实数m 的取值范围是________. 【答案】()(),01,-∞?+∞ 【解析】

∵()()

g x f x a =-有两个零点, ∴()

f x a =有两个零点,即()y f x =与y a =的图象有两个交点, 由32x x =可得,0x =或1x =.

①当1m >时,函数()f x 的图象如图所示,此时存在a 满足题意,故1m >满足题意.

②当1m =时,由于函数()f x 在定义域R 上单调递增,故不符合题意. ③当01m <<时,函数()f x 单调递增,故不符合题意.

④0m =时,()

f x 单调递增,故不符合题意. ⑤当0m <时,函数()y f x =的图象如图所示,此时存在a 使得()y f x =与y a =有两个交点.

综上可得0m <或1m >.

所以实数m 的取值范围是()(),01,-∞?+∞.

16.(2019·上海市高桥中学高一期末)在下列命题中:①两个函数的对应法则和值域相同,则这两个是同一个函数;②()2

22x

x

f x -=在R 上单调递增,③若函数()1f x -的定义域为[]0,2,则函数()1f x +的定义域

为[]2,0-;④若函数()f x 在其定义域内不是单调函数,则()f x 不存在反函数;⑤()4

2222

x

x f x =++

+函数的最小值为4;⑥若关于x 的不等式1

202x

x

m --

<在[]0,1区间内恒成立,则实数m 的范围是()0,2其中真命题的序号有_________. 【答案】③ 【解析】

对于①:对应法则和值域相同的两个函数,其定义域不一定相同, 如f (x )=x 2,x ∈R 与g (x )=x 2,x ∈[0,+∞),∴①错误; 对于②: ()2

22x

x

f x -=在(),1-∞ 上单调递减,在()1,+∞ 上单调递增,故②错误;

对于③:∵函数()1f x -的定义域为[]0,2,∴111x -≤-≤ ,即()f x 的定义域为[]1,1-,

∴111x -≤+≤,即20x -≤≤,∴函数()1f x +的定义域为[]2,0-,∴③正确;

对于④:函数f (x )1

x

=

在定义域上不单调,但函数f (x )存在反函数,∴④错误; 对于⑤:()42222

x

x

f x =++

+,令()222,x

t =+∈+∞ 则()4

f x t t

=+

在()2,+∞上单调递增,没有最小值,∴⑤错误. 对于⑥:由|2x ﹣m |12x -<0,得|2x

﹣m |12x <,∴11222

x x x

m --<<, 即112222

x x

x x m -+<<在区间[0,1]内恒成立,

∵函数f (x )122

x

x =-在区间[0,1]内单调递增,∴f (x )的最大值为32;

令g (x )122x

x =+,t =2x (1≤t ≤2),则y =t 1t

+在[1,2]上为增函数,由内函数t =2x 为增函数,∴g (x )

122x x =+在区间[0,1]内单调递增,g (x )的最小值为2.∴3

22

m <<.∴⑥错误.

故答案为:③

4.2 指数和指数函数练习题及答案

指数和指数函数专题 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2 >b 2 ,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 3 1)1-x (C )y=1)21(-x (D )y=x 21- 10.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51 )32 (C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2 1 )31 11.已知三个实数a,b=a a ,c=a a a ,其中0.9

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

必修一指数与指数函数

指数函数 典例分析 题型一 指数函数的定义与表示 【例1】 求下列函数的定义域 (1)32 x y -= (2)21 3 x y += (3)512x y ??= ??? (4)()10.7x y = 【例2】 求下列函数的定义域、值域 ⑴11 2 x y -= ; ⑵3x y -=; ⑶2 120.5x x y +-= 【例3】 求下列函数的定义域和值域: 1.x a y -=1 2.31 )2 1(+=x y 【例4】 求下列函数的定义域、值域 (1)11 0.4 x y -=; (2)y = (3)21x y =+ 【例5】 求下列函数的定义域 (1)13x y =; (2)y =

【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f , (3)f -的值. 【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( ) A B .2或2- C .2- D .2 题型二 指数函数的图象与性质 【例8】 已知1a b c >>>,比较下列各组数的大小: ①___b c a a ;②1b a ?? ??? 1c a ?? ??? ;②11 ___b c a a ;②__a a b c . 【例9】 比较下列各题中两个值的大小: ⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9. 【例10】 比较下列各题中两个值的大小 (1)0.80.733, (2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01, (4) 3.3 4.50.990.99, 【例11】 已知下列不等式,比较m 、n 的大小 (1) 22m n < (2)0.20.2m n > (3)()01m n a a a <<< (4)()1m n a a a >>

指数与指数函数专题

指数与指数函数 [基础训练] 1.函数f (x )=a x +b -1(其中0

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案 一、教学目的 1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。 2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类 比、猜测、归纳的能力。 3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相 互转化,培养学生用联系的观点看问题。 4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、 概括、分析、综合的能力。 二、教学重点、难点 教学重点:指数函数的定义、图象、性质. 教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。 三、教具、学具准备: 多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。 四、教学方法 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 五、学法指导 1.再现原有认知结构。在引入两个实例后,请学生回忆有关指数的概 念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到 分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3.在互相交流和自主探究中获得发展。在实例的课堂导入、指数函数 的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4.注意学习过程的循序渐进。在概念、图象、性质、应用的过程中按 照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 六、教学过程 1、复习回顾,以旧悟新 函数的三要素是什么?函数的单调性反映了函数哪方面的特征? 答:函数的三要素包括:定义域、值域、对应法则。函数的单调性反映了函数值随自变量变化而发生变化的一种趋势,例如:某个函数当自变量取值增大时对应的函数值也增大则表明此函数为增函数,图象上反应出来越往右图象

2015高考数学二轮复习热点题型专题九 指数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

高中必修一指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 31)1-x (C )y=1)2 1(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B )偶函数且在R + 上是减函数 (C )奇函数且在R +上是增函数 (D )偶函数且在R + 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32

高考理科数学一轮复习指数与指数函数专题复习题

课时作业8 指数与指数函数 一、选择题 1.化简4a 23 ·b - 1 3 ÷? ?????-2 3a - 13 b 23 的结果为( C ) A .-2a 3b B .-8a b C .-6a b D .-6ab 2.设函数f (x )=????? ? ?? ??12x -7,x <0, x ,x ≥0,若f (a )<1,则实数a 的取值范围是( C ) A .(-∞,-3) B .(1,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 解析:当a <0时,不等式f (a )<1为? ????12a -7<1, 即? ????12a <8,即? ????12a

因为0<1 2<1,所以a >-3, 此时-3-2)与指数函数y =? ?? ??12x 的图象的交点个数是( C ) A .3 B .2 C .1 D .0 解析:因为函数y =-x 2 -4x =-(x +2)2 +4(x >-2),且当x =-2时,y =-x 2 -4x =4, y =? ????12x =4,则在同一直角坐标系中画出y =-x 2-4x (x >-2)与y =? ?? ??12 x 的图象如图所示,由图象可得,两个函数图象的交点个数是1,故选C. 5.(2019·福建厦门一模)已知a =? ?? ??120.3,b =log 12 0.3,c =a b ,则a ,b ,c 的大小关 系是( B ) A .a

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

必修一:指数与指数函数

指数与指数函数 级级: 姓名: 学号: 得分: 一、选择题(每题5分,共40分) 1.(369a )4(639a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.下列函数中,定义域为R 的是( ) (A )y=5x -21 (B )y=(3 1)1-x (C )y=1)2 1 (-x (D )y=x 21- 3.已知01,b <0 B .a >1,b >0 C .00 D .0a a 且)的图象经过二、三、四象限,则一定有 A.10<b B.1>a 且0>b C.10<a 且0

y A.a <b <1<c <d B.b <a <1<d <c C.1<a <b <c <d D.a <b <1<d <c 二、填空题(每题5分,共30分) 10.已知函数()14x f x a -=+的图像恒过定点P ,则点P 的坐标是___________ 11.方程96370x x -?-=的解是_________ 12.指数函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 . 13.函数221x x y a a =+-(0>a 且1≠a )在区间]1,1[-上的最大值为14,a 的值是 14.计算:412121325.0320625.0])32.0()02.0()008.0()9 45()833[(÷?÷+---_______________ 15.若()10x f x =,则()3f =———————— 三、解答题(16/17/19题各5分,18题15分,共30分) 16.设关于x 的方程02 41=--+b x x 有实数解,求实数b 的取值范围。),1[+∞- 17.设0a 522-+x x . 18.已知2()()1 x x a f x a a a -=-- (0>a 且1≠a ). (1)判断)(x f 的奇偶性;(2)讨论)(x f 的单调性;(3)当]1,1[-∈x 时,b x f ≥)(恒成立,求b 的取值范围。 19.若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。

专题4.1 指数与指数函数(精讲精析篇)(解析版)

专题4.1指数与指数函数(精讲精析篇) 提纲挈领 点点突破 热门考点01 根式的化简与求值 (1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数. (2)(n a )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性决定. n a ????? n 为偶数,a 为非负实数n 为奇数,a 为任意实数,且n a 符号与a 的符号一致 【典例1】化简下列各式: ①4 (x -2)4; ②5 (x -π)5. 【答案】见解析. 【解析】 ①4 (x -2)4 =|x -2|=? ???? x -2,x ≥2, -x +2,x <2. ②5 (x -π)5=x -π. 【典例2】化简下列各式: (1)x 2-2x +1-x 2+6x +9(-3

【答案】见解析. 【解析】(1)原式=(x -1)2-(x +3)2=|x -1|-|x +3|. ∵-3

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

高中数学必修一《指数函数及其性质》说

人教版高中数学必修一《指数函数及其性质》说课稿 各位评委,你们好,今天我说课的内容是普通高中课程标准实验教科书数学必修的第1个模块中第二章的2.1.2指数函数及其性质的第一节课。 下面我从教材分析;教学目标分析;教法、学法分析;教学过程分析;板书设计分析;评价分析等六个方面对本设计进行说明。 一、教材分析 1、教材的地位与作用 (1)本节内容既是函数内容的深化,又是今后学习对数函数、三角函数的基础,具有非常高的实用价值,在教材中起到了承上启下的关键作用。 (2)在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生对数学的兴趣。 2、教材处理 根据学生的认知规律,本节课从具体到抽象,从特殊到一般,由浅入深地进行教学,使学生顺利地掌握知识,发展能力。在教学过程中,运用多媒体辅助教学,提高教学效率。本节教材我分两节完成,第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。本节课是第一课时。 3、教学重点、难点 教学重点:指数函数的定义、图象、性质. 教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。 4、教具、学具准备:多媒体课件。 二、教学目标分析 根据教材特点及教学大纲要求,我认为学生通过本节内容的学习要达到以下目标: 1、知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题; 2、能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; 3、品德目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。 三、教法、学法分析 1、教法分析 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 2、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

指数与指数函数专题复习

指数及指数函数 (一)指数与指数幂的运算 1.根式的概念 结论:当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0() 0(||a a a a a a n n 2.分数指数幂 )1,,,0(* >∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·s r s a a +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>; (3)()r r s ab a a =),0,0(Q r b a ∈>>. (二)指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . (三)指数函数的图象和性质 注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 一、指数 1、化简[32 )5(-]4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、化简1111132168421212121212-----??? ???????+++++ ???????????????????,结果是( ) A 、1 1 321122--? ?- ? ?? B 、1 13212--??- ??? C 、13212-- D 、1 321122-??- ??? 3、211 5 113 3 66 2 2 1()(3)()=3 a b a b a b -÷__________. 二、指数函数 3、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( ) A 、(1%)na b - B 、(1%)a nb - C 、[1(%)]n a b - D 、(1%)n a b - 4、若21 (5 )2x f x -=-,则(125)f = .

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x 2,y=x ??? ??21,y=x 10,y=x ?? ? ??101的图象 . 我们观察y=x 2,y=x ?? ? ??21,y=x 10,y= x ?? ? ??101图象特征,就可以得到)10(≠>=a a a y x 且的图象和性质。 a>1 0

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+, ∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ?? + ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数216x y -=-的定义域和值域. 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

相关主题
文本预览
相关文档 最新文档